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MEASURING CHAOTIC NOISE IN NONLINEAR MODELS

MICHEL PITERMANN

Abstract. In many applications such as fluid or solid modeling, chaotic noise

may be cumbersome. Instead of estimating the Lyapunov exponent of the sys-

tem, one may be interested in measuring the amplitude of the system’s chaotic

noise in a unit better suited to the application, e.g., the amplitude (in mm) of

the vibration of a solid’s surface. The goal of this study is to propose a method

to achieve this goal. The techniques are tested on a nonlinear biomechani-

cal model of the face driven by muscle activity and a jaw hinge. The proposed

method is effective and shows that (i) the amplitude of chaotic noise perceivable

as skin vibration is approximately equal to 10% of the amplitude of a full-scale

movement; (ii) the noise properties are similar in the stationary and dynamic

states; (iii) the noise comes only from the skin model, not from the nonlinear

muscle models. The method is simple and inexpensive to implement. It can

therefore be useful in applications such as video animation or motor control

research, where estimating the component of chaotic noise is more important

than fully characterizing the nonlinear properties of a model.

Key Words. chaotic noise, nonlinear modeling, biomechanical modeling, face

model

1. Introduction

Chaos has been widely studied since the first publication on this issue [7]. In
many fields, chaotic properties of nonlinear models are useful for matching system
behavior. Some of these fields are epidemic modeling [13], fluid mechanics [2]
and atmospheric modeling [14]. In other areas, nonlinear modeling is required to
properly describe phenomena, but chaos acts as undesirable noise. For example,
in fluid mechanics or in solid modeling, finite element methods are widely used [4],
and the chaotic properties of the models may be difficult to handle [3]. In solid
modeling, soft tissue may also be modeled by point masses connected by springs
[15, 18, 6, 10]. In these cases, chaos produces a potentially visible vibration of the
tissue. This poses a problem in computer animation because the skin of a real
person that is immobile does not vibrate. Hence any chaotic vibration due to the
nonlinear properties of the model must be invisible to spectators. A general method
for quantifying chaotic noise is therefore required for these fields to decide whether
the noise is acceptable or the model must be modified.

The Lyapunov exponent of a dynamic system described by a nonlinear model
can be calculated, but it does not supply enough information about the visibility of
its chaotic noise. A method that assesses the amplitude of the skin vibration due
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to model chaos may therefore be preferred. The goal of this paper is to propose
a method for quantifying the chaotic noise of nonlinear models in a unit that can
be directly used in applications such as video animation. Instead of presenting the
method in its most general and abstract form, the techniques will be detailed in
a real example: a biomechanical model of the face, i.e., a model describing the
physical properties of a human face. Firstly, the basic principle of the method will
be presented; details will follow with the description of several computer simulations
that test the method.

2. General method

The basic principle of the method can be broken down into three steps:

(1) An initial quantification of chaotic-noise amplitude, with the model in a
stationary state without making statistical assumptions about the chaotic
noise. This technique, which constitutes our stationary-state reference,
cannot be used when the model is in a dynamic state. It therefore must be
extended.

(2) A second estimation of chaotic-noise amplitude in a stationary state making
a statistical assumption about the chaotic noise. This second estimate,
which can be used when the model is in a dynamic state, must be compared
to the previous one to validate the noise assumption.

(3) An estimation of chaotic-noise amplitude in the dynamic state using the
second procedure if the noise assumption is correct.

As stated before, the techniques will be illustrated by analysing of a biomechan-
ical model of the face. The common characteristics of all computer simulations will
be described here, while their unique aspects will be outlined in separate sections.

2.1. The face model. A C++ program implementing the face model described
in [8] was used in all experiments. Because this version of the model is thoroughly
described in [8], its main characteristics will only be summarized here.

The model is composed of a jaw, a skin, and a muscle module. The jaw is
simulated by a simple hinge kinematically controlled by adjusting the angle. The
other two modules are more complex.

The skin was modeled by a deformable multi-layered mesh with isotropic me-
chanical characteristics. The 1435 nodes composing the mesh are point masses con-
nected by approximately 6000 damped springs. The nodes are arranged in three
layers representing the structure of facial tissues. The top layer corresponds to the
epidermis, the middle layer the fascia, and the bottom layer follows the skull’s sur-
face. The elements between the top and middle layers represent the dermal-fatty
tissue, and the elements between the middle and bottom layers represent the muscle
tissues. The skull nodes are fixed in three-dimensional space. The fascia nodes are
connected to the skull layer except in the region around the upper and lower lips
and the cheeks. The epidermal layer is shown in green in Fig. 1a. A piecewise lin-
ear biphasic approximation was used for dermal-fatty spring force elongation, and
a linear approximation was used for all other spring force elongations. A nonlinear
approximation was used for spring force compression to provide infinite growth of
the force as spring length approaches zero.

The muscles were modeled using a standard Hill-type formula that constrains
force generation due to the contractile element (a force depending on muscle length
variation and velocity) and a static dependence of force on muscle length [20, 19, 5].
Standard skeletal muscle physiology was assumed and the muscles are represented
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Figure 1. a) Lines of action of the modeled muscles in red and
blue, printed over the mesh corresponding to the skin surface in
green. The muscles printed in blue were activated during the ex-
periments; the other ones were not. b) Approximate positions and
numbering of the analyzed nodes (black spots).

as linear force vectors. Thus, the force applied by a modeled muscle to its connected
nodes could be calculated from its activity level (its electrochemical potential) using
the Hill-type formula.

The morphology of the model was adapted to the speaker’s morphology to en-
hance model naturalness. ATR Human Information Processing Research Labora-
tories, Kyoto, Japan, owns this data and kindly offered to let me use it.

The general equation for the motion of each node i of the model is [15, 6, 8]:

(1) m
d2xi

dt2
+ r

∑

j

(

dxi

dt
− dxj

dt

)

+
∑

j

gij +
∑

e

qe
i + si + hi = Fi

where xi is the current position of node i, m is the node mass equal to 0.00023 kg
per node, the second term of the sum is the total damping force acting on node i

(xj represents the nodes connected to node i, and r is a constant equal to 0.050
kg/s), gij is the spring force applied by node j to node i, the fourth term models
skin incompressibility (qe

i represents the triangular prism elements containing node
i), the fifth term si is the skull’s reaction to the force applied by the fascia nodes,
the sixth term hi is a nodal restoration force applied to the fascia nodes connected
to the skull, and Fi is the total muscle force applied to node i. The terms gij ,
qe
i , and hi are the nonlinear components of the model. Details can be found in

[15, 6, 8].

2.2. Animation. In all analyses, the same eight pairs of muscles (a pair being
made up of one muscle on each side of the face) as those used in [8] were syn-
chronously activated using the same electrochemical potential for each muscle. The
eight muscle pairs were the levator labii superior, levator anguli oris, zygomatic ma-
jor, depressor anguli oris, depressor labii inferior, mentalis, orbicularis oris superior,
and orbicularis oris inferior (see Fig. 1a). To avoid perturbation due to lip contact
and jaw movement, the jaw angle was held constant at 2 degrees, which kept the
lips apart in all simulations. The experiments were also carried out for jaw angles
allowing lip contact, but because the conclusions were always the same, only the
former results are reported here.
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To animate the model, one frame was computed every 1/60 s. The motion
equation (1) was solved using a classical fourth-order Runge-Kutta formula with a
constant step in 50 iterations [12, section 16.1]. The muscle force was considered
constant during each frame period, and the previous, computed frame was the initial
condition of the Runge-Kutta algorithm for the current frame. All animations
started with null muscle activity so that the resting position of the face could be
used as the first initial condition.

The standard Runge-Kutta algorithm may be unstable when the step is too big.
For example, using 50 iterations only worked for low muscle activity. As soon as
the electrochemical potential of a muscle increased, between 100 and 500 iterations
were needed. The relationship between muscle activity and requested number of
steps seemed rather complex. Instead of carrying out a full sensitivity analysis
to understand that relationship, an instability detector was added to the basic
algorithm. When the algorithm was found to be unstable, the step size was divided
by 2 and stability was checked again until convergence.

2.3. Statistical analyses. To statistically analyze skin vibration, the 3D trajec-
tories of the same 11 points in the face model studied in [8] were tracked. Their
approximate positions are shown as 11 numbered black spots in Fig. 1b.

A few one-dimensional (1D) statistical features were generalized in three dimen-
sions to characterize the 3D node trajectories. The mean position of a 3D node
trajectory v composed of n samples (xi, yi, zi) was its centroid µv:

(2) µv =

(

1

n

n
∑

i=1

xi,
1

n

n
∑

i=1

yi,
1

n

n
∑

i=1

zi

)

The standard deviation σv of a 3D node trajectory v was estimated by:

(3) σv =

√

√

√

√

1

n − 1

n
∑

i=1

|vi|2 − |µv|2

where ||2 is the square magnitude operator of a vector, i.e., |vi|2 = x2
i + y2

i + z2
i .

The standard deviation of a node trajectory was used as the estimate of the 3D
dispersion of the node around its mean position. The 3D correlation ρvw between
two node trajectories v and w composed of n vi samples and n wi samples was:

(4) ρvw =
1
n

∑n

i=1 vi.wi − µv.µw

σvσw

where the dot in vi.wi and µv.µw is the dot product of two vectors. Like a 1D
correlation, ρvw always belongs to the interval [−1, 1]. The difference between two
time series v and w was defined by:

(5) ∆vw = vi − wi ∀i

where i is any time coordinate in the time series. Finally, a few two-way analyses of
variance were carried out to test the hypothesis that various factors had no influence
on the statistical estimators. A rejection level of 0.05 was always used.

3. Experiment 1: Stationary state without noise assumptions

As explained in Section 2, the goal of the first set of simulations was to produce
an estimate of the chaotic-noise amplitude in the stationary state, to be used as
a reference. In the face model, this meant assessing the model’s intrinsic skin-
vibration amplitude component and comparing that estimate to the amplitude of
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an extreme face movement produced with the model in a stationary state, i.e., for
constant muscle activity.

3.1. Method. The sixteen selected muscles were synchronously activated by a
step function composed of 10 samples set to 0, followed by 1400 samples set to
1. Then the resulting movement amplitude and skin vibration amplitude were
measured and compared. A value of 0 corresponded to no muscle activity. The
value 1 was chosen because in [8], facial muscle activity was measured for a speaker
producing speech material and a set of extreme facial gestures. The electrochemical
potentials of the muscle models were all normalized by the highest levels recorded
in the corpus. A value of 1 was therefore considered as the maximum activity level
a muscle could reach.

A node’s movement amplitude was estimated as the Euclidean distance between
the node’s mean position when the muscles were maximally activated and the node’s
mean position when the muscles received a null input. To estimate the mean
position of a node when the muscles were maximally activated, the impulse response
of each node was studied and found to be shorter than 60 frames (1 s). Hence, the
face model had always reached an equilibrium after the first 200 samples (3.33 s)
of an animation resulting from the step function. Accordingly, the mean position
of a node was estimated by the mean of its 3D node trajectory [Eq. (2)] computed
over the last 1200 frames of the step function. Similarly, the node’s resting position
was estimated by its 3D trajectory mean when the face was driven by a null input
composed of 1200 frames.

Skin-vibration amplitude was estimated by the 3D standard deviation [Eq. (3)]
of each node trajectory. The 3D standard deviations were computed over the last
1200 frames of the step function, i.e., when the face model was in equilibrium with
its muscle activity set at its maximum. All calculations were made three times, each
time with a different computing precision: single, double, and quadruple precision
corresponding, to the C++ types “float”, “double”, and “long double”. These
types corresponded to 32-, 64-, and 128-bit floating-point representations in the
C++ implementation used (gcc 2.95.2 on an UltraSparc II running Solaris 2.7).

3.2. Results and discussion. Fig. 2 presents different estimates of the standard
deviations of 11 nodes of the face model after it had reached an equilibrium in
a stationary state. The results of the first set of simulations are shown by the
three lines labeled Simplem, Double, and Quadr. Since the output of the model
was expected to be constant after reaching an equilibrium, any new movement
was considered as undesirable skin vibration. Fig. 2 data thus corresponds to the
measures of the average amplitude of skin vibration in different areas of the face.

The three lines of the graph labeled Simple, Double, and Quadr. correspond
to 3D standard deviations of node trajectories when the face movements were
computed in single, double, or quadruple precision during the stable part of the
step function. A two-way (“node position” and “computing accuracy”) analysis
of variance on the standard deviations yielded significant effect (at the 0.05 level)
of node position [F (10, 20) = 175.33, p < 1e − 9] but not computing accuracy
[F (2, 20) = 1.22, p = 0.32]. This means that skin-vibration amplitude was different
in different areas of the face, but no dependence of skin vibration on computing
accuracy was found. As a consequence, the amplitude of this undesirable “noise”
could not be decreased by improving the precision of the calculations. This noise
therefore stems from the chaos properties of the face model.
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Figure 2. Estimates of skin-vibration amplitude, by node num-
ber (see Fig. 1b for the position of each node on the face) when
the face model was in a stationary state with 16 muscle activa-
tions set at their maximum. The first three labels of the legend
mean that the face model calculations were carried out in single,
double, or quadruple precision. SShift means that each node vi-
bration amplitude was estimated by taking the difference between
two corresponding node trajectories computed with the same mus-
cle activity, but node 3 was shifted by 0.001 mm to the right on
the tenth frame (the first S stands for Static). The three labels 12,
14, and 24 mean that each standard deviation was estimated by
means of the difference between two corresponding node trajecto-
ries computed with the same muscle activity and the same initial
condition, but using different computing precisions (1 for single,
2 for double, and 4 for quadruple), e.g., 14 means single minus
quadruple precision.

Skin-vibration amplitude was compared to face-movement amplitude. Fig. 3
presents the results when the face was animated by the step function. This figure
and Fig. 2 indicate that the ratio of the resulting face movement to the skin-
vibration amplitude was approximately 10:1 (compare the y scales). Hence, skin
vibration did not override facial movements, although it was not negligible.

4. Experiment 2: Stationary state with a noise assumption

Studying the chaotic noise of a model in a dynamic state (control parameters
varying over time) cannot be done using 3D standard deviations of the model out-
put. Such standard deviations would contain a noise component and a component
due to movements resulting from variations in the control parameters. So, a means
of getting rid of the control-parameter component had to be used. Experiment 2
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Figure 3. Amplitude of a face movement (dashed line) and skin
vibration (solid line) for different areas of the face model, by node
number (see Fig. 1b for the position of each node on the face) when
sixteen modeled muscles were activated by a step function. The
solid line corresponds to the solid line in Fig. 2.

was designed to test such a technique. The results produced in this new experi-
ment then had to be compared to the initial results of Experiment 1 taken as the
stationary-state reference. If the two techniques agreed, the new procedure would
be used for a dynamic state.

The results of the previous set of simulations showed that the face model suf-
fered from chaotic noise. With this model, any given simulation in a stationary state
would produce an output v that seems to fluctuate erraticlly around a fixed value.
The output v might therefore be considered as a pseudo-random variable. Another
simulation with the same control parameters but with different initial conditions
would lead to a similar model output, w, also characterized by erratic behavior
around the same fixed value. Output w might therefore also be considered as a
pseudo-random variable. If the two initial conditions are very close, the difference
∆vw (Eq. 5) will be close to (0, 0, 0) at the beginning of the simulation. Then the
magnitude of ∆vw will increase exponentially over time due to sensitivity to the
initial conditions, until ∆vw begins to vary erratically around a fixed value. In
other words, v and w will seem to be two independent pseudo-random variables
characterized by the same mean and the same variance. The variance of the corre-
sponding ∆vw should therefore be the sum of the variances of the two independent
random variables. Hence, the variance of ∆vw should be equal to twice the variance
of v or w. So, the amplitude of the chaotic noise of a model could be estimated
by carrying out two simulations with the same control parameter values but two
different initial conditions. The variance of the difference ∆vw between the two
output trajectories v and w should be equal to twice the variance component of v
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or w due to chaotic noise. Thus, the standard deviation of ∆vw should be divided
by

√
2 to estimate the amplitude of the chaotic noise.

In the same way, performing the calculations of a simulation with two different
computing accuracy levels should lead to two slightly different simulations, because
of different roundoff errors. With sensitivity to initial conditions, the small differ-
ences due to roundoff error can be expected to increase exponentially over time.
Therefore, calculating ∆vw for two simulations characterized by two different ini-
tial conditions or two different computing accuracy levels should lead to two similar
variances that are approximately equal to twice the variance estimated in the pre-
vious experiment. The purpose of this experiment was to test this hypothesis on
the face model.

4.1. Method. The same step function composed of 10 samples set at 0, followed
by 1400 samples set at 1, was used to synchronously activate the 16 selected muscles.
To work with two different initial conditions, the initial condition chosen in the
previous experiment was used again except that node 3 was shifted to the right by
0.001 mm on the tenth frame, i.e., just before muscle activation. Single precision
was used in the calculations. For each node, the difference ∆vw between the new
trajectory and the one calculated in single precision during the first experiment was
computed.

The simulations were carried out for three computing accuracy levels in the first
experiment. For each node, the difference ∆vw was also computed for each pair
of trajectories computed with the same muscle activity and initial conditions but
with two different precisions.

The 3D standard deviation of each ∆vw was computed over the last 1200 frames
of the step function, i.e., when the face model was in equilibrium with its muscle
activity set at its maximum. All standard deviations were divided by

√
2.

4.2. Results and discussion. Fig. 2 presents the different standard-deviations
estimates of 11 nodes in the face model after it had reached a stationary state. The
three lines labeled Simple, Double, and Quadr. are discussed above in Section 3.2
about the first experiment. The line labeled SShift corresponds to the results of the
simulation using the same muscle activity but two different initial conditions. In
this case, node 3 was shifted to the right by 0.001 mm on the tenth frame, i.e., just
before the step in the input. Hence, the only difference on the tenth frame between
the faces in the first and new simulations was the 3D position of one node (out
of 1435) shifted by 0.001 mm. This small difference increased exponentially over
time and was propagated throughout the entire mesh. As explained above, it was
assumed that the node trajectories of the new simulation would be independent
of the old ones when the face model had reached its equilibrium. The first row of
Table 1 shows that this assumption was not always true. The table presents the
3D correlations between pairs of node trajectories, computed with the same muscle
activity but different initial conditions or computing precisions. All correlations
were measured for the last 1200 frames of the 1410-frame step functions. Based
on the first row of the table, it seems that some the 3D correlations between new
and old node trajectories are high (especially nodes 1 and 4). The independence
assumption was nevertheless taken as a first approximation, with the difference
between the old and new trajectories [Eq. (5)] being used to calculate a new estimate
of the average skin-vibration amplitude. Fig. 2 shows that the match between this
new estimate and those produced in Experiment 1 is good (line labeled SShift
compared to Simple, Double, and Quadr.)
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Table 1. 3D correlations [Eq. (4)] in a stationary state (Experi-
ment 2) between pairs of node trajectories computed at two differ-
ent precision levels (1, 2, and 4 for single, double, and quadruple
precision, respectively), or between pairs of node trajectories com-
puted in single precision but with different initial conditions (SShift
row). The sole difference between the two initial conditions was the
position of node 3, which was shifted 0.001 mm to the right on the
tenth frame. Each column of the table presents the correlations for
a different node (see Fig. 1 for the correspondence between node
number and node position on the face).

Node Position

1 2 3 4 5 6 7 8 9 10 11

SShift 0.72 -0.02 0.01 0.75 -0.07 0.01 0.00 0.04 -0.13 -0.20 0.06

1–2 0.65 0.01 0.02 0.74 0.37 0.02 0.15 0.00 0.38 0.20 0.36

1–4 0.79 0.00 -0.06 0.75 0.16 -0.07 0.07 -0.01 0.20 0.21 0.28

2–4 0.53 0.00 -0.03 0.63 0.09 -0.04 0.11 0.06 0.15 0.03 0.24

In the same way, carrying out the calculations of a simulation with two different
computing precisions should lead to similar results because of the different round-
off errors and sensitivity to initial conditions. The results are reported in Fig. 2
where one can see that using two different initial conditions or computing precisions
produced similar results (lines labeled SShift compared to 12, 14, and 24).

Finally, Fig. 2 shows that estimating skin-vibration amplitude by means of 3D
standard deviations of node trajectories when the model is in a stationary state, or
by means of 3D standard deviations of differences between pairs of node trajectories
divided by

√
2, produces similar results (lines labeled Simple, Double, and Quadr.

compared to the other four lines). A two-way (“node position” and “method” of
estimating skin-vibration amplitude, i.e., with or without the trajectory difference)
analysis of variance on the estimates of skin vibration amplitude yielded a signif-
icant effect (at the 0.05 level) of node position [F (10, 55) = 468.87, p < 1e − 9],
method [F (1, 55) = 23.55, p < 2e−4], and an interaction between these two factors
[F (10, 55) = 5.62, p < 1e − 05]. As Fig. 2 indicates, the results produced by all
methods were so close that they can be considered identical for all practical pur-
poses. This is important for the next experiment, which used time-varying muscle
activity, because only methods based on differences between pairs of trajectories
will be applicable.

4.3. Conclusion for the stationary state. To summarize the results so far, the
face model was found to be sensitive to initial conditions and generated skin vibra-
tion that was independent of computing accuracy. The average skin-vibration am-
plitude was firstly estimated using the 3D standard deviation [Eq. (3)] of each node
position when the model was animated by constant muscle activity. No assump-
tion about noise was made for the first estimate. Because this method could not
be used in a dynamic state, another technique involving differences between pairs
of trajectories was also implemented. These differences could potentially eliminate
the component of face movement due to variations in the control parameters over
time, but it required the assumption that two trajectories differing only by chaotic
noise could be considered as two independent variables once the control-parameter
variation was factored out. This second approach produced results so close to the
first ones (the reference) that the two techniques can be considered equivalent for
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all practical purposes. As a consequence, the simulations can also be carried out
for a dynamic state.

5. Experiment 3: Dynamic state

After studying the face model in the stationary state, the analysis was replicated
in the dynamic state (fluctuating muscle activity). Would new properties emerge
from the dynamic state?

5.1. Method. The same sixteen muscles were synchronously excited by a wave of
triangular activity composed of the sequence (0, 1/6, 2/6, 3/6, 4/6, 5/6, 6/6, 5/6,
4/6, 3/6, 2/6, 1/6) repeated 100 times to create a 1200-sample time series made up
of 100 identical triangular shapes.

Skin-noise amplitude could not be estimated by means of the 3D standard devi-
ation [Eq. (3)] of a node trajectory because the face model was not in a stationary
state. Such a standard deviation would contain a skin-noise component and a face-
movement component. Fortunately, the results of the previous experiment showed
that estimating skin-noise amplitude by means of the difference ∆vw [Eq. (5)] be-
tween two node trajectories computed from the same muscle activity but with two
different initial conditions or computing precisions led to the same results. Us-
ing the difference between two corresponding node trajectories eliminated the face
movement component of the 3D standard deviation, leaving only the component of
the skin vibration due to the noise.

5.2. Results and discussion. Fig. 4 plots the estimated noise amplitude of the
skin model by node number (see Fig. 1b for the approximate position of each node
on the face) when the face model was activated by waves of triangular muscle
activity. As previously discussed, the amplitudes of the 3D standard deviations
were divided by

√
2. To facilitate comparison between the results produced by

the face model in the stationary and dynamic states, the thick discontinuous line
labeled SShift in Fig. 2 was added to the graph.

The last four lines in Fig. 4 show that using different initial conditions or differ-
ent computing precisions to estimate noise amplitude did not change the results. A
two-way (“node position” and “method” used to estimate noise amplitude) anal-
ysis of variance on the noise-amplitude estimates yielded a significant effect of
node position [F (10, 30) = 81.67, p < 1e − 9] but no significant effect of method
[F (3, 30) = 2.27, p = 0.10] at the 0.05 level. In other words, skin-noise amplitude
was not found to be significantly dependent on computing accuracy or estimator.

A comparison between the thick line labeled SShift and the other four lines
in Fig. 4 indicates that the noise amplitude was different, but of the same order
of magnitude when the model was in a stationary or dynamic state. A two-way
(“node position” and “face-model state”) analysis of variance with replication of
the noise amplitudes confirmed the significant effect of node position [F (10, 33) =
87.90p < 1e − 9], and face-model state [F (1, 33) = 30.88, p < 1e − 5], and an
interaction between these two factors [F (10, 33) = 8.81, p < 1e − 6] at the 0.05
level. However, the similarity of the noise-amplitude estimates produced in the
stationary and dynamic states suggests that analogous levels of skin noise may be
found in most situations.

6. Experiment 4: Contributions to noise of the muscle and skin models

The muscle models acted as nonlinear modules that processed the electrochem-
ical potentials of the face-model input and interacted with the skin. Both their
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Figure 4. Noise-amplitude estimates of the skin model when the
modeled muscles were activated by a wave of triangular functions
(lines labeled DShift, 12, 14, and 24) or when the face model was
in a stationary state (line labeled SShift; data taken from Exper-
iment 2, Fig. 2). DShift means that each node’s noise amplitude
was estimated by the 3D standard deviation of the difference be-
tween two identical animations, except that node 3 was shifted
0.001 mm to the right on the first frame (D stands for Dynamic).
The three labels 12, 14, and 24 mean that the standard deviations
were estimated by the difference between two identical animations,
except that the face model calculations were carried out using two
different computing precisions (1 for single, 2 for double, and 4 for
quadruple), e.g., 14 for single against quadruple precision.

nonlinear properties and their interactions with the skin could contribute to chaos.
Separately analyzing how much of the chaotic noise can be ascribed respectively
to the skin model and the muscle model could provide information about which
module needs to be improved in order to lower chaotic vibrations. Using the tech-
niques outlined in the first three experiments, the muscle models were checked to
make sure that, when separated from the skin model, they did not exhibit chaotic
properties , e.g., sensitivity to initial conditions or presence of noise independent of
computing accuracy. Then the skin model was analyzed without the muscle mod-
els. Since the muscle models did not generate chaotic noise, only the skin analysis
will be summarized here.

6.1. Method. The muscle models were replaced by forces proportional to the
electrochemical potential used in the previous simulations. The forces were applied
to the nodes originally attached to the muscles, in the direction of the lines of action
of the discarded muscles. Each force was scaled to the maximum force developed
by the corresponding muscle when the muscle was activated by an electrochemical
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potential equal to 1. This ensured that the face movements produced would have
similar amplitude to those in the previous experiment.

Except for replacing the muscle models by simple forces, this experiment was
identical to Experiment 3, i.e., the same wave of 100 triangular shapes was used to
activate the skin model, and the noise was computed in the same way.

6.2. Results and discussion. The noise amplitudes were virtually the same
as those measured with the muscle models in Experiment 3. The results are
therefore not reported here. A two-way (“node position” and “muscle models
presence/absence of”) yielded a significant effect of node position [F (10, 66) =
135.92, p < 1e−9], but not of the muscle-model presence [F (1, 66) = 0.10, p = 0.75],
and no interaction between these factors [F (10, 66) = 0.17, p = 0.99]. Hence, the
muscle models did not contribute to the noise analyzed in this paper, and only the
skin model was responsible for the results.

7. General discussion

In some applications of nonlinear models, chaotic noise produces an undesirable
noise such as soft-tissue vibration. Instead of estimating the Lyapunov exponent of
the system, one can directly measure the amplitude of the system’s chaotic noise
under various conditions. The method proposed here can achieve this goal.

The techniques were tested on a biomechanical model of the face. The results
showed that (i) the face model added skin vibration to the facial movements, (ii)
the amplitude of the skin noise was approximately equal to 10% of a full-scale
movement amplitude and was independent of computing accuracy, i.e., it could not
be decreased by improving floating-point precision, (iii) the face model was sensitive
to initial conditions, and the results were very similar in the stationary and dynamic
states, and (iv) the muscle models did not contribute to skin vibration.

In any application, it must be decided whether the chaotic noise is tolerable or
whether it must be decreased. For example, for the face model tested here, chaotic
skin vibration was clearly visible in many animations, so decreasing its amplitude
was mandatory.

Increasing the damping factors of a dynamic system is a common means of
reducing the amplitude of chaotic noise. This solution was not acceptable for the
face model because the damping factor increase reduced overly the amplitude of
the face movements. I am currently working on how to solve this problem.

A biomechanical model can also be useful in motor control research. The goal
of motor control research is to understand how our muscles and articulators are
synchronized to achieve a goal such as walking, grasping an object, speaking, etc.
A biomechanical model can be used to generate different animations according to
several hypothesized motor control strategies. Then perceptual tests can be applied
to decide which strategy leads to more natural animations. The impact of chaotic
skin vibration on the perceptual results must be assessed to avoid undesirable biases
due to chaos.

Determining which muscles of a biomechanical face model must be activated to
produce an animation corresponding to a sentence is a difficult problem. Inversions
have been proposed in the literature, e.g., [16], [9] or [11]. The principle of these
techniques begin by recording the face movements of a real speaker producing the
requested corpus and to then apply a mathematical procedure called “inversion”
to search in the muscle activity space for a muscle-activity pattern that leads to an
animation that matches the recorded movements. No inversions to date have pro-
duced inverted muscle activity that matched measurements of real muscle activity.
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Hence, determining realistic inverted muscle activity by means of an inversion is
still an important challenge in the motor control of speech. This article shows that
calculating facial movements from muscle activity adds a non-negligible quantity of
skin noise. One can therefore expect to measure similar or worse noise in inversion
procedures. As a consequence, inversions should be supplemented by noise analyses
to estimate the accuracy limit that can be reached for chaotic noise intrinsic to the
biomechanical model. The method presented here (calculating the difference ∆vw

[Eq. (5)] between the time series of two inverted muscle-activity levels computed
with different initial conditions or computing precisions) can achieve this goal.

Geometrical models of the face are used intensively in the image industry. These
models consist of a geometric description of the face surface, often by a mesh of
massless points, and a few mathematical parameters that modify the shape of the
face in order to generate different expressions and movements [1, 17]. Most facial
animations produced in the image industry are based on geometric models because
these models are simpler to implement, require less intensive computing, and are
easier to control than biomechanical models. However, geometric animations usu-
ally look less natural than biomechanical ones. To solve the control problem of a
biomechanical model, the dynamic inversion presented in [11] can be used. The
results usually seem more natural than anything produced by means of geometric
models. The present study showed that chaotic skin vibration must be expected
in animations. The method presented here is a simple way of analyzing this skin
vibration and may therefore be useful to the image industry.
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