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Introduction

In the preprint [19], we toyed with birational ideas in three areas
of algebraic geometry: plain varieties, pure motives in the sense of
Grothendieck, and triangulated motives in the sense of Voevodsky.
These three themes are finally treated separately in revised versions.
The first one was the object of [21]; the second one is the object of the
present paper; we hope to complete the third one soon.

We work over a field F . Recall that we introduced in [21] two “bi-
rational” categories. The first, place(F ), has for objects the func-
tion fields over F and for morphisms the F -places. The second one is
the Gabriel-Zisman localisation of the category Sm(F ) of smooth F -
varieties obtained by inverting birational morphisms: we denoted this
category by S−1

b Sm(F ).
We may also invert stable birational morphisms: those which are

dominant and induce a purely transcendental extension of function
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2 BRUNO KAHN AND R. SUJATHA

fields, and invert the corresponding morphisms in place(F ). We denote
the sets of such morphisms by Sr.

In order to simplify the exposition, let us assume that F is of char-
acteristic 0. Then the main results of [21] and its predecessor [20] can
be summarised in a diagram

place(F )op −−−→ S−1
b Smproj(F )

∼
−−−→ S−1

b Sm(F )y ≀

y ≀

y
S−1
r place(F )op −−−→ S−1

r Smproj(F )
∼

−−−→ S−1
r Sm(F )

where Smproj(F ) is the full subcategory of smooth projective varieties
and the symbols ∼ denote equivalences of categories: see [20, Prop.
8.5] and [21, Th. 1.7.7 and Cor. 4.4.3].

Moreover, ifX is smooth and Y is smooth proper, then Hom(X, Y ) =
Y (F (X))/R in S−1

b Sm(F ), where R is R-equivalence [21, Th. 5.4.14].
In this paper, we consider the effect of inverting birational mor-

phisms in categories of effective pure motives. For simplicity, let us
still assume charF = 0, and consider only the category of effective
Chow motives Choweff(F ), defined by using algebraic cycles modulo
rational equivalence. The graph functor then induces a commutative
square

S−1
b Smproj(F ) −−−→ S−1

b Choweff(F )

≀

y
y

S−1
r Smproj(F ) −−−→ S−1

r Choweff(F ).

One can expect that the right vertical functor is an equivalence of
categories, and indeed this is not difficult to prove (Corollary 2.2.4
b)). But we have two other descriptions of this category of “birational
motives”:

• The functor Choweff(F ) → S−1
b Choweff(F ) is full, and its ker-

nel is the ideal Lrat of morphisms which factor through some
object of the form M ⊗ L, where L is the Lefschetz motive
(ibid.).

• If X, Y are smooth projective varieties, then Lrat(h(X), h(Y ))
coincides with the group of Chow correspondences represented
by algebraic cycles on X×Y whose irreducible components are
not dominant over X (Theorem 2.4.1).

As a consequence, the group of morphisms from h(X) to h(Y ) in
S−1
b Choweff(F ) is isomorphic to CH0(YF (X)). Given the similar de-

scription of Hom sets in S−1
b Smproj(F ) recalled above, this places the
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classical map

Y (F (X))/R→ CH0(YF (X))

in a categorical context.
This paper is organised as follows. In Section 1 we review pure

motives. In Section 2 we study pure birational motives, in greater gen-
erality than outlined in this introduction. In particular, many results
are valid for other adequate equivalence relations than rational equiva-
lence, see §2.3; moreover, some results extend to characteristic p if the
coefficients contain Q, by using de Jong’s alteration theorem [8], see
Theorem 2.4.1.

Section 3 consists of examples. Rationally connected varieties are
shown to have trivial birational motives. We also study the Chow-
Künneth decomposition in the category of birational motives, special
attention being devoted to the case of complete intersections.

Let Chowo(F ) denote the pseudo-abelian envelope of S−1
b Choweff(F ).

(The superscript o stands for “open”.) In Section 4, we examine two
questions: the existence of a right adjoint to the projection functor
Choweff(F ) → Chowo(F ) (and similarly for more general adequate
equivalences), and whether pseudo-abelian completion is really neces-
sary. It turns out that the answer to the first question is negative
(Theorems 4.3.2 and 4.3.3) and the answer to the second question is
positive with rational coefficients under a nilpotence conjecture (Con-
jecture 3.3.1). We can get an unconditional positive answer to the
second question if we restrict to a suitable type of motives (Proposi-
tion 4.4.1 and Example 4.4.2).

In Section 5, we define a functor S−1
r field(F )op → S−1

r Choweff(F,Q)
in characteristic p, using de Jong’s theorem again. Here field(F ) de-
notes the subcategory of place(F ) with the same objects but mor-
phisms restricted to field extensions (Proposition 5.1.1).

We end this paper by relating the previous constructions to more
classical objects. In Section 6, we define a tensor additive category
AbS(F ) of locally abelian schemes, whose objects are those F -group
schemes that are extensions of a lattice (i.e. locally isomorphic for the
étale topology to a free finitely generated abelian group) by an abelian
variety. We then show in Section 7 that the classical construction of
the Albanese variety of a smooth projective variety extends to a tensor
functor

Alb : Chowo(F ) → AbS(F )

which becomes full and essentially surjective after tensoring morphisms
with Q (Proposition 7.2.1). So, one could say that AbS(F ) is the
representable part of Chowo(F ). We also show that, after tensoring
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with Q, Alb has a right adjoint which identifies AbS(F )⊗Q with the
thick subcategory of Chowo(F )⊗Q generated by motives of varieties
of dimension ≤ 1.

Some results of the preliminary version [19] of this work were used in
other papers, namely [22] and [18], and we occasionally refer to these
papers to ease the exposition. In order to give a correspondence guide
to the reader and also explain that there are no circular arguments, let
us describe precisely what results from [19] are used in these papers,
and which results replace them here:

• In [18], Lemma 7.2 uses [19, Lemmas 5.3 and 5.4], which cor-
respond to Proposition 2.3.4 and Theorem 2.4.1 of the present
paper. The reader will verify that the proofs of Proposition
2.3.4 and Theorem 2.4.1 are the same as those of [19, Lemmas
5.3 and 5.4], mutatis mutandis, and do not use any result from
[18].

• In [22], Lemma 7.5.3 uses the same references: the same com-
ment as above applies. Moreover, [19, 9.5] is used on pp. 174–
175 of [22]: this result is now Proposition 7.2.4. Again, its proof
is identical to the one in the preliminary version and does not
use results from [22].

The idea of considering birational Chow correspondences that yield
here a category in which Hom([X], [Y ]) = CH0(YF (X)) for two smooth
projective varieties X, Y goes back to S. Bloch’s method of “decompo-
sition of the diagonal” in [4, App. to Lecture 1]. There, he attributes
the idea of considering the generic point of a smooth projective vari-
ety X as a 0-cycle over its function field to Colliot-Thélène: here, it
corresponds to the identity endomorphism of ho(X) ∈ Chowo(F ). We
realised the connection with Bloch’s ideas after reading H. Esnault’s
article [10], and this led to another proof of her theorem by the present
birational techniques in [18]. M. Rost has considered this category
independently [31]: this was pointed out to us by N. Karpenko.

Acknowledgements. We once again acknowledge benefitting from
discussions with our colleagues from the long list in [21]. We would
also like to thank TIFR in Mumbai, the IMJ in Paris and CEFIPRA
projects, especially Project no 3701-2 for hospitality and support.

1. Review of pure motives

In this section, we recall the definition of categories of pure motives
in a way which is suited to our needs. A slight variance to the usual
exposition is the notion of adequate pair which is a little more precise
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than the notion of adequate equivalence relation (it explicitly takes the
coefficients into account).

We adopt the covariant convention, for future comparison with Vo-
evodsky’s triangulated categories of motives: here, the functor which
sends a smooth projective variety to its motive is covariant. For a
dictionary between the covariant and contravariant conventions, the
reader may refer to [22, 7.1.2].

1.1. Adequate pairs. We give ourselves:

• a commutative ring of coefficients A;
• an adequate equivalence relation ∼ on algebraic cycles with

coefficients in A [42].

We refer to (A,∼) as an adequate pair. Classical examples for ∼ are
rat (rational equivalence), alg (algebraic equivalence), num (numeri-
cal equivalence), ∼H (homological equivalence relative to a fixed Weil
cohomology theory H). A less classical example is Voevodsky’s smash-
nilpotence tnil [47], see [3, Ex. 7.4.3] (a cycle α is smash-nilpotent if
α⊗n ∼rat 0 for some n > 0). We then have a notion of domination
(A,∼) ≥ (A,∼′) if ∼ is finer than ∼′ (i.e. the groups of cycles modulo
∼ surjects onto the one for ∼′). It is well-known that (A, rat) ≥ (A,∼)
for any ∼ (cf. [12, Ex. 1.7.5]), and that (A,∼) ≥ (A, numA) if A is a
field.

Since the issue of coefficients is sometimes confusing, the following
remarks may be helpful. Given a pair (A,∼) and a commutative A-
algebra B, we get a new pair B⊗A (A,∼) by tensoring algebraic cycles
with B: for example, (A,∼) = A ⊗Z (Z,∼) for ∼= rat, alg or tnil by
definition. On the other hand, given a pair (B,∼) and a ring homo-
morphism A → B we get a “restriction of scalars” pair (A,∼|A) by
considering cycles with coefficients in A which become ∼ 0 after ten-
soring with B: for example, if H is a Weil cohomology theory with
coefficients in K, this applies to any ring homomorphism A→ K. Ob-
viously B ⊗A (A,∼|A) ≥ (B,∼), but this need not be an equality in
general.

In the case of numerical equivalence (a cycle with coefficients in
A is numerically equivalent to 0 if the degree of its intersection with
any cycle of complementary dimension in good position is 0), we have
B ⊗A (A, numA) ≥ (B, numB), with equality if B is flat over A.

Given a pair (A,∼), to any smooth projective F -variety X we may
associate for each integer n ≥ 0 its group of cycles of codimension n
with coefficients in A modulo ∼, that will be denoted by Zn

∼(X,A). If
X has dimension d, we also write this group Z∼

d−n(X,A).
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1.2. Smooth projective varieties, connected and nonconnected.

In [21] we were only considering (connected) varieties over F . Classi-
cally, pure motives are defined using not necessarily connected smooth
projective varieties. One could base the treatment on connected smooth
varieties, but this would introduce problems with the tensor product,
since a product of connected varieties need not be connected in general
(e.g. if neither of them is geometrically connected). Thus we prefer to
use here:

1.2.1. Definition. We write Sm‘(F ) for the category of smooth sep-
arated schemes of finite type over F . For % ∈ {prop, qp, proj}, we

write Sm%
‘(F ) for the full subcategory of Sm‘(F ) consisting of proper,

quasi-projective or projective varieties.

Unlike their counterparts considered in [21], these categories enjoy
finite products and coproducts.

The following lemma is clear.

1.2.2. Lemma. The categories considered in Definition 1.2.1 are the
“finite coproduct envelopes” of those considered in [21], in the sense of
[20, Prop. 6.1].

1.3. Review of correspondences. We associate to two smooth pro-
jective varieties X, Y the group ZdimY

∼ (X × Y,A) of correspondences
from X to Y relative to (A,∼). The composition of correspondences
is defined as follows1: if X, Y, Z are smooth projective and (α, β) ∈
ZdimY

∼ (X × Y,A) × ZdimZ
∼ (Y × Z,A), then

β ◦ α = (pXZ)∗(p
∗
XY α · p∗Y Zβ)

where pXY , pY Z and pXZ denote the partial projections from X×Y ×Z
onto two-fold factors.

We then get an A-linear tensor (i.e. symmetric monoidal) category
Cor∼(F,A). The graph map defines a covariant functor

Sm
proj
‘ (F ) → Cor∼(F,A)(1.1)

X 7→ [X]

so that [X
∐
Y ] = [X] ⊕ [Y ], and [X × Y ] = [X] ⊗ [Y ] for the tensor

structure.
If f : X → Y is a morphism, let Γf denote its graph and [Γf ] denote

the class of Γf in ZdimY
∼ (X × Y ). We write f∗ for the correspondence

[Γf ] : [X] → [Y ] (the image of f under the functor (1.1)). Note that

1We follow here the convention of Voevodsky in [48]. It is also the one used by
Fulton [12, §16]. See [22, 7.1.2].
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if f : X → Y and g : Y → Z are two morphisms, then the cycles
Γf × Z and X × Γg on X × Y × Z intersect properly, so that g∗ ◦ f∗
is well-defined as a cycle and not just as an equivalence class of cycles;
the equation g∗ ◦ f∗ = (g ◦ f)∗ is an equality of cycles.

1.4. Rational maps. We first define rational maps between not nec-
essarily connected smooth varieties X, Y in the obvious way: it is a
morphism from a suitable dense open subset of X to Y . Like mor-
phisms, rational maps split as disjoint unions of “connected” rational
maps. A rational map f is dominant if all its connected components
are dominant and if the image of f meets all connected components of
Y .

Let f : X 99K Y be a rational map between two smooth projective
varieties X, Y . To f we associate the correspondence f∗ : [X] → [Y ]
in Cor∼(F,A), defined as the closure of the graph of f inside X × Y .
We also define f ∗ as the transpose of f∗, as above for solid morphisms.
The formula g∗ ◦ f∗ = (g ◦ f)∗ need not be valid in general, even if g ◦ f
is defined (but see Proposition 2.3.6 below). Yet we have:

1.4.1. Lemma. Let X
g
99K Y

p
−→ Z be a diagram of smooth projective

varieties, where g is a rational map and p is a morphism. Let f = p◦g.
Then, we have an equality of cycles

g∗ ◦ f∗ = (g ◦ f)∗

in ZdimZ(X × Z).

Sketch. As in [12, proof of Prop. 16.1.1 (c) (iii)], we introduce the
rational map

(g, f) : X 99K Y × Z.

Let U be an open subset of X on which g, hence f , is defined. We
work in U × Y ×Z. Clearly, the graph Γg,f in this variety is contained
in (U×Γp)∩(Γf×Y ). As explained in §1.3, this inclusion is an equality
of reduced closed subschemes. Therefore, equality persists on taking
their closures in X × Y × Z. 2

1.5. Effective pure motives. We now define as usual the category
of effective pure motives Moteff

∼ (F,A) relative to (A,∼) as the pseudo-
abelian envelope of Cor∼(F,A). We denote the composition of (1.1)
with the pseudo-abelianisation functor by heff

∼ . If ∼= rat, we usually
abbreviate heff

∼ to heff.
In Moteff

∼ (F,A) we have

• heff
∼ (SpecF ) = 1 (the unit object for the tensor structure)

• heff
∼ (P1) = 1 ⊕ L where L is the Lefschetz motive.
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If n ≥ 0, we write M(n) for the motive M ⊗ L⊗n (beware that the
“standard” notation is M(−n)!)

We then have the formula, for two smooth projective X, Y and inte-
gers p, q ≥ 0

(1.2) Moteff
∼ (F,A)(heff

∼ (X)(p), heff
∼ (Y )(q)) = ZdimY+q−p

∼ (X × Y ).

In particular, the endofunctor − ⊗ L of Moteff
∼ (F,A) is fully faith-

ful. If f : X → Y is a morphism, then the correspondence [tΓf ] ∈
ZdimY (Y × X) obtained by the “switch” defines a morphism f ∗ :
heff
∼ (Y )(dimX) → heff

∼ (X)(dimY ), i.e. from heff
∼ (Y ) to heff

∼ (X)(dimY −
dimX) or from heff

∼ (Y )(dimX−dimY ) to heff
∼ (X) according to the sign

of dimX − dim Y .
In particular, if f has relative dimension 0 then f ∗ maps heff

∼ (Y ) to
heff
∼ (X). We recall the well-known

1.5.1. Lemma. Suppose that f is generically finite of degree d. Then
f∗ ◦ f

∗ = d1Y .

Proof. It suffices to prove this for the action on cycles, and then the
lemma follows by Manin’s identity principle. Let α ∈ Z∗

∼(Y,A). By
the projection formula,

f∗f
∗(α) = α · f∗(1).

But f∗(1) ∈ Z0
∼(Y,A) may be computed after restriction to any open

subset U of X and for U small enough it is clear that f∗(1) = d. 2

1.6. Pure motives. The category Mot∼(F,A) is now obtained from
Moteff

∼ (F,A) by inverting the endofunctor − ⊗ L, i.e. adjoining a ⊗-
quasi-inverse T of L (the Tate motive) to Moteff

∼ (F,A). The resulting
category is rigid and the functor Moteff

∼ (F,A) → Mot∼(F,A) is fully
faithful; we refer to [41] for details. We shall write h∼(X) for the image
of heff

∼ (X) in Mot∼(F,A).

2. Pure birational motives

2.1. A first approach. The first idea to define a notion of pure bi-
rational motives is to localise Moteff

∼ (F,A) with respect to [the graphs
of] stable birational morphisms as in [21], hence getting a functor

S−1
r Sm

proj
‘ (F ) → S−1

r Moteff
∼ (F,A).

This idea turns out to be the good one in all important cases, but
for this we need some preliminary work first.

We start by reviewing the sets of morphisms used in [21, §1.7]:

• Swb : compositions of blow-ups with smooth centres;
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• Sh: projections of the form X × (P1)n → X;
• Swr = Swb ∪ Sh;
• Sb: birational morphisms;
• Sr stably birational morphisms: s ∈ Sr if and only if s is domi-

nant and gives a purely transcendental function field extension.

These morphisms, defined for connected varieties in [21], extend
trivially to the categories of Definition 1.2.1 as explained in [20, Cor.
6.3]. More precisely, if S is a set of morphisms of Sm(F ), we define
S

‘

⊂ Sm‘(F ) as the set of those morphisms which are dominant and
whose connected components are all in S. For simplicity, we shall write
S rather than S

‘

in the sequel.
By Lemma 1.2.2 and [20, Th. 6.4], the localisation results of [20]

and [21] extend to the category Sm‘(F ) and, moreover, the functors

S−1 Sm(F ) → S−1 Sm‘(F )

identify the right hand side with the “finite coproduct envelope” of the
left hand side. Similarly for their likes with decorations Sm%.

We shall view the above morphisms as correspondences via the graph
functor. We introduce two more sets which are convenient here:

2.1.1. Definition. We write S̃b and S̃r for the set of dominant rational
maps which induce, respectively, an isomorphism of function fields and
a purely transcendental extension. We let these rational maps act on
pure motives via their graphs, as in §1.4.

Thus we have a diagram of inclusions of morphisms on Moteff
∼ (F,A):

(2.1)

Swb ⊂ Swb ∪ Sh = Swr
⋂ ⋂ ⋂

Sb ⊂ Sb ∪ Sh ⊂ Sr
⋂ ⋂ ⋂

S̃b ⊂ S̃b ∪ Sh ⊂ S̃r
Let us immediately notice:

2.1.2. Proposition. Let S be one of the systems of morphisms in (2.1).
Then the category S−1 Moteff

∼ (F,A) is an A-linear category provided
with a tensor structure, compatible with the corresponding structures of
Moteff

∼ (F,A) via the localisation functor.

Proof. This follows from Theorem A.3.3, Proposition A.1.2 and the fact
that elements of S are stable under disjoint unions and products. 2
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2.2. A second approach: the Lefschetz ideal.

2.2.1. Definition. We denote by L∼ the ideal of Moteff
∼ (F,A) consist-

ing of those morphisms which factor through some object of the form
P (1): this is the Lefschetz ideal. It is a monoidal ideal (i.e. , it is
closed with respect to composition and tensor products on the left and
on the right).

2.2.2. Remark. In any additive category A there is the notion of prod-
uct of two ideals I,J :

I ◦ J = 〈f ◦ g | f ∈ I, g ∈ J 〉.

If B is some given additive subcategory of A and J = {f |
f factors through some A ∈ B}, then J is idempotent because it is
generated by idempotent morphisms, namely the identity maps of the
objects of B. In A = Moteff

∼ (F,A), this applies to L∼.
On the other hand, in a tensor additive category A there is also the

tensor product of two ideals I,J : for A,B ∈ A

(I ⊗ J )(A,B) = 〈A(E ⊗ F,B) ◦ (I(C,E) ⊗J (D,F )) ◦ A(A,C ⊗D)〉

where C,D,E, F run through all objects of A. Coming back to A =
Moteff

∼ (F,A), we have L∼ ⊗ L∼ = Moteff
∼ (F,A)(2) 6= L∼ ◦ L∼ = L∼.

This is in sharp contrast with the case where A is rigid [3, (6.15)].

2.2.3. Proposition. a) The localisation functor

Moteff
∼ (F,A) → (Swb )−1 Moteff

∼ (F,A)

factors through Moteff
∼ (F,A)/L∼.

b) The functors

Moteff
∼ (F,A)/L∼ → (Swb )−1 Moteff

∼ (F,A) → (Swr )−1 Moteff
∼ (F,A)

are both isomorphisms of categories.
c) The functor

Moteff
∼ (F,A)/L∼ → S−1

b Moteff
∼ (F,A)

is full.

d) For any s ∈ S̃r, s∗ becomes invertible in S̃−1
b Moteff

∼ (F,A).

Proof. a) By Proposition 2.1.2, it is sufficient to show that L 7→ 0
in (Swb )−1 Moteff

∼ (F,A). Here as in the proof of b) we shall use the

following formula of Manin [30, §9, Cor. p. 463]: if p : X̃ → X is a
blow-up with smooth centre Z ⊂ X of codimension n, then

(2.2) heff
∼ (X̃) ≃ heff

∼ (X) ⊕
n−1⊕

i=1

heff
∼ (Z) ⊗ L

⊗i
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where projecting the right hand side onto heff
∼ (X) we get p∗.

In (2.2), take X = P2 and for X̃ the blow-up of X at (say) Z =
{(0 : 0)}. Since p is invertible in S−1

b Moteff
∼ (F,A), we get L = 0 in this

category as requested.
b) It suffices to show that morphisms of Swr become invertible in

Moteff
∼ (F,A)/L∼, which immediately follows from (2.2) and the easier

projective line formula.
c) It suffices to show that members of Sb have right inverses in

Moteff
∼ (F,A): this follows from Lemma 1.5.1.

d) Let g : X 99K Y be an element of S̃r. Then X is birational
to Y × (P1)n for some n ≥ 0, and if f : X 99K Y × (P1)n is the
corresponding birational map, its composition with the first projection
π is g. By Lemma 1.4.1, it suffices to show that π∗ is invertible in
S̃−1
b Moteff

∼ (F,A), which follows from b). 2

2.2.4. Corollary. Let M = Moteff
∼ (F,A).

a) The diagram (2.1) induces a commutative diagram of categories and
functors
(2.3)

M/L∼
∼

−−−→ (Swb )−1M
∼

−−−→ (Swb ∪ Sh)
−1M

∼
−−−→ (Swr )−1M

full

y full

y
y

S−1
b M

∼
−−−→ (Sb ∪ Sh)

−1M −−−→ S−1
r My

y
y

S̃−1
b M

∼
−−−→ (S̃b ∪ Sh)

−1M
∼

−−−→ S̃−1
r M

where the functors with a sign ∼ are isomorphisms of categories and
the indicated functors are full.
*b) If charF = 0, all functors are isomorphisms of categories.

Proof. a) follows from Proposition 2.2.3; b) follows from Hironaka’s
resolution of singularities (cf. [21, Lemma 1.7.6 b) and c)]). 2

2.2.5. Remark. Tracking isomorphisms in Diagram (2.3), one sees that
without resolution of singularities we get a priori 4 different categories

of “pure birational motives”. If p : X̃ → X is a birational morphism,

then at least heff
∼ (X) is a direct summand of heff

∼ (X̃) by Lemma 1.5.1.
However it is not clear how to prove that the other summand is divisible
by L without using resolution. We shall get by for some special pairs
(A,∼) in characteristic p below, using de Jong’s theorem.
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2.2.6. Definition. The category of pure birational motives is

Moto
∼(F,A) =

(
Moteff

∼ (F,A)/L∼

)♮
.

For a smooth projective variety X, we write ho
∼(X) for the image of

heff
∼ (X) in Moto

∼(F,A). For ∼= rat, we usually write ho rather than
ho

rat.
We also set

Choweff(F,A) = Moteff
rat(F,A)

Chowo(F,A) = Moto
rat(F,A).

WhenA = Z, we abbreviate this notation to Choweff(F ) and Chowo(F ).

In Section 4, we shall examine to what extent it is really necessary
to adjoin idempotents.

2.3. A third approach: extendible pairs. To go further, we need
to restrict the adequate equivalence relation we are using:

2.3.1. Definition. An adequate pair (A,∼) is extendible if

• ∼ is defined on cycles over arbitrary quasiprojective F -varieties;
• it is preserved by inverse image under flat morphisms and direct

image under proper morphisms;
• if X is smooth projective, Z is a closed subset of X and U =
X − Z, then the sequence

(2.4) Z∼
n (Z,A) → Z∼

n (X,A) → Z∼
n (U,A) → 0

is exact.

Note that in the latter sequence, surjectivity always holds because
this is already true on the level of cycles. So the issue is exactness at
Z∼
n (X,A).

2.3.2. Examples. a) Rational equivalence (with any coefficients) is
extendible.
b) Algebraic equivalence (with any coefficients) is extendible, cf. [12,
Ex. 10.3.4].
c) The status of homological equivalence is very interesting:

(1) Under resolution of singularities and the standard conjecture
that homological and numerical equivalences agree, homologi-
cal equivalence with respect to a “classical” Weil cohomology
theory is extendible if charF = 0 (Corti-Hanamura [7, Prop.
6.7]). The proof involves the weight spectral sequences for
Borel-Moore Hodge homology, their degeneration at E2 and the
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semi-simplicity of numerical motives (Jannsen [16]). Presum-
ably the same arguments work in characteristic p by using de
Jong’s alteration theorem [8] instead of Hironaka’s resolution of
singularities: we thank Yves André for pointing this out.

(2) It seems that the Corti-Hanamura argument implies uncondi-
tionally that André’s motivated cycles [1] verify the axioms of
an extendible pair.

(3) For Betti cohomology with integral coefficients or l-adic coho-
mology with Zl coefficients, homological equivalence is not ex-
tendible. (Counterexample: n = 1, Z a surface of degree ≥ 4
in P3.)

(4) Hodge cycles with coefficients Q verify the axioms of an ex-
tendible pair: the proof involves resolving the singularities of Z
in (2.4) and using the semi-simplicity of polarisable pure Hodge
structures. See also Jannsen [17]. We are indebted to Claire
Voisin for explaining these last two points.

(5) Taking Tate cycles for l-adic cohomology, the same argument
works if we assume the semi-simplicity of Galois action on the
cohomology of smooth projective varieties.

2.3.3. Lemma. If (A,∼) verifies the first two conditions of Definition
2.3.1, then (A, rat) ≥ (A,∼) (also over arbitrary quasiprojective vari-
eties).

Proof. Again, this follows from [12, Ex. 1.7.5]. 2

2.3.4. Proposition. Let (A,∼) be an extendible pair. For two smooth
projective varieties X, Y , let I∼(X, Y ) be the subgroup of ZdimY

∼ (X ×
Y,A) consisting of those classes vanishing in ZdimY

∼ (U×Y,A) for some
open subset U of X. Then I∼ is a monoidal ideal in Cor∼(F,A).

Proof. Note that by Lemma 2.3.3 and the third condition of Definition
2.3.1, the map Irat(X, Y ) → I∼(X, Y ) is surjective for any X, Y : this
reduces us to the case ∼= rat. We further reduce immediately to
A = Z.

Let X, Y, Z be 3 smooth projective varieties. If U is an open sub-
set of X, it is clear that the usual formula defines a composition of
correspondences

CHdimY (U × Y ) × CHdimZ(Y × Z) → CHdimZ(U × Z)

and that this composition commutes with restriction to smaller and
smaller open subsets. Passing to the limit on U , we get a composition

CHdimY (YF (X)) × CHdimZ(Y × Z) → CHdimZ(ZF (X))
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or

CH0(YF (X)) × CHdimZ(Y × Z) → CH0(ZF (X)).

Here we used the fact that (codimensional) Chow groups commute
with filtering inverse limits of schemes, see [4].

We now need to prove that this pairing factors through CH0(YF (X))×
CHdimZ(V × Z) for any open subset V of Y . One checks that it is in-
duced by the standard action of correspondences in CHdimZ(YF (X)×F (X)

ZF (X)) on groups of 0-cycles. Hence it is sufficient to show that the stan-
dard action of correspondences factors as indicated, and up to changing
the base field we may replace F (X) by F .

We now show that the pairing

CH0(Y ) × CHdimZ(Y × Z) → CH0(Z)

factors as indicated. The proof is a variant of Fulton’s proof of the
Colliot-Thélène–Coray theorem that CH0 is a birational invariant of
smooth projective varieties [6], [12, Ex. 16.1.11]. Let M be a proper
closed subset of Y , and i : M → Y be the corresponding closed
immersion. We have to prove that for any α ∈ CH0(Y ) and β ∈
CHdimY (M × Z),

(i× 1Z)∗(β)(α) := (p2)∗((i× 1Z)∗β · p∗1α) = 0

where p1 and p2 are respectively the first and second projections on
Y × Z.

We shall actually prove that (i × 1Z)∗β · p∗1α = 0. For this, we
may assume that α is represented by a point y ∈ Y(0) and β by some
integral variety W ⊆ M × Z. Then (i × 1Z)∗β · p∗1α has support in
(i× 1Z)(W )∩ ({y}×Z) ⊂ (M ×Z)∩ ({y}×Z). If y /∈M , this subset
is empty and we are done. Otherwise, up to linear equivalence, hence
up to ∼, we may replace y by a 0-cycle disjoint from M (cf. [39]), and
we are back to the previous case.

This shows that I∼ is an ideal of Cor∼(F,A). The fact that it is a
monoidal ideal is essentially obvious. 2

2.3.5. Definition. We abbreviate the notation Cor∼(F,A)/I∼ into
Coro

∼(F,A).

For future reference, let us record here the value of the Hom groups in
the most important case, that of rational equivalence (see also Remark
2.3.8 2) below):

(2.5) Coro
rat(F,A)([X], [Y ]) = CH0(YF (X)) ⊗ A.
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2.3.6. Proposition. In Coro
∼(F,A),

a) (g ◦ f)∗ = g∗ ◦ f∗ for any composable rational maps X
f
99K Y

g
99K Z.

b) [12, Ex. 16.1.11] f ∗f∗ = 1X and f∗f
∗ = 1Y for any birational map

f : X 99K Y .

c) Morphisms of S̃r are invertible.

Proof. a) Let F be the fundamental set of f , G be the fundamental
set of g, U = X − F , V = Y − G. By assumption, f(U) ∩ V 6= ∅,
hence W = f−1(V ) is a nonempty open subset of U , on which g ◦ f is
a morphism.

Let us abuse notation and still write f for the morphism fU , etc.
Then, by definition

g∗ ◦ f∗ = (pXZ)∗((Γ̄f × Z) ∩ (X × Γ̄g))

(note that the two intersected cycles are in good position). This cycle
clearly contains the graph Γg◦f as an open subset, hence also (g ◦ f)∗
as a closed subset. One sees immediately that the restriction of g∗ ◦ f∗
and (g ◦ f)∗ to W × Z are equal.

b) is proven in the same way.

c) Let g : X 99K Y be an element of S̃r. Then X is birational to
Y × (P1)n for some n ≥ 0, and if f : X 99K Y × (P1)n is a birational
map, its composition with the first projection π is g. By a) and b),
it suffices to show that π∗ is invertible in Cor∼(F,A)/I∼. For this we
may reduce to n = 1 and even to Y = SpecF since I∼ is a monoidal
ideal. Let s : SpecF → P1 be the ∞ section: it suffices to show that
(s ◦ π)∗ = 1P1 . But the cycle (s ◦ π)∗ − 1P1 on P1 × P1 is linearly
equivalent to ∞ × P1 (this is the idempotent defining the Lefschetz
motive), and the latter cycle vanishes when restricted to A1 × P1. 2

We shall also need the following lemma in the proof of Proposition
5.1.1 c).

2.3.7. Lemma. Let L/K be an extension of function fields over F , with
K = F (X) and L = F (Y ) for X, Y two smooth projective F -varieties.
Let ϕ : Y 99K X be the rational map corresponding to the inclusion
K →֒ L. Let Z be another smooth projective F -variety. Then the map

Chowo(F,A)(ho(X), ho(Z)) → Chowo(F,A)(ho(Y ), ho(Z))

given by composition with ϕ∗ : ho(Y ) → ho(X) (see 1.4) coincides via
(2.5) with the base-change map CH0(ZK) ⊗ A→ CH0(ZL) ⊗ A.

Proof. Let V ⊆ Y and U ⊆ X be open subsets such that f is defined
on V and f(V ) ⊆ U . Up to shrinking U , we may assume that f is flat
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[EGA IV, 11.1.1 ]. As in the proof of Proposition 2.3.4, the composition
of correspondences induces a pairing

CHdimX(V × U) × CHdimZ(U × Z) → CHdimZ(V × Z)

and the action of ϕ∗ ∈ CHdimX(V × U) on α ∈ CHdimZ(U × Z) is
given by the flat pull-back of cycles. Therefore, ϕ∗ induces in the limit
the flat pull-back of 0-cycles from CH0(ZK) to CH0(ZL). 2

2.3.8. Remarks. 1) Propositions 2.3.4 and 2.3.6 a) were independently
observed by Markus Rost in the case ∼= rat [31, Prop. 3.1 and Lemma
3.3]. We are indebted to Karpenko for pointing this out and for refer-
ring us to Merkurjev’s preprint [31].

2) In Coro
∼(F,A), morphisms are by definition given by the formula

Coro
∼(F,A)([X], [Y ]) = lim−→

U⊆X

ZdimY
∼ (U × Y,A).

The latter group maps onto Z∼
0 (YF (X), A). If ∼= rat, this map is

an isomorphism (see (2.5)). For other equivalence relations, this is far
from being the case: for example, if ∼= alg, F is algebraically closed,
X, Y are two curves and (say) A = Z, then

Z1
alg(X × Y,Z) = NS(X × Y ) = NS(X) ⊕NS(Y ) ⊕ Hom(JX , JY )

= Z ⊕ Z ⊕ Hom(JX , JY )

where NS is the Néron-Severi group and JX , JY are the Jacobians of
X and Y . On the other hand,

Zalg
0 (YF (X),Z) = NS(YF (X)) = Z.

When we remove a point fromX, we kill the factor NS(X) = Z. But
any two points of X are algebraically equivalent, so removing further
points does not modify the group any further. Hence

lim−→
U⊆X

ZdimY
alg (U × Y,Z) = Z⊕ Hom(JX , JY ).

We thank Colliot-Thélène for helping clarify this matter.

2.4. The main theorem. We now extend the ideal I∼ from Cor∼(F,A)
to Moteff

∼ (F,A) in the usual way (cf. [3, Lemme 1.3.10]), without
changing notation. By Propositions 2.2.3 a) and 2.3.6, we get a com-
posite functor

(2.6) Moteff
∼ (F,A)/L∼ → S̃−1

r Moteff
∼ (F,A) → Moteff

∼ (F,A)/I∼

for any extendible pair (A,∼). Since both categories are full images of
Moteff

∼ (F,A), this functor is automatically full. We are going to show
that it is an equivalence of categories in some important cases.
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2.4.1. Theorem. Let (A,∼) be an extendible pair. Suppose that charF
= 0 or F that is perfect2 and A ⊇ Q. Then the functor (2.6) is an
isomorphism of categories.

Proof. 3 We have to show that I∼(M,N) ⊆ L∼(M,N) for any M,N ∈
Moteff

∼ (F,A). Clearly we may assume M = heff
∼ (X), N = heff

∼ (Y )) for
two smooth projective varieties X, Y .

Let f ∈ I∼(heff
∼ (X), heff

∼ (Y )). By the third condition in Definition
2.3.1, the cycle class f ∈ Z∼

dimX(X × Y,A) is of the form (i× 1Y )∗g for
some closed immersion i : Z → X, where g ∈ Z∼

dimX(Z × Y,A). Let
g̃ be a cycle representing g. Write g̃ =

∑
k akgk, with ak ∈ A and gk

irreducible. Then (i× 1Y )∗(gk) ∈ I∼(heff
∼ (X), heff

∼ (Y )). This reduces us
to the case where g is represented by an irreducible cycle g̃.

Choose Z minimal among the closed subsets of X such that g̃ is
supported on Z × Y . In particular, Z is irreducible.

Consider Z with its reduced structure. We may choose a proper,

generically finite morphism π : Z̃ → Z where Z̃ is smooth projective
(irreducible) and π is

• birational if charF = 0 (Hironaka)
• an alteration if charF > 0 (de Jong [8, Th. 4.1]).

By the minimality of Z, the support of g̃ has nonempty intersection
g̃1 with V × Y , where V = Z − (Zsing ∪ T ) with Zsing the singular
locus of Z and T the closed subset over which πZ is not finite. Let
πV : π−1(V ) → V be the map induced by π and d be its degree: we
have an equality of cycles

dg̃1 = (πV )∗π
∗
V g̃1

which implies an equality of cycles (g̃1 is dense in g̃)

dg̃ = π∗π
∗g̃.

Let h = d−1[π∗g̃] ∈ Z∼
dimX(Z̃ × Y,A). Then the correspondence

f = ((i ◦ π) × 1)∗h ∈ Moteff
∼ (F )(heff

∼ (X), heff
∼ (Y )) factors as

heff
∼ (X)

(i◦π)∗

−−−→ heff
∼ (Z̃)(dimX − dim Z̃)

h
−−→ heff

∼ (Y )

(see (1.2)), which concludes the proof. 2

2.4.2. Corollary. Under the assumptions of Theorem 2.4.1, all the
categories of Diagram (2.3) are isomorphic to Moteff

∼ (F,A)/I∼.

2It can be shown that this condition is not necessary.
3We thank N. Fakhruddin for his help, which removes the recourse to Chow’s

moving lemma in the earlier version.
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Proof. By Proposition 2.2.3 b) and d) we already know that the cate-
gories Moteff

∼ (F,A)/L∼, (Swb )−1 Moteff
∼ (F,A) and (Swr )−1 Moteff

∼ (F,A)

are isomorphic and that (S̃b)
−1 Moteff

∼ (F,A) and (S̃r)
−1 Moteff

∼ (F,A)
are isomorphic. We also know that the functor Moteff

∼ (F,A)/L∼ →
(Sb)

−1 Moteff
∼ (F,A) is full (Proposition 2.2.3 c)): by Theorem 2.4.1,

this implies that it is an isomorphism. To conclude the proof, it is

sufficient to show that any morphism of S̃r, hence of Sr, has a right
inverse in Moteff

∼ (F,A)/L∼ (see (2.3)). Since S̃r is generated by S̃b
and projections of the form X × P1 → X (cf. proof of Proposition
2.2.3 d)) and since this is obvious for these projections, we are left to

prove it for elements f : X 99K Y of S̃b. But we have f∗f
∗ = 1X in

Moteff
∼ (F,A)/I∼ by Proposition 2.3.6 b), hence in Moteff

∼ (F,A)/L∼ by
Theorem 2.4.1. 2

2.4.3. Remark. Recent results of Gabber [13] imply that the integer
d appearing in the proof of Theorem 2.4.1 may be chosen prime to l
for any prime l 6= charF . This in turn implies that, in the above, one
may relax the condition that A contains Q to the condition that the
exponential characteristic of F is invertible in A.

3. Examples

We give some examples and computations of birational motives.

3.1. Rationally connected varieties.

3.1.1. Proposition. Let X be a smooth projective F -variety which is
rationally chain connected. Then ho(X) = 1 in Moto

rat(F,Q). (See
Definition 2.2.6 for the notation ho.)

Proof. Let F (X) be an algebraic closure of F (X). The hypothesis

implies that X(F (X))/R = ∗. Since the group of 0-cycles on XF (X) is

generated by X(F (X)), this in turn implies that CH0(XF (X))
∼

−→ Z,

which implies by a transfer argument that CH0(XF (X))⊗Q
∼

−→ Q. By
Theorem 2.4.1, the left hand side is the endomorphism ring of ho(X).
If we write ho(X) ≃ 1 ⊕ ho

>0(X), it follows that End(ho
>0(X)) = 0,

which implies ho
>0(X) = 0. 2

3.1.2. Remark. As noted in [18, Ex. 7.3], an Enriques surface gives a
counterexample to the converse of Proposition 3.1.1.
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3.2. Quadrics. Suppose charF 6= 2 and let X be a smooth projective
quadric over F . By a theorem of Swan and Karpenko, the degree map

deg : CH0(X) → Z

is injective, with image Z if X has a rational point and 2Z otherwise.
This implies:

3.2.1. Proposition. Let X, Y be two smooth projective quadrics over
F . Then, in Motrat(F,Z)/Irat, we have

Hom(ho(X), ho(Y )) =

{
Z if YF (X) is isotropic

2Z otherwise

where we have used the degree map deg : CH0(YF (X)) → Z. Similarly,
in Motrat(F,Z/2)/Irat, we have

Hom(ho(X), ho(Y )) =

{
Z/2 if YF (X) is isotropic

0 otherwise.

3.3. The nilpotence conjecture. It is:

3.3.1. Conjecture. For any two adequate pairs (A,∼), (A,∼′) with
A ⊇ Q and ∼≥∼′, and any M ∈ Mot∼(F,A), Ker(End(M) →
End(M∼′)) is nilpotent. (We say that the kernel of Mot∼(F,A) →
Mot∼′(F,A) is locally nilpotent.)

Since rat is the coarsest (resp. num is the finest) adequate equiva-
lence relation, this conjecture is clearly equivalent to the same state-
ment for ∼= rat and ∼′= num, but it may be convenient to consider
it for selected adequate equivalence relations. For example:

3.3.2. Proposition. a) Conjecture 3.3.1 is true for M ∈ Moteff
∼ (F,A)

(and any ∼′≤∼) provided M is finite-dimensional in the sense of Ki-
mura-O’Sullivan [26, Def. 3.7]. In particular, it is true if M is of
abelian type, i.e. M is a direct summand of h(AK) for A an abelian
F -variety and K a finite extension of F .
b) If ∼= hom, ∼′= num, the condition of a) is equivalent to the sign
conjecture: if H is the Weil cohomology theory defining hom, the pro-
jector of EndH(M) projecting H(M) = H+(M) ⊕ H−(M) onto its
summand H+(M) is algebraic. In particular, it is true if M satisfies
the Standard conjecture C (algebraicity of the Künneth projectors).
c) Conjecture 3.3.1 is true in the following cases:

(i) ∼= rat, ∼′= tnil;
(ii) ∼= rat, ∼′= alg.
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Proof. a) This is a theorem of Kimura and O’Sullivan, cf. [26, Prop.
7.5], [3, Prop. 9.1.14]. The second assertion follows from Kimura’s
results, cf. [22, Ex. 7.6.3 4)]. b) See [3, Th. 9.2.1 c)]. c) (i) follows from
the Voevodsky-Kimura lemma that smash-nilpotent correspondences
are nilpotent, cf. [47, Lemma 2.7], [26, Prop. 2.16], [3, Lemma 7.4.2
ii)]. (ii) follows from (i) and Voevodsky’s theorem that alg ≥ tnil, [47,
Cor. 3.2]. 2

Let us recall some conjectures which imply Conjecture 3.3.1:

3.3.3. Proposition. a) Conjecture 3.3.1 is implied by Voevodsky’s con-
jecture that smash-nilpotence equivalence equals numerical equivalence
[47, Conj. 4.2].
b) It is also implied by the sign conjecture plus the Bloch-Beilinson–
Murre conjecture [17, 35].

Proof. a) This follows from Proposition 3.3.2 c) (i). b) Recall that the
Bloch-Beilinson conjecture is equivalent to Murre’s conjecture in [35]
by [17, Th. 5.2]. Now the formulation of the former conjecture, [17,
Conj. 2.1], implies the existence of an increasing chain of equivalence
relations (∼ν)1≤ν≤∞ such that

• ∼1= hom;
• if α, β are composable Chow correspondences such that α ∼µ 0

and β ∼ν 0, then β ◦ α ∼µ+ν 0;
• for any smooth projective variety X, there exists ν = ν(X) such

that A∼ν(X ×X) = Arat(X ×X).

There properties, together with the sign conjecture, imply Conjec-
ture 3.3.1 by Proposition 3.3.2 b). 2

3.3.4. Remark. In fact, one has more precise but slightly weaker im-
plications: (Bloch-Beilinson–Murre conjecture + hom = num conjec-
ture) ⇒ (Voevodsky’s conjecture) ⇒ (Kimura-O’Sullivan conjecture
[any Chow motive is finite-dimensional]) ⇒ (Conjecture 3.3.1): see the
synoptic table in [2, end of Ch. 12].

For the first implication, see [2, Th. 11.5.3.1]. For the second one,
see [2, Th. 12.1.6.6]. The third one is in Proposition 3.3.2 a).

3.3.5. Definition. Let M ∈ M∼(F,A). For n ∈ Z, we write ν(M) ≥ n
if M ⊗ L⊗−n is effective.

3.3.6. Proposition. Suppose A ⊇ Q and the nilpotence conjecture
holds for ∼≥∼′. Then:
a) The functor Mot∼(F,A) → Mot∼′(F,A) is conservative, and for
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M ∈ Mot∼(F,A), any set of orthogonal idempotents in the endomor-
phism ring of M∼′ lifts.
b) If M ∈ Mot∼(F,A) and M∼′ is effective, then M is effective.
c) If M ∈ Mot∼(F,A) and ν(M∼′) ≥ n, then ν(M) ≥ n.
d) [2, 13.2.1] The map K0(Mot∼(F,A)) → K0(Mot∼′(F,A)) is an
isomorphism (here, the K0-groups are those of additive categories).

Proof. a) is classical (see [17, Lemma 5.4] for the second statement). b)
By definition, M∼′ effective means that M∼′ is isomorphic to a direct
summand of h∼′(X) for some smooth projective X. By a), one may
lift the corresponding idempotent e∼′ to an idempotent endomorphism
e of heff

∼ (X), and the isomorphism M∼′ ≃ (h∼′(X), e∼′) to an isomor-
phism M ≃ (heff

∼ (X), e). c) follows from b) applied to M ⊗ L
⊗−n. d)

follows from a), since then the functor Mot∼(F,A) → Mot∼′(F,A) is
conservative and essentially surjective. 2

The importance of Conjecture 3.3.1 will appear again in the next
subsection and in Section 4 (see Remark 4.3.4 2) and Proposition 4.4.1).

3.4. The Chow-Künneth decomposition. Here we take A = Q.
Recall that Murre [35] strengthened the standard conjecture C (alge-
braicity of the Künneth projectors) to the existence of a Chow-Künneth
decomposition

h(X) ≃
2d⊕

i=0

hi(X)

in Motrat(F,Q). (This is part of the Bloch-Beilinson–Murre conjec-
ture appearing in Proposition 3.3.3 b)). By Proposition 3.3.6 a), the
nilpotence conjecture together with the standard conjecture C imply
the existence of Chow-Künneth decompositions.

Here are some cases where the existence of a Chow-Künneth decoom-
position is known independently of any conjecture:

(1) Varieties of dimension ≤ 2 (Murre, [34], see also [41]). In fact,
Murre constructs for any X a partial decomposition

h(X) ≃ h0(X) ⊕ h1(X) ⊕ h[2,2d−2](X) ⊕ h2d−1(X) ⊕ h2d(X).

(2) Abelian varieties (Shermenev, [45]).
(3) Complete intersections in PN (see next subsection).
(4) If X and Y have a Chow-Künneth decomposition, then so does

X × Y .

Suppose that the nilpotence conjecture holds for h(X) ∈ Motrat(F,Q)
and that homological and numerical equivalences coincide on X × X.
The latter then implies the standard conjecture C for X, hence the
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existence of a Chow-Künneth decomposition by the remark above. In
[22, Th. 14.7.3 (iii)], it is proven:

3.4.1. Proposition. Under this hypothesis, there exists a further de-
composition for each i ∈ [0, 2d]:

hi(X) ≃
⊕

hi,j(X)(j)

such that hi,j(X) = 0 for j /∈ [0, [i/2]] and, for each j, ν(hhom
i,j (X)) = 0

(see Definition 3.3.5). Moreover, one has isomorphisms

(3.1) h2d−i,d−i+j(X)
∼

−→ hi,j(X)

for i ≤ d. In particular, ν(hi(X)) > 0 for i > d.

Let us justify the last assertion: the isomorphisms (3.1) imply that,
for i > d, hi,j(X) = 0 for j < d− i.

Since Moteff
rat(F,Q) → Motrat(F,Q) is fully faithful, all the above

(refined) Chow-Künneth decompositions hold for the effective Chow
motives heff(X) ∈ Moteff

rat(F,Q). We deduce:

3.4.2. Corollary. Under the nilpotence conjecture and the conjecture
that homological and numerical equivalences coincide, for any smooth
projective variety X the image of its Chow-Künneth decomposition in
Moto

rat(F,Q) is of the form

ho(X) ≃
d⊕

i=0

ho
i (X).

Moreover, with the notation of Proposition 3.4.1, one has ho
i (X) ≃

ho
i,0(X) for i ≤ d.

Examples where this conclusion is true unconditionally follow faith-
fully the examples where the Chow-Künneth decomposition is uncon-
ditionally known:

3.4.3. Proposition. The conclusion of Corollary 3.4.2 holds in the
following cases:

(1) Varieties of dimension ≤ 2.
(2) Abelian varieties.
(3) Complete intersections in PN .
(4) If X and Y have a Chow-Künneth decomposition and verify this

conclusion, then so does X × Y .

Proof. In cases (1) and (2), the conclusion holds because one has “Lef-
schetz isomorphisms” h2d−i(X)

∼
−→ hi(X)(d− i) for i > d. For curves,

it is trivial, for surfaces they are constructed in [34] (see [41, Th. 4.4.
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(ii)]: the isomorphism is constructed for i = 0, 1 and any X), and for
abelian varieties they are constructed in [45]. For (3), see next section.
Finally, (4) is clear. 2

In the case of a surface, [22] constructs a refined Chow-Künneth
decomposition

h(X) = h0(X) ⊕ h1(X) ⊕NSX(1) ⊕ t2(X) ⊕ h3(X) ⊕ h4(X)

where NSX is the Artin motive corresponding to the Galois represen-
tation defined by NS(X̄) ⊗ Q, and t2(X) is the transcendental part
of h(X). (In the notation of Proposition 3.4.1, h2,0(X) = t2(X) and
h2,1(X) = NSX .) This translates on the birational motive of X as

ho(X) = ho
0(X) ⊕ ho

1(X) ⊕ to2(X).

3.5. Motives of complete intersections. These computations will
be used in Section 4. Here we take A ⊇ Q.

For convenience, we take the notation of [9]: so let X ⊂ Pr be a
smooth complete intersection of multidegree a = (a1, . . . , ad), and let
n = r − d = dimX. Then the cohomology of X coincides with the
cohomology of Pr except in middle dimension [9], and in particular it
is fully algebraic except in middle dimension. This allows us to easily
write down a Chow-Künneth decomposition for h(X) in the sense of
Murre [35] (see also [11, Cor. 5.3]):

(1) (Murre) For each i 6= n/2, let ci ∈ Z i(X) be an algebraic cycle
whose cohomology class generates H2i(X). Then the Chow-
Künneth projector π2i is given by ci × cn−i. We take πi = 0 for
i odd 6= n, and πn := ∆X −

∑
i6=n πi.

(2) Consider the inclusion i : X →֒ Pr. This yields morphisms of
motives

h(Pr)(−d)
i∗

−→ h(X)
i∗−→ h(Pr).

Given the decomposition h(Pr) ≃
⊕r

j=0 L
j , this yields for each

j ∈ [0, n] morphisms

L
j

i∗j
−→ h(X)

ij∗−→ L
j

with composition a =
∏
ai. Then (1/a)i∗j i

j
∗ defines the 2i-th

Chow-Künneth projector of X (denoted π2i in (1)), except if
2i = n. Let πprimn := 1h(X) −

∑n
i=0(1/a)i

∗
j i
j
∗: the image pn(X)

of the projector πprimn is the primitive part of hn(X).
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Note that the Chow-Künneth projectors of (1) and (2) are actually
equal. Let us record here the corresponding (refined) Chow-Künneth
decomposition:

(3.2) h(X) ≃ 1 ⊕ L ⊕ · · · ⊕ L
n ⊕ pn(X).

3.5.1. Lemma. a) Homological and numerical equivalences agree on
all (rational) Chow groups of X provided n is odd or (if charF = 0)
the Hodge realisation of pn(X) does not contain any direct summand
isomorphic to Ln/2.
b) Suppose a) is satisfied. Then for any adequate pair (∼, A) with
A ⊇ Q and any j ∈ [0, n], we have

Mot∼(F,A)(Lj , pn(X)) = Ker(A∼
j (X,A) → Anum

j (X,A)).

Proof. We have

A∼
j (X,A) = Mot∼(F,A)(Lj, h(X))

=
n⊕

i=0

Mot∼(F,A)(Lj,Li) ⊕Mot∼(F,A)(Lj , pn(X))

= Mot∼(F,A)(Lj,Lj) ⊕Mot∼(F,A)(Lj , pn(X)).

For ∼= hom, we have Mot∼(F,A)(Lj , pn(X)) = 0 by weight rea-
sons for 2j 6= n and under the hypothesis of a) for 2j = n (note that
the Hodge realization of pn(X) is semi-simple, as a polarisable Hodge
structure). Hence the same is true for any ∼ finer than hom, in par-
ticular ∼= num. This proves a). Moreover, Mot∼(F,A)(Lj,Lj) = A
for any choice of ∼. Hence b). 2

This shows that the birational motive of X reduces to 1 ⊕ p∼n (X)o.
In fact, it is possible to be much more precise:

3.5.2. Proposition. Let a = (a1, . . . , ad) be the multidegree of X.
a) If a1 + · · · + ad ≤ r, ho

rat(X) = 1.
b) If a1 + · · · + ad > r, ho

num(X) 6= 1 (equivalently, pnum
n (X)o 6= 0)

provided charF = 0 or X is generic.

Proof. a) Under the hypothesis, we conclude from Roitman’s theorem
[40] that CH0(XK) ⊗ Q = Q for any extension K/F . Assertion a)
then follows from Theorem 2.4.1, (2.5) and (3.2). For b), it suffices
to prove the statement for homological equivalence, since the kernel of
Mothom(F,Q)(h(X), h(X)) → Motnum(F,Q)(h(X), h(X)) is a nilpo-
tent ideal (see Propositions 3.3.2 b) and 3.3.6 a)).

If charF = 0, we may use Hodge cohomology and Deligne’s theorem
[9, Th. 2.5 (ii) p. 54]. Namely, with the notation of loc. cit., the
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condition phom
n (X)o = 0 implies h0,n

0 (a) = 0, which is equivalent by loc.
cit., Th. 2.5 (ii) to

0 ≤

[
n+ d−

∑
ai

sup(ai)

]

that is,
∑
ai ≤ n + d = r.

If charF > 0 and X is generic, we may use Katz’s theorem [24, p.
382, Th.4.1]. 2

3.5.3. Remarks. 1) Katz also has a result concerning a generic hyper-
plane section of a given complete intersection, [24, Th. 4.2].

2) It seems possible to remove the genericity assumption in positive
characteristic by lifting the coefficients of the equations defining X to
characteristic 0. We have not worked out the details.

4. On adjoints and idempotents

We now want to examine two related questions:

(1) Does the projection functor Moteff
∼ (F,A) → Moteff

∼ (F,A)/L∼

have a right adjoint? This question was raised by Luca Barbieri-
Viale and is closely related to a conjecture of Voevodsky [46,
Conj. 0.0.11].

(2) Is the category Moteff
∼ (F,A)/L∼ pseudo-abelian? i.e., is it nec-

essary to take the pseudo-abelian envelope in Definition 2.2.6?

The answer to both questions is “yes” for ∼= num and A ⊇ Q, as an
easy consequence of Jannsen’s semi-simplicity theorem for numerical
motives [16]. In fact:

4.0.4. Proposition ([18, Prop. 7.7]). a) The projection functor

π : Moteff
num → Moto

num

is essentially surjective.
b) π has a section i which is also a left and right adjoint.
c) The category Moteff

num is the coproduct of Moteff
num ⊗L and i(Moto

num),
i.e. any object of Moteff

num can be uniquely written as a direct sum of
objects of these two subcategories.

In the sequel, we want to examine these questions for a general ade-
quate pair: see Theorems 4.3.2 and 4.3.3 for (1) and Proposition 4.4.1
for (2). This requires some preparation.
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4.1. A lemma on base change. Let P : A → B be a functor. Recall
that one says that “its” right adjoint is defined at B ∈ B if the functor

A ∋ A 7→ B(PA,B)

is representable. We write P ♯B for a representing object (unique up to
unique isomorphism).

Let
A

ϕ
−−−→ B

P

y Q

y

C
ψ

−−−→ D
be a naturally commutative diagram of pseudo-abelian additive cate-
gories, and let A ∈ A.

Suppose that “the” right adjoint P ♯ of P is defined at PA ∈ C and
that the right adjoint Q♯ of Q defined at ψPA ≃ QϕA. We then have
two corresponding unit maps (adjoint to the identities of PA and QϕA)

εP : A→ P ♯PA

εQ : ϕA→ Q♯QϕA.

4.1.1. Lemma. Suppose that εQ is an isomorphism. Then ϕεP has a
retraction. If moreover ϕ is full and Ker(EndA(A) → EndB(ϕA)) is a
nilideal, then εP has a retraction.

Proof. Let ηP : PP ♯PA → PA be the counit map of the adjunction
at PA (adjoint to the identity of P ♯PA), and let u : QϕA

∼
−→ ψPA,

v : QϕP ♯PA
∼

−→ ψPP ♯PA be the natural isomorphism fromQϕ to ψP
evaluated respectively at A and P ♯PA. We then have a composition

QϕP ♯PA
v

−−→ ψPP ♯PA
ψηP−−→ ψPA

which yields by adjunction a “base change morphism”

ϕP ♯PA
b

−→ Q♯ψPA.

Inspection shows that the diagram

ϕA
ϕεP−−−→ ϕP ♯PA

εQ

y b

y

Q♯QϕA
Q♯u

−−−→ Q♯ψPA

commutes. The first claim follows, and the second claim follows from
the first. 2
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4.2. Right adjoints. We come back to Question (1) posed at the be-
ginning of this section. In [22, 14.8.7] and [18, 7.8 3)], it was announced
that one can show the non-existence of the right adjoint for ∼= rat,
using the results of [15, Appendix]. The proof turns out not to be
exactly along these lines, but is closely related: see Lemma 4.2.1, The-
orem 4.3.2 and Theorem 4.3.3.

Let us abbreviate the notation to Moteff = Moteff
∼ (F,A), Moto =

Moto
∼(F,A). Let P : Moteff → Moto denote the projection functor,

and let P ♯ denote its (a priori partially defined) right adjoint. Let
⊥L be the full subcategory of Moteff consisting of those M such that
Hom(N(1),M) = 0 for all N ∈ Moteff. Recall from [22, Prop. 7.8.1]
that

• If P ♯ is defined at M , then P ♯M ∈ ⊥L;
• The full subcategory Mot♯ of Moto where P ♯ is defined equals
P (⊥L);

• P ♯ and the restriction of P to ⊥L define quasi-inverse equiva-
lences of categories between ⊥L and Mot♯.

The right adjoint P ♯ is defined at birational motives of varieties of
dimension ≤ 2 for any adequate pair (A,∼) such that A ⊇ Q by [22,
Cor. 7.8.6]. (The proof there is given for (A,∼) = (Q, rat), but the
argument works in general.)

The following lemma gives a sufficient condition for the nonexistence
of P ♯PM for an effective motive M .

4.2.1. Lemma. Let (Q,∼) be an adequate pair, and let M ∈ Moteff
∼ (F,Q).

Assume that

(i) Mnum ∈ Moteff
num(F,Q) does not contain any direct summand

divisible by L;
(ii) Ker(End(M) → End(Mnum)) is a nilideal;
(iii) There exists r > 0 such that Hom(Lr,M) 6= 0.

Then P ♯PM does not exist.

Proof. Suppose that P ♯ is defined at PM . Consider the unit map

(4.1) ε∼ : M → P ♯PM.

For ∼= num, P ♯
numPnumMnum exists by Proposition 4.0.4. More-

over, part c) of this proposition shows that, under Condition (i) of the
lemma, εnum is an isomorphism. By Lemma 4.1.1, the image of ε∼
modulo numerical equivalence then has a retraction, and so does ε∼ it-
self under Condition (ii). If this is the case, M ∈ ⊥L, and in particular,
Hom(Lr,M) = 0 for all r > 0, contradiction. 2
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4.3. Counterexamples. To give examples where the conditions of
Lemma 4.2.1 are satisfied, we appeal as in [15] to the nontriviality
of the Griffiths group.

We start with an example which a priori only works for a specific
adequate equivalence, because the proof is simpler. Unlike in [15], we
don’t need the full force of Clemens’ theorem [5, Th. 0.2], but merely
the previous results of Griffiths [14].

4.3.1. Definition (“Abel-Jacobi equivalence”). Let k = C. For Y
smooth projective, Zj

AJ(X,Q) is the image of CHj(X)⊗Q in Deligne-
Beilinson cohomology via the (Deligne-Beilinson) cycle class map. This
defines an adequate equivalence relation.

4.3.2. Theorem. Let F = C and ∼= AJ. Then
a) Condition (ii) of Lemma 4.2.1 is satisfied for any pure motive M .
Let X be a generic hypersurface of degree a in Pn+1.
b) Condition (i) of Lemma 4.2.1 is satisfied for M = pn(X) (see (3.2))
provided X is not a quadric, a cubic surface or an even-dimensional
intersection of two quadrics, and a ≥ n+ 1.
c) If n = 2m− 1 is odd and a ≥ 2 + 3/(m− 1), then Condition (iii) of
Lemma 4.2.1 is satisfied for r = m− 1.
d) P ♯ is not defined at ho(X) in the following cases: n is odd and

(i) n = 3: a ≥ 5.
(ii) n > 3: a ≥ n + 1.

Proof. a) holds because Ker(EndAJ(M) → Endhom(M)) has square 0
and Ker(Endhom(M) → Endnum(M)) is nilpotent.

b) By [37, Ex. 5 and Cor. 18], the Hodge realisation Pn(X) of
pn(X) is an absolutely simple pure Hodge structure: this, together
with Proposition 3.5.2 b), is amply sufficient to imply Condition (i) of
Lemma 4.2.1.

c) By [14, Cor. 13.2 and 14.2], Ker(A∼
m−1(X,Q) → Anum

m−1(X,Q)) 6=
0. But by Lemma 3.5.1, this group is Hom(Lm−1, pn(X)).

d) Note that, by the refined Chow-Künneth decomposition (3.2), P ♯

is defined at Ph(X) if and only if it is defined at Ppn(X). The conclu-
sion now follows from Lemma 4.2.1 and from collecting the results of
a), b) and c). 2

To get a conterexample with rational equivalence, we appeal to a
result of Nori [36]. We thank Srinivas for pointing out this reference.

4.3.3. Theorem. Let X be a generic abelian threefold over k = C. If
∼≥ alg, then P ♯ is not defined at ho

∼(X).
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Proof. It is similar to that of Theorem 4.3.2, except that the motive
of an abelian variety is more complicated than that of a hypersurface.
We only sketch the argument (details will appear elsewhere):

It is enough to show that P ♯ is not defined at ho
3,0(X), where h3,0(X)

is as in Proposition 3.4.1 (here we use that the nilpotence conjecture
is true for motives of abelian varieties, see Proposition 3.3.2 a)). We
check the conditions of Lemma 4.2.1 for M = h3,0(X). (i) is true by
definition. (ii) is true by Proposition 3.3.2 a). For (iii), one can show
that computing the decomposition

A∼
1 (X) = Moteff

∼ (L, h(X)) ≃
6⊕

i=0

[i/2]⊕

j=0

Moteff
∼ (L, hi,j(X)(j))

yields a surjection

Moteff
∼ (L, h3,0(X)) →→ Griff1(X)

for ∼≥ alg, where Griff1(X) = Ker(Aalg
1 (X) → Anum

1 (X)) is the Grif-
fiths group of X. By Nori’s theorem [36], Griff1(X) 6= 0, and the proof
is complete. 2

4.3.4. Remark. It is easy to get examples of any dimension ≥ 4 by
multiplying the example of Theorem 4.3.3 with Pn.

4.4. Idempotents. We now address Question (2) from the beginning
of this section.

4.4.1. Proposition. Let (A,∼) be an adequate pair with A ⊇ Q, and let
M be a full subcategory of Moteff

∼ (F,A) closed under direct summands.
If Conjecture 3.3.1 holds for the objects of M, then the category M/L∼

is pseudo-abelian.

Proof. Let Mnum denote the pseudo-abelian envelope of the image of
M in Moteff

num(F,A). We have a commutative diagram of categories:

M
P

−−−→ M/L∼

π

y π̄

y

Mnum
Pnum−−−→ Mnum/Lnum

Under the hypothesis, π is essentially surjective (one can lift idempo-
tents). Hence π̄ is essentially surjective as well. Since P is essentially
surjective and π, Pnum are full, π̄ is full, and its kernel is locally nilpo-
tent as a quotient of the kernel of π (fullness of P ). Thus π̄ is full,
essentially surjective and conservative.
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Since Moteff
num(F,A) is semi-simple, Mnum is also semi-simple, hence

so is Mnum/Lnum which is in particular pseudo-abelian.
Let now M ∈ M/L∼, and let p = p2 ∈ End(M). Write Mnum ≃

M1 ⊕ M2, where M1 = Im pnum and M2 = Ker pnum. By essential

surjectivity, we may lift M1 and M2 to objects M̃ 1, M̃2 ∈ M/L∼.
By fullness, we may lift the isomorphism M1 ⊕M2

∼
−→ Mnum to a

morphism M̃ 1 ⊕ M̃2 → M in M/L∼, and this lift is an isomorphism
by conservativity. This concludes the proof. 2

4.4.2. Example. Proposition 4.4.1 applies taking for M the category
of motives of abelian type (direct summands of the tensor product of an
Artin motive and the motive of an abelian variety), since such motives
are finite-dimensional (Kimura [26]).

The situation when A does not contain Q, for example A = Z, is
unclear.

5. Birational motives and birational categories

In this section, we relate the categories studied in [21] with the cat-
egories of pure birational motives introduced here.

5.1. As in [21], let place(F ) denote the category of finitely generated
extensions of F , with F -places as morphisms. From [21, Cor. 4.4.3]
and the above, it follows that we have a composite functor:

(5.1) S−1
r place

Sm
proj(F )op → S−1

r Smproj(F )

→ S−1
r Choweff(F ) → Chowo(F )

where place
Sm

proj(F ) denotes the full subcategory of place(F ) defined
by those K/F which have a cofinal set of smooth projective models and
Sr is the set of purely transcendental field extensions. If charF = 0,
the morphisms in the second category can be described by means of
R-equivalence [21, Th. 5.4.14], and by Theorem 2.4.1, the morphisms
in the last category can be described by means of Chow groups of 0-
cycles. One checks easily that the action of the composite functor on
Hom sets is just the map which sends R-equivalence classes of rational
points to 0-cycles modulo rational equivalence. This puts this map
within a functorial setting.

In characteristic zero, we can also describe the image of a place
λ : K  L in CH0(XL), where X is a smooth projective model of K:
it is just the class of the centre of λ. Hence the image of the functor

place(F )op → Chowo(F )
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on morphisms consists of the classes of rational points. This answers a
question of Déglise.

Recall that, in characteristic 0, place
Sm

proj(F ) = place(F ) and
S−1
r Smproj(F ) = S−1

r Sm(F ) [20, Prop. 8.5]. In characteristic p, we
would ideally like to get functors

S−1
r place(F )op → Chowo(F )

S−1
r Sm(F ) → Chowo(F )

fitting with (5.1). This looks technically difficult: we shall content
ourselves with extending [18, Rk. 7.4] to all finitely generated fields
K/F , by using an adjunction result to appear in [23].

5.1.1. Proposition. a) There is a unique functor (up to unique iso-
morphism)

ho : S−1
r field(F )op → Chowo(F,Q)

such that, for any K ∈ field(F ) and any Y ∈ Smproj(F ), one has

(5.2) Chowo(F,Q)(ho(K), ho(Y )) ≃ CH0(YK) ⊗ Q.

This functor transforms purely inseparable extensions into isomorphisms.
b) If K ⊆ L, the map ho(L) → ho(K) has a section.
c) We have ho(K) = ho(X) if K = F (X) for a smooth projective
variety X. Moreover, if K = F (X), L = F (Y ) with X, Y smooth pro-
jective, and if f : K → L corresponds to a rational map ϕ : Y 99K X,
then ho(f) is given by the graph of ϕ.

Proof. a) Note that the isomorphism (5.2) determines ho(K) up to
unique isomorphism, by Yoneda’s lemma. This isomorphism may be
rewritten as

Chowo(F,Q)(ho(K), ho(Y )) ≃ Chowo(K,Q)(1K , h
o(YK)).

where 1K = ho(SpecK) is the unit object of Chowo(K).
By [23], the base-change functor

Chowo(F,Q) → Chowo(K,Q)

has a left adjoint lK/F . Therefore we may define ho(K) = lK/F (1K).

Suppose F → K
f

−→ L are successive finitely generated extensions.
Since the base-change of 1K is 1L, the identity map 1L → 1L gives by
adjunction a map

lL/K1L → 1K

hence a map

ho(f) : ho(L) = rL/F (1L) → rK/F (1K) = ho(K).



32 BRUNO KAHN AND R. SUJATHA

We just used the transitivity of adjoints; using it a second time
on a 3-layer extension shows that we have indeed defined a functor
field(F )op → Chowo(F,Q).

Suppose that L = K(t). Then lL/K(1L) = ho(P1) = 1K , hence
ho(f) is an isomorphism. This shows that our functor induces a functor
ho : S−1

r field(F )op → Chowo(F,Q), as required.

Suppose now that K
f

−→ L is a finite and purely inseparable exten-
sion of finitely generated fields over F . If X is a smooth projective
K-variety, the map CH0(X) ⊗ Z[1/p] → CH0(XL) ⊗ Z[1/p] is well-
known to be an isomorphism: this shows that lL/K(1L) = 1K , hence
that ho(f) is invertible.

b) The proof is the same as in [18, Rk. 7.4]: write L as a finite
purely inseparable extension of a finite separable extension of a purely
transcendental extension of K. Then a) reduces us to the case where
L/K is finite and separable. We may write L = SpecX where X is
a 0-dimensional smooth projective K-variety, and lL/K(1L) = ho(X).
The conclusion now follows from Lemma 1.5.1.

c) If K = F (X) for X smooth projective, then (2.5) and Yoneda’s
lemma show that ho(K) ≃ ho(X). For the claim on morphisms, we are
reduced (again by Yoneda’s lemma) to determining the map

Chowo(F,Q)(ho(K), ho(Z))
ho(f)∗

−→ Chowo(F,Q)(ho(L), ho(Z))

for a smooth projective F -variety Z. By definition of ho(f), an ad-
junction computation shows that this map may be rewritten as the
map

CH0(ZK) ⊗ Q = Chowo(K,Q)(1K , h
o(ZK))

→ Chowo(L,Q)(1L, h
o(ZL)) = CH0(ZL) ⊗Q

given by extension of scalars. The conclusion now follows from Lemma
2.3.7. 2

6. Locally abelian schemes

In this section, F is perfect.

6.1. The Albanese scheme of a smooth projective variety.

6.1.1. Definition. a) Let X be a smooth F -scheme (not necessarily
of finite type). For each connected component Xi of X, let Ei be its
field of constants, that is, the algebraic closure of F into F (Xi). We
define

π0(X) =
∐

i

SpecEi.
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There is a canonical F -morphism X → π0(X); π0(X) is called the
scheme of constants of X.
b) If dimX = 0 (equivalently X

∼
−→ π0(X)), we write Z[X] for the

0-dimensional group scheme representing the étale sheaf f∗Z, where
f : X → SpecF is the structural morphism.

6.1.2. Definition. a) For an F -group scheme G, we denote by G0 the
kernel of the canonical map G→ π0(G) of Definition 6.1.1: this is the
neutral component of G.
b) An F -group scheme G is called a lattice if G0 = {1} and the geo-
metric fibre of π0(G)(= G) is a free finitely generated abelian group.

6.1.3. Definition ([38]). a) Recall that a semi-abelian variety is an
extension of an abelian variety by a torus. We denote by SAb(F ) the
category of semi-abelian varieties, and by Ab(F ) the full subcategory
of abelian varieties.
b) We denote by SAbS(F ) the full subcategory of the category of
commutative F -group schemes consisting of those objects A such that

• π0(A) is a lattice;
• A0 is a semi-abelian variety.

Objects of SAbS(F ) will be called locally semi-abelian F -schemes.
c) We denote by AbS(F ) the full subcategory of SAbS(F ) consisting
of those A such that A0 is an abelian variety. Its objects are called
locally abelian F -schemes.

For any smooth F -varietyX, let AX/F = AX be the Albanese scheme
of X over F [38]: it is an object of SAbS(F ) and there is a canonical
morphism

(6.1) ϕX : X → AX

which is universal for morphisms fromX to objects of SAbS(F ). There
is an exact sequence of group schemes

0 → A0
X → AX → Z[π0(X)] → 0

where A0
X is the Albanese variety of X (a semi-abelian variety) and

π0(X) has been defined above.
The aim of this section is to endow the pseudo-abelian category

SAbS(F ) and its full subcategory AbS(F ) with symmetric monoidal
structures, and to relate the latter one to birational motives (see Propo-
sitions 6.2.6 and 7.2.1).

Let us recall from [38] a description of AX . Let Z[X] be the “free”
presheaf on F -schemes defined by Z[X](Y ) = Z[X(Y )] and ZX/F = ZX

the associated sheaf on the big fppf site of SpecF . Then AX is the
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universal representable quotient of ZX . In other words, there is a
homomorphism

ZX → AX

where AX is considered as a representable sheaf, which is universal for
homomorphisms from ZX to sheaves of abelian groups representable
by a locally semi-abelian F -scheme.

Let us also denote by PX the universal torsor under A0
X constructed

by Serre [43]. There is a map X
ϕ̃X
−−→ PX which is universal for maps

from X to torsors under semi-abelian varieties. The torsor PX and the
group scheme AX have the same class in Ext1

(Sch/F )ét
(π0(AX),A0

X) =

H1
ét(π0(X),A0

X) (here we identify A0
X with the corresponding repre-

sentable étale sheaf over the big étale site of SpecF ). A beautiful
concrete description of this correspondence is given in [38, 1.2]. The
map ϕ̃X induces an isomorphism

AX
∼

−→ APX
.

We repeat some properties of AX as taken from [38, Prop. 1.6 and
Cor. 1.12] and add one.

6.1.4. Proposition. a) AX is covariant in X.
b) Let K/F be an extension. Then the natural map

AXK/K → AX/F ⊗F K

stemming from the universal property is an isomorphism.
c) If X = Y

∐
Z, then the natural map AY/F ⊕ AZ/F → AX/F is an

isomorphism.
d) Let E/F be a finite extension. For any E-scheme S, let S(F ) denote
the (ordinary) restriction of scalars of S, i.e. we view S as an F -
scheme. Then there is a natural isomorphism for X smooth

RE/FAX/E → AX(F )/F

where RE/F denotes Weil’s restriction of scalars.

Proof. The only thing which is not in [38] is d). We shall construct the
isomorphism by descent from c), using b).

Let f : SpecE → SpecF be the structural morphism. Recall that,
for any abelian sheaf G on (Sch/E)ét, the trace map defines an isomor-
phism [32, Ch. V, Lemma 1.12]

f∗G
∼

−→ f!G

where f! (resp. f∗) is the left (resp. right) adjoint of the restriction
functor f ∗. This isomorphism is natural in G.
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This being said, the additive version of Yoneda’s lemma immediately
yields

f!ZX/E = ZX(F )/F

hence a composition of homomorphisms of sheaves

(6.2) f∗ZX/E
∼

−→ ZX(F )/F → Shv(AX(F )/F )

where, for clarity, Shv(AX(F )/F ) denotes the sheaf associated to the
group scheme AX(F )/F . We also have a chain of homomorphisms

(6.3) f∗ZX/E → f∗Shv(AX/E)
∼

−→ Shv(RE/FAX/E)

where the last isomorphism is formal. If we can prove that (6.2) factors
through (6.3) into an isomorphism, we are done by Yoneda.

In order to do this, we may assume via b) that F is algebraically
closed, hence that f is completely split. Then the claim follows from
c). 2

We record here similar properties for the torsor PX = PX/F (proofs
are similar):

6.1.5. Proposition. a) X 7→ PX is a functor.
b) Let K/F be an extension. Then the natural map PXK/K → PX/F ⊗F

K stemming from the universal property is an isomorphism.
c) If X = Y

∐
Z, then there is an isomorphism PY/F ×PZ/F

∼
−→ PX/F

which is natural in (Y, Z).
d) Let E/F be a finite extension. Then there is a natural isomorphism

PX(F )/F → RE/FPX/E .2

(In c), the map stems from the fact that coproducts correspond to
scheme-theoretic products in an appropriate category of torsors.)

6.2. The tensor category of locally semi-abelian schemes. Re-
call the Yoneda full embedding Shv : SAbS(F ) → Ab((Sch/F )ét),
where the latter is the category of sheaves of abelian groups over the
big étale site of SpecF .

6.2.1. Lemma. a) If a sheaf F ∈ Ab((Sch/F )ét) is an extension of a
lattice L by a semi-abelian variety A, then it is represented by an object
of SAbS(F ).
b) Let A be a semi-abelian variety and L a lattice. Then the étale sheaf
B = A⊗ L is represented by a semi-abelian variety.

Proof. a) If L is constant, then the choice of a basis of L determines
a section of the projection F → Shv(L), hence an isomorphism F ≃
Shv(A) ⊕ Shv(L). Then F is represented by

∐
l∈LA. In general, L
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becomes constant on some finite extension E/F , hence FE is repre-
sentable. By full faithfulness, the descent data of FE are morphisms of
schemes; then we may apply [44, Cor. V.4.2 a) or b)].

b) Same method as in a). 2

6.2.2. Example. If L = Z[SpecE], where E is an étale F -algebra,
then A⊗ L = RE/FAE .

Let A,B ∈ SAbS(F ). Viewing them as étale sheaves, we may con-
sider their tensor product A⊗shv B. This tensor product contains the
subsheaf A0 ⊗shv B

0, which is clearly not representable. We define

A⊗rep B = A⊗shv B/A
0 ⊗shv B

0.

6.2.3. Proposition. a) A ⊗rep B is representable by an object of
SAbS(F ).
b) For X, Y ∈ Sm(F ), the natural map

ZX ⊗shv ZY = ZX×Y → AX×Y

factors into an isomorphism

AX ⊗rep AY
∼

−→ AX×Y .

(This corrects [38, Cor. 1.12 (vi)].)

Proof. a) We have a short exact sequence

0 → A0 ⊗ π0(B) ⊕ B0 ⊗ π0(A) → A⊗rep B → π0(A) ⊗ π0(B) → 0.

By Lemma 6.2.1 b), the left hand side is representable by a semi-
abelian variety, and the right hand side is clearly a lattice. We conclude
by Lemma 6.2.1 a).

b) It is enough to show that this holds over the algebraic closure of F .
Using Proposition 6.1.4 c) (and the similar statement for Z), we may
assume that X and Y are connected. We shall show more generally
that, for any locally semi-abelian scheme B and any map X × Y → B,
the induced sheaf-theoretic map

(6.4) ZX ⊗shv ZY → B

factors through AX ⊗rep AY . By a), this will show that the latter has
the universal property of AX×Y .

For n ∈ Z, we shall denote by Zn
X or An

X the inverse image of n
under the augmentation map ZX → Z or AX → Z stemming from the
structural morphism X → SpecF . It is a subsheaf of ZX or AX , and
An
X is clearly representable (by a variety F̄ -isomorphic to the semi-

abelian variety A0
X). We shall also identify varieties with representable

sheaves: this should create no confusion in view of Yoneda’s lemma.
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We first show that (6.4) factors through AX ⊗shv AY . It suffices to
show that the composition

ZX × Y → ZX ⊗ ZY → B

factors through AX × Y , and to conclude by symmetry. But X × Y
is connected, so its image in B falls in some connected component Bt

of B, which is a torsor under B0; applying the “Variation en fonction
d’un paramètre” statement in [43, p. 10-05], we see that it extends to
a morphism A1

X ×Y → Bt. Including Bt into B, we get a commutative
diagram

A1
X × Y −−−→ Bx

x
Z1
X × Y −−−→ ZX × Y.

Let K = Ker(ZX → AX) = Ker(Z0
X → A0

X). The diagram shows
that the following diagram

K × Z1
X × Y −−−→ Z1

X × Yy
y

Z1
X × Y −−−→ B

commutes, where the top horizontal map is given by the action of K on
Z1
X by left translation and the left vertical map is given by (k, z, y) 7→

(z, y). Since ZX×Y → B is a homomorphism in the first variable, this
implies the desired factorisation.

We now show that the composition

A0
X ⊗shv A

0
Y → AX ⊗AY → B

is 0. It is sufficient to show that the composition of this map with the
inclusion A0

X×A0
Y → A0

X⊗A0
Y is 0. But A0

X×A0
Y is connected, hence

its image falls in some connected component, in fact in B0. This map
verifies the hypothesis of Corollary B.1.2, hence it is 0. 2

As a variant, we have:

6.2.4. Proposition. PX×Y
∼

−→ Rπ0(X)/F (PY×Fπ0(X))×Rπ0(Y )/F (PX×F

π0(Y )).

Since we are not going to use this, we leave the easy proof to the
reader.

6.2.5. Remark. In Proposition 6.2.3, the end of the proof of b) is much
easier in the case where X and Y are smooth projective: instead of
using Corollary B.1.2, it suffices to use [33, Th. 2.1] (rigidity theorem).



38 BRUNO KAHN AND R. SUJATHA

Proposition 6.2.3 a) endows SAbS(F ) with a symmetric monoidal
structure compatible with its additive structure, hence also its full sub-
category AbS(F ). From now on we concentrate on this latter category.

6.2.6. Proposition. The category AbS(F ) is symmetric monoidal
(for ⊗rep) and pseudo-abelian. Its Kelly radical R is monoidal and
has square 0. After tensoring with Q, AbS(F )/R becomes isomorphic
to the semi-simple category product of the category of abelian varieties
up to isogenies and the category of GF -Q-lattices.

Recall that the Kelly radical R of an additive catgegory A is defined
by

R(A,B) = {f ∈ A(A,B) | ∀g ∈ A(B,A) 1A − gf is invertible}

and that it is a [two-sided] ideal of A [25].

Proof. For the first claim, we just observe that kernels exist in the
category of commutative F -group schemes, and that a direct summand
of an abelian variety (resp. of a lattice) is an abelian variety (resp. a
lattice). For the second claim, consider the functor

T : AbS(F ) → Ab(F ) × Lat(F )

A 7→ (A0, π0(A))

where Ab(F ) and Lat(F ) are respectively the category of abelian va-
rieties and the category of lattices over F (viewed, for example, as
full subcategories of the category of étale sheaves over Sm/F ). This
functor is obviously essentially surjective. After tensoring with Q, it
becomes full, because any extension

0 → A0 → A → π0(A) → 0

is rationally split. Now the collection of sets

I(A,B) = {f : A → B | T (f) = 0}

defines an ideal I of AbS(F ). If f ∈ I(A,B), then f induces a map

f̄ : π0(A) → B0

and this gives a description of I. From this description, it follows
immediately that I2 = 0. In particular, I ⊆ R.

If we tensor with Q, then Ab(F ) × Lat(F ) becomes semi-simple;
since AbS(F )/I ⊗ Q is semi-simple and I ⊗ Q is nilpotent, it follows
that I ⊗Q = R⊗ Q. In other words, R/I is torsion.

Let f ∈ R(A,B). There exists n > 0 such that nf(A0) = 0. But
f(A0) is an abelian subvariety of B0, hence f(A0) = 0 and f ∈ I(A,B).
So R = I.
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If we endow the category Ab(F )×Lat(F ) with the tensor structure

(A,L) ⊗ (B,M) = (A⊗M ⊕ B ⊗ L,L⊗M)

then T becomes a monoidal functor, which shows that R = I is
monoidal. This completes the proof of Proposition 6.2.6. 2

6.2.7. Remarks. a) The morphisms in AbS(F ) are best represented
in matrix form:

Hom(A,B) =

(
Hom(A0,B0) Hom(π0(A),B0)

0 Hom(π0(A), π0(B))

)

(note that Hom(A0, π0(B)) = 0). This clarifies the arguments in the
proof of Proposition 6.2.6 somewhat.

b) The Hom groups of Ab(F ) × Lat(F ) are finitely generated Z-
modules. It follows from the proof of Proposition 6.2.6 that, for
A,B ∈ AbS(F ), T (Hom(A,B)) has finite index in Hom(T (A), T (B)).
In particular, for any A ∈ AbS(F ), End(A) is an extension of an order
in a semi-simple Q-algebra by an ideal of square 0.

c) The functor T has the explicit section

(A,L) 7→ A⊕ L.

This section is symmetric monoidal.

7. Chow birational motives and locally abelian schemes

7.1. The Albanese map. For any smooth projective varietyX, there
is a canonical map

(7.1) CH0(X)
AlbF

X−−−→ AX(F ).

Recall the construction of AlbX : the map ϕX of (6.1) defines for any
extension E/F a map X(E) → AX(E), still denoted by ϕX . When
E/F is finite, viewing AX as an étale sheaf, we have a trace map
TrE/F : AX(E) → AX(F ). Then AlbX maps the class of a closed
point x ∈ X with residue field E to TrE/F ϕX(x).

The map AlbX is injective for dimX = 1 and surjective if F is alge-
braically closed. For a curve, this map corresponds to the isomorphism
PicX ≃ AX , where PicX is the Picard scheme of X; we then also have
A0
X ≃ JX , where JX is the Jacobian variety of X.
The functoriality of A shows that there is a chain of isomorphisms

(7.2) ΦX,Y : Hom(AX ,AY )
∼

−→ Mor(X,AY )
∼

−→ AY (F (X))



40 BRUNO KAHN AND R. SUJATHA

(the latter by Weil’s theorem on extension of morphisms to abelian
varieties [33, Th. 3.1]), hence a canonical map

(7.3) CH0(YF (X))
AlbX,Y
−−−−→ Hom(AX ,AY )

which generalises (7.1); more precisely, we have

(7.4) ΦX,Y ◦ AlbX,Y = Alb
F (X)
Y .

On the other hand, there is an exact sequence

0 → AY (π0(X)) = Hom(Z[π0(X)],AY ) → Hom(AX,AY )

→ Hom(A0
X ,AY ) → Ext1(Z[π0(X)],AY ) = H1(π0(X),AY )

and the map Hom(A0
X ,A

0
Y ) → Hom(A0

X,AY ) is an isomorphism. From
this we get a zero sequence

(7.5) 0 → CH0(Y ) → CH0(YF (X)) → Hom(A0
X ,A

0
Y ) → 0.

7.1.1. Lemma. Let Y, Z be two smooth projective varieties and β ∈
CH0(ZF (Y )). Then the following diagram commutes:

CH0(Y )
β∗

−−−→ CH0(Z)

AlbF
Y

y AlbF
Z

y

AY (F )
AlbY,Z (β)∗
−−−−−−→ AZ(F ).

Proof. Without loss of generality, we may assume that β is given by
an integral subscheme W in Y × Z. Then the composite f = pY iW is
a proper surjective generically finite morphism, where pY denotes the
projection and iW is the inclusion of W in Y × Z.

Let V be an affine dense open subset of Y such that f|f−1(V ) is finite.
Any element of CH0(Y ) may be represented by a zero-cycle with sup-
port in V (cf. [39]), so it is enough to check the commutativity of the
diagram on zero-cycles on Y of the form y, where y ∈ V(0). For such a
y, we have β∗y = p∗(f

−1(y)), where p = pZiW .
On the other hand, the composition AlbY,Z(β)∗ ◦ (AlbFY )|V may be

described as follows: let d be the degree of f|f−1(V ), f
−1(V )[d] the d-

fold symmetric power of f−1(V ) and f ∗ : V → f−1(V )[d] the map
x 7→ f−1(x). Then

AlbY,Z(β)∗ ◦ (AlbFY )|V = Σd ◦ (ϕZ)[d] ◦ p[d]
∗ ◦ f ∗

where Σd : A
[d]
Z → AZ is the summation map. The commutativity of

the diagram is now clear. 2
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7.2. The Albanese functor.

7.2.1. Proposition. The assignment X 7→ AX defines via (7.3) a
symmetric monoidal additive functor

Alb : Chowo(F ) → AbS(F )

which becomes full and essentially surjective after tensoring with Q.

Proof. Since AbS(F ) is pseudo-abelian, it suffices to construct the
functor on Coro(F ). Let α ∈ CH0(YF (X)) and β ∈ CH0(ZF (Y )). We
want to show that AlbX,Z(β ◦ α) = AlbY,Z(β) ◦ AlbX,Y (α). But β
induces a map

β∗ : CH0(YF (X)) → CH0(ZF (X)),

and we have the equality β∗α = β ◦ α (cf. proof of Proposition 2.3.4).
Hence, applying Lemma 7.1.1 in which we replace F by F (X), we get

Alb
F (X)
Z (β ◦ α) = Alb

F (X)
Z (β∗α) = AlbY,Z(β)∗(Alb

F (X)
Y (α)).

Applying now (7.4), we get

ΦX,Z ◦ AlbX,Z(β ◦ α) = AlbY,Z(β)∗(ΦX,Y ◦ AlbX,Y (α)).

On the other hand, the diagram

AY (F (X))
AlbY,Z (β)∗
−−−−−−→ AZ(F (X))

ΦX,Y

x≀ ΦX,Z

x≀

Hom(AX ,AY )
AlbY,Z (β)∗
−−−−−−→ Hom(AX ,AY )

obviously commutes, which concludes the proof that Alb is a functor.
Compatibility with the monoidal structures follows from Proposition

6.2.3 b). It remains to show the assertions on fullness and essential
surjectivity.

Fullness: for any Y , the map AlbFY ⊗Q is surjective. This follows
from the case where F is algebraically closed (in which case AlbFY itself
is surjective) by a transfer argument. Replacing the ground field F by
F (X) for some other X, we get that AlbX,Y ⊗Q is surjective. This
shows that the restriction of Alb⊗Q to Coro(F ) ⊗ Q is full; but the
pseudo-abelianisation of a full functor is evidently full (a direct sum-
mand of a surjective homomorphism of abelian groups is surjective).

Essential surjectivity: we first note that, after tensoring with Q,
the extension

0 → A0 → A → π0(A) → 0
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becomes split for any A ∈ AbS(F ). Indeed the extension class belongs
to Ext1

F (π0(A),A0); this group sits in an exact sequence (coming from
an Ext spectral sequence)

0 → H1(F,HomF̄ (π0(A)|F̄ ,A
0
|F̄ )) → Ext1

F (π0(A),A0)

→ H0(F,Ext1
F̄ (π0(A)|F̄ ,A

0
|F̄ )).

Since the restriction π0(A)|F̄ is a constant sheaf of free finitely gen-

erated abelian groups, the group Ext1
F̄ (π0(A)|F̄ ,A

0
|F̄

) is 0, while the left

group is torsion as a Galois cohomology group. It is now sufficient to
show separately that L and A are in the essential image of Alb⊗Q,
where L (resp. A) is a lattice (resp. an abelian variety).

A lattice L corresponds to a continuous integral representation ρ of
GF . But it is well-known that ρ ⊗ Q is of the form θ ⊗ Q, where θ
is a direct summand of a permutation representation of GF . If E is
the corresponding étale algebra, we therefore have an isomorphism of
L with a direct summand of (Alb⊗Q)(E).

Given an abelian variety A, we simply note that

A = Alb(h̃(A))

where h̃(A) is the reduced motive of A: h(A) = 1 ⊕ h̃(A), where the
splitting is given by the rational point 0 ∈ A(F ). 2

7.2.2. Remark. Let R be the Kelly radical of AbS(F ) (cf. Proposi-
tion 6.2.6). If F is a finitely generated field, the groups R(A,B) are
finitely generated by the Mordell-Weil-Néron theorem. To see this,
note that if L is a lattice and A an abelian variety, then

Hom(L,A)
∼

−→ Hom(L|F̄ , A|F̄ )GF

and that the right term may be rewritten as B(F ), where B = L∗ ⊗A
(compare Lemma 6.2.1). Hence the Hom groups in AbS(F ) are finitely
generated as well. In this case, Proposition 7.2.1 implies that, for any
M,N ∈ Chowo(F ), the image of the map AlbM,N has finite index in
the group Hom(Alb(M),Alb(N)).

7.2.3. Lemma. Suppose that Y is a curve. Then the map (7.3) fits
into an exact sequence

0 → CH0(YF (X))
AlbX,Y
−−−−→ Hom(AX ,AY )

→ Br(F (X)) → Br(F (X × Y ))

where Br denotes the Brauer group. In particular, (7.3)⊗Q is an iso-
morphism.
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Proof. In view of the construction of (7.3), we may assume that X is
a point; then (7.3) reduces to (7.1). Suppose first that F is separably
closed. Then (7.1) is bijective (see comments at the beginning of this
section). In the general case, let Fs be a separable closure of F , and
G = Gal(Fs/F ). Since AY is a sheaf for the étale topology, we get a
commutative diagram

CH0(Ys)
G

AlbFs
Y−−−→

∼
AY (Fs)

G

x ≀

x

CH0(Y )
AlbF

Y−−−→ AY (F )

where Ys = Y ×F Fs and the top horizontal and right vertical maps are
bijective. The lemma then follows from the classical exact sequence

0 → CH0(Y ) → CH0(Ys)
G → Br(F (X)) → Br(F (X × Y )).

2

7.2.4. Proposition. Let Chowo
≤1(F ) denote the thick subcategory of

Chowo(F ) generated by motives of varieties of dimension ≤ 1, and let
ι : Chowo

≤1(F ) → Chowo(F ) be the canonical inclusion. Then
a) After tensoring morphisms by Q, Alb ◦ι : Chowo

≤1(F ) → AbS(F )
becomes an equivalence of categories.
b) Let j be a quasi-inverse. Then ι ◦ j is right adjoint to Alb.

Proof. a) The full faithfulness follows from Lemma 7.2.3. For the es-
sential surjectivity, we may reduce as in the proof of Proposition 7.2.1
to proving that lattices and abelian varieties are in the essential image.
For lattices, this is proven in loc. cit. . For an abelian variety A, use
the fact that A is isogenous to a quotient of the Jacobian of a curve,
and Poincaré’s complete reducibility theorem.

b) Let (M,A) ∈ Chowo
≤1(F ) × AbS(F ). To produce a natural iso-

morphism Chowo
≤1(F )(M, ιj(A)) ≃ AbS(F )(Alb(M),A)), it is suffi-

cient by a) to handle the case M = ho(X),A = AY for some smooth
projective varieties X, Y with dimY ≤ 1. Then the isomorphism fol-
lows from the adjunctions (7.2) and from Lemma 7.2.3. 2

7.2.5. Remarks. a) Of course the functor ι ◦ j is not a tensor functor
(since its image is not closed under tensor product).
b) In particular, the inclusion functor ι has the left-adjoint-left inverse
j ◦ Alb. This is a birational version of Murre’s results for effective
Chow motives ([34], [35, §2.1], see also [41, §4], and in the triangulated
context [48, §3.4]). Beware however that we have taken the opposite
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to the usual convention for the variance of Chow motives (our functor
X 7→ h(X) is covariant rather than contravariant), so the direction of
arrows has to be reversed with respect to Murre’s work.

Appendix A. Complements on localisation of categories

A.1. Localisation of symmetric monoidal categories.

A.1.1. Lemma. a) Localisation commutes with products of categories.
b) Let T0, T1 : C⇉D be two functors and f : T0 ⇒ T1 a natural
transformation. Let S, S ′ be collections of morphisms in C and D such
that Ti(S) ⊆ S ′, so that T0 and T1 pass to localisation. Then f remains
a natural transformation between the localised functors.

Proof. a) is clear (cf. [29, Lemma 2.1.7], and b) is true because f
commuted with the members of S, hence it now commutes with their
inverses. 2

A.1.2. Proposition. Let C be a category with a product • : C×C → C,
and let S be a collection of morphisms in C. Assume that S • S ⊆ S.
Then
a) There is a unique product S−1C ×S−1C → S−1C such that the local-
isation functor PS : C → S−1C commutes with the two products.
b) If • is monoidal (resp. braided, symmetric, unital), the induced
product on S−1C enjoys the same properties and PS is monoidal (resp.
braided, symmetric, unital).

Proof. a) follows from Lemma A.1.1 a); b) follows from Lemma A.1.1
b). 2

A.2. Semi-additive categories. This subsection is a reformulation
of [28, Ch. VIII, §2], see also [27, §18 and beginning of §19].

A.2.1. Lemma. a) For a category A, the following conditions are
equivalent:

(i) A has a 0 object (initial and final), binary products and coprod-
ucts, and for any A,B ∈ A, the map

A
∐

B → A× B

given on A by (1A, 0) and on B by (0, 1B) is an isomorphism.
(ii) A has finite products, and for any A,B ∈ A, A(A,B) has a

structure of a commutative monoid, and composition is distribu-
tive with respect to these monoid laws.

(iii) Same as (ii), replacing product by coproduct.
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We then say that A is a semi-additive category and write A ⊕ B for
the product or coproduct of two objects A,B.
b) If A is a semi-additive category, the law (A,B) 7→ A⊕B endows A
with a canonical unital symmetric monoidal structure.

Proof. a) By duality, we only need to show (i) ⇐⇒ (ii). (i) ⇒ (ii)
follows from [28, Ch. VIII, §2, ex. 4 (a)]: recall that for two morphisms
f, g : A→ B in A, Mac Lane defines their sum f+g as the composition

A
∆A

//

f+g

��

A×A

f×g %%KKKKKKKKKK

B ×B

B B
∐
B

∇B
oo

∼
99ssssssssss

where ∆A is the diagonal and ∇B is the codiagonal.
As for (ii) ⇒ (i), it is implicit in the proof of [28, Ch. VIII, §2, Th.

2]. Indeed, Mac Lane defines a biproduct of two objects A,B ∈ A as
a diagram

A
p1
⇆

i1
C

p2
⇆

i2
B

satisfiyng p1i1 = 1A, p2i2 = 1B and i1p1 + i2p2 = 1C . Let us say that
such a diagram is a biproduct* if the further identities p1i2 = 0 and
p2i1 = 0 hold. Then, Mac Lane proves that a biproduct* is a product
and that a product is a biproduct*. Dually, a biproduct* is the same
as a coproduct, hence binary products and coproducts are canonically
isomorphic, and one checks from his proof that the isomorphism is
given by the map of (i).

(Let us clarify that Mac Lane proves that a biproduct is a biproduct*
if the addition law on morphisms has the cancellation property; but we
don’t use this part of his proof.)

b) This is obvious: already finite products or coproducts define a
canonical symmetric monoidal structure. 2

Define a semi-additive functor between two semi-additive categories
A,B as a functor F : A → B which preserves addition of morphisms.
Note that any semi-additive functor preserves ⊕, by the characterisa-
tion of biproducts via equations (see proof of Lemma A.2.1 a)).

A.3. Localisation of R-linear categories.
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A.3.1. Theorem. Let A be a semi-additive category and S a family of
morphisms of A, stable under direct sum. Then there exists a unique
structure of semi-additive category on S−1A such that the localisation
functor PS : A → S−1A is semi-additive.

Proof. We use the characterisation (i) of semi-additive categories in
Lemma A.2.1: by [29, 1.3.6 and 2.1.8], PS preserves products and co-
products, and transforms the isomorphisms A

∐
B

∼
−→ A × B into

isomorphisms. 2

To “catch” additive categories (as opposed to semi-additive cate-
gories), we could do as in Mac Lane [27] and postulate the existence of
an endomorphism −1A for each object A. We prefer to do this more
generally by dealing with R-linear categories, where R is an arbitrary
ring (an R-linear category is simply a semi-additive R-category).

More precisely, let A be an R-linear category. Then in particular:

• A is a semi-additive category.
• It enjoys an action of the multiplicative monoid underlying R,

i.e. there is a homomorphism of monoids R → End(IdA), where
End(IdA) is the monoid of natural transformations of the iden-
tity functor of A.

• For λ ∈ R and A ∈ A, let λA denote the corresponding endo-
morphism of A. Then we have identities

(A.1) (λ+ µ)A = λA + µA.

Conversely, the following lemma is straightforward.

A.3.2. Lemma. Let A be a semi-additive category provided with an
action of R verifying (A.1). Then A is an R-linear category. 2

From this lemma, it follows:

A.3.3. Theorem. Theorem A.3.1 extends to R-linear categories. 2

A.4. Localisation and pseudo-abelian envelope.

A.4.1. Lemma. Let A an additive category and S a family of mor-
phisms in A, stable under direct sums. Let A → A♮ denote the pseudo-
abelian envelope of A, and let us still denote by S the image of S in
A♮. Then the natural functor

(S−1A)♮ → (S−1(A♮))♮

is an equivalence of categories.

Proof. Both categories are universal for additive functors T from A to
a pseudo-abelian category such that T (S) is invertible. 2
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Appendix B. Rigidity for semi-abelian varieties

B.1. We include the following results for lack of reference.

B.1.1. Proposition. Let F be an algebraically closed field and G be a
semi-abelian F -variety. Then the map

F ∗ × HomF (G,Gm) → MorF (G,Gm)

sending (λ, ϕ) to λϕ is bijective.

Proof. Write G as an extension 0 → T → G
π

−→ A → 0, where T is a
torus and A is an abelian variety. Then π : G→ A is a T -torsor. Since
F is algebraically closed, T is split, which implies that this T -torsor is
locally trivial for the Zariski topology.

Choose an isomorphism Gr
m

∼
−→ T . Let U be an affine open subset

of A such that we have a T -isomorphism ϕU : U×T
∼

−→ π−1(U). Write
U = SpecR. Since R is a domain,

Mor(U×T,Gm) ≃ HomF (F [t, t−1], R[x1, x
−1
1 , . . . , xr, x

−1
r ]) ≃ R∗×X(T )

where X(T ) is the group of characters of T . This shows that there is
an exact sequence

0 → MorF (U,Gm)
π∗

−→ Mor(π−1(U),Gm) → X(T ) → 0.

Interpreting MorF (X,Gm) as Γ(X,O∗
X), we may translate this as an

exact sequence of Zariski sheaves on A (with X(T ) a constant sheaf)

(B.1) 0 → O∗
A → π∗O

∗
G → X(T ) → 0.

Taking the cohomology of this exact sequence, and considering the
Hom−Ext-exact sequence of [44, Ch. VII, Prop. 2], we get a diagram
of exact sequences
(B.2)

0→HomF (A,Gm)→HomF (G,Gm)→HomF (T,Gm)
δG−→Ext1

F (A,Gm)y
y

0→MorF (A,Gm)→MorF (G,Gm)→ Γ(A,X(T ))
δ′G−→H1

Zar(A,O
∗
A).

The groups HomF (T,Gm) and Γ(A,X(T )) both coincide with X(T ),
while we have isomorphisms Ext1

F (A,Gm) ≃ Pic0(A) and H1
Zar(A,O

∗
A)

≃ Pic(A). The maps

X(T ) Pic0(A)

=

y
yinclusion

X(T ) Pic(A)
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complete (B.2) into
(B.3)

0→HomF (A,Gm)→HomF (G,Gm)→HomF (T,Gm)
δG−→Ext1

F (A,Gm)y
y

y
y

0→MorF (A,Gm)→MorF (G,Gm)→ Γ(A,X(T ))
δ′G−→H1

Zar(A,O
∗
A).

Note also that HomF (A,Gm) = 0 and MorF (A,Gm) = F ∗ (the lat-
ter because A is proper and connected). If we can show that (B.3)
commutes, then a diagram chase implies that the map

HomF (G,Gm) → MorF (G,Gm)/F ∗

is bijective, which completes the proof of Proposition B.1.1.
Let us therefore prove that the diagram (B.3) is commutative. Com-

mutation of the left square is clear. For the middle square, let ϕ ∈
HomF (G,Gm). Its image χ in HomF (T,Gm) is just restriction to T .
Its image ϕ′ in MorF (G,Gm) is just ϕ viewed as a morphism of vari-
eties. To compute the image ϕ′′ of ϕ′ in Γ(A,X(T )), we may restrict ϕ′

to an open subset of the form π−1(U), where U is an affine neighbour-

hood of 0 in A such that there is a T -isomorphism U × T
∼

−→ π−1(U).
Then the construction of the exact sequence (B.1) shows that ϕ′′ is
given by the restriction of ϕ′ to {0}×T : this shows that ϕ′′ = χ, hence
that the middle square commutes.

Finally, we show that the square on the right in (B.3) commutes.
Let χ : T → Gm be a character. Let G′ = χ∗G be the extension of
A by Gm obtained as the push-out of G by χ, and let χ∗π∗OG be the
extension of Z by O∗

A obtained as the pull-back of π∗OG by χ. Let
p : G→ G′ and π′ : G′ → A be the induced maps. Then the canonical
morphism of G′-sheaves

O∗
G′ → p∗O

∗
G

induces a morphism of A-sheaves π′
∗O

∗
G′ → π∗O

∗
G fitting into a com-

mutative diagram

0 −−−→ O∗
A −−−→ π∗O

∗
G −−−→ X(T ) −−−→ 0

||

x
x χ

x
0 −−−→ O∗

A −−−→ π′
∗O

∗
G′ −−−→ Z −−−→ 0

which in turn induces an isomorphism

π′
∗OG

′ ∼
−→ χ∗π∗OG.

Since δG and δ′G are connecting morphisms from the Ext exact se-
quences respectively associated to the extension of algebraic groups G
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and the extension of sheaves π∗O
∗
G, it is then clear that the diagrams

Hom(T,Gm)
δG−−−→ Ext1(A,Gm)

χ∗

x ||

x

Hom(Gm,Gm)
δχ∗G
−−−→ Ext1(A,Gm)

Γ(A,X(T ))
δ′G−−−→ H1(A,O∗

A)

χ∗

y ||

y

Γ(A,Z)
δ′χ∗G
−−−→ H1(A,O∗

A)

commute. This reduces us to the case where T = Gm and χ is the
identity character 1.

But then, δ(1) is the extension class of G while δ′(1) is the class
of G considered as a Gm-bundle over A, and the indentification of
Ext1(A,Gm) with Pic0(A) says precisely that these classes coincide. 2

B.1.2. Corollary. Let F be a field, G1, G2, G3 be three semi-abelian
F -varieties, and let ϕ : G1 × G2 → G3 be an F -morphism. Assume
that ϕ(g1, 0) = ϕ(0, g2) = 0 identically. Then ϕ = 0.

Proof. Clearly, we may assume F to be algebraically closed. Write G3

as an extension

0 → T3 → G3 → A3 → 0

where T3 is a torus and A3 is an abelian variety.
Composing ϕ with the projection to A3 and applying [33, Th. 3.4],

we find that the image of ϕ is contained in T3. We may further reduce
to T3 = Gm.

By Proposition B.1.1, ϕ is the sum of a constant morphism and a
homomorphism. Since ϕ(0) = 0, it is a homomorphism. But then

ϕ(g1, g2) = ϕ(g1, 0) + ϕ(0, g2) = 0.

2
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[1] Y. André Pour une théorie inconditionnelle des motifs, Publ. Math. IHÉS 83
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