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Abstract. A finite element method to solve the Reduced Navier-Stokes Prandtl (RNS/P) equations is
described. These equations are an asymptotic simplification of the full Navier-Stokes equations, obtained
when one dimension of the domain is of one order smaller than the others. These are therefore of particular
interest to describe flows in channels or pipes of small diameter. A low order finite element discretization,
based on a piecewise constant approximation of the pressure, is proposed and analyzed. Numerical exper-
iments which consist in fluid flow simulations within a constricted pipe are provided. Comparisons with
Navier-Stokes simulations allow to evaluate the performance of prediction of the finite element method,
and of the model itself.

Keywords : incompressible flow, RNS/P equations, finite elements.

1 Introduction

For some kinds of flow problems, it is physically relevant to simplify the full Navier-Stokes
equations assuming that one or two characteristic lengths are predominent. Among the most
classical examples are the Prandtl’s boundary layer equations (see e.g. [21]) or the hydrostatic
approximation for shallow water flows (see e.g. [2]). The interest of these simplifications is a
refined analysis of the fluid flow problem, through a better understanding of its relevant scal-
ings. It can be also motivated by practical considerations, as it might reduce the computation
cost far above those of the most efficient Navier-Stokes solvers, despite the considerable effort
that has been made in this direction (see e.g. [25]).

For flows in long pipes of small diameter, such a simplification, justified by an asymptotic
analysis, has been derived and called Reduced Navier-Stokes/Prandtl (RNS/P) equations [16].
These equations have been employed successfully to model various problems, specifically in
the domain of biological flows: in a stenosis [16], in the laryngeal glottis [15], in the pharyngeal
duct [26, 17]. In particular, the prediction of pressure and wall shear stress distributions has
been compared to references such as Navier-Stokes simulations [17] or experimental measure-
ments [26]. It results from these comparisons that the RNS/P predictions are quite close to
the references, with a relative error of a few percents.

For these equations, a numerical method based on finite differences has been proposed and
tested in [15]. It is a streamwise marching algorithm, inspired from the classical methods



designed to solve the heat equation [11]. Even if the proposed method is cheap and adaptable
to some different geometries, it has some important drawbacks. Among them, we can quote:

– first, it lacks of robustness. Specifically, for some categories of geometries, such as con-
strictions, numerical problems occur after the separation of the flow. This is mostly due
to recirculation effects, which cannot be easily taken into account in the finite differences
framework. The standard method is to use the ”FLARE” approximation [19] which consists
in removing the u∂xu term when the longitudinal velocity is negative [16]. However, this is
an ad-hoc approximation and does not ensure a correct computation in the whole domain.

– Some care has to be taken when adapting a finite differences scheme to complicated ge-
ometries, or to a three-dimensional problem [5].

– If we are interested in fluid-structure interaction problems (such as in the upper airways
[8]), with the finite element method for solving the motion of the structure, the transmission
of the forces at the interface can not be done in a simple and natural way (see [8] for the
details).

As a result of the previous considerations, in this work we are interested in the first steps
towards a finite element method for the resolution of the RNS/P equations, which will avoid
some of these disadvantages. Even if the presentation and the results are given for the bidi-
mensional case, the method can be easily extended to the tridimensional case.

The plan of the paper is as follows. First, the complete boundary value problem is given in
Section 2. The finite element method is described and analyzed in Section 3; in particular,
since finite elements of common use for the Navier-Stokes equations - namely Taylor-Hood
element [27] and the Mini element [11] - do not provide a correct approximation, we use a
specific finite element, originally proposed in [23] for the Stokes equation. It is shown that
with this method, the discrete problem admits a solution. Numerical experiments, presented
in Section 4, have been carried out to confirm the analysis, and to test the precision of the
method through comparison with Navier-Stokes simulations, taken as a reference. Finally some
concluding remarks and perspectives are drawn.

2 The boundary value problem

The Reduced Navier-Stokes/Prandtl (RNS/P) equations are derived from the Navier-Stokes
(1) equation. For the sake of simplicity, one can assume a newtonian, steady, incompressible,
laminar and bidimensional flow:

{

(u · ∇) u = − 1
ρ
∇p + ν△u + g,

∇ · u = 0,
(1)

where u is the velocity, p is the pressure, ρ is the density, ν is the kinematic viscosity and g is
the external force field; g is in a great amount of applications the gravity field but may also
stand for any kind of other external influence (e.g. a magnetic field). To derive the RNS/P
equations, we need two assumptions, namely:
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Fig. 1. The domain Ω for the resolution of the RNS/P equations, with the notations for the different parts of the
boundary. Note that x1 and x2 are non-dimensional coordinates.

1. if we note D2 the transversal dimension of the domain and D1 the longitudinal dimension,
then D1/D2 ≫ 1 (Fig. 1).

2. if the Reynolds number is defined as Re = U0D2/ν, where U0 stands for the maximal
velocity at the entry, then Re ≫ 1 .

Then, the Navier-Stokes equation (1) can be simplified in order to obtain Reduced Navier-
Stokes / Prandtl (RNS/P) equations (see [16] for the derivation):







u1 ∂x1
u1 + u2 ∂x2

u1 = −1
ρ
∂x1

p + ν ∂2
x2
2

u1 + g1,

∂x2
p = 0,

∂x1
u1 + ∂x2

u2 = 0.

(2)

Here, (u1, u2) are respectively the longitudinal and the transversal components of the velocity
u, and g1 is the longitudinal component of the external force field g. In the case of a gravity
field, it means of course that the gravity is taken into account only if the duct is not horizontal.
Boundary conditions consist of no slip on the lower and upper walls as well as an inlet flow at
the entrance. The exit of the domain is considered as free. As a result, the RNS/P equations
are the Prandtl boundary layer equations [7] with two major differences:

1. the domain in the RNS/P formulation is bounded in the transverse direction and there is
no more fitting at the infinity with the inviscid flow;

2. the pressure distribution in the domain is an unknown.

Let us consider Ω which is a polygonal domain in R
2 with boundary ∂Ω; Γi ⊂ ∂Ω is the entry

(inlet flow), Γw ⊂ ∂Ω is the rigid wall (with no-slip boundary conditions) and Γo ⊂ ∂Ω is
the exit (outlet flow) (Fig. 1). We give now the full boundary value problem that aims to be
solved, in a non-dimensional form:
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u1 ∂x1
u1 + u2 ∂x2

u1 + ∂x1
p − 1

Re
∂2

x2
2

u1 = g1 in Ω,

∂x2
p = 0 in Ω,

∂x1
u1 + ∂x2

u2 = 0 in Ω,
u1 = u0

1 on Γi,
u1 = 0 on Γw,

u2 n2 = 0 on Γi ∪ Γw,
σRNSP n = 0 on Γo.

(3)

The velocity profile u0
1 at the entry may be arbitrary, usually a flat profile or a Poiseuille

profile. Note that the condition u2 n2 = 0 comes from the fact that u2 is expected to be less
regular than u1 (as in [2]), so that the classical trace theorems (see e.g. [18]) do not allow to
define u2 on the boundary (in next section is introduced the space in which u2 is defined).
The condition on Γo is a ”do-nothing” condition, where σRNSP = −p I + 1

Re
∂x2

u1 e1 ⊗ e2 is a
degenerated Cauchy stress tensor associated to the RNS/P equations, and n the normal unit
vector oriented outward the domain.

3 The finite element method

As in the case of Stokes or Navier-Stokes equation, a finite element method can be proposed
to solve the RNS/P equations. Moreover, some of the techniques already known to obtain a
discrete approximation and to analyze it can be adapted to this case. Nevertheless, as in the
case of the primitive equations of the ocean, in which the pressure is also constant in one di-
rection of the space, finite elements such as Taylor-Hood or Mini element are inappropriate for
discretization [1]. Hence, we propose a discretization using an element which was first studied
in [23].

3.1 Weak formulation

To avoid technical difficulties, the problem (3) is rewritten with homogeneous Dirichlet bound-
ary conditions on ∂Ω (Γw = ∂Ω, Γi = ∅, Γo = ∅)3. Let us first present some notations. By
L2(Ω) we denote the space of square integrable scalar functions on Ω, (·, ·)Ω stands for the
inner product in L2(Ω) (in L2(Ω)2 or in L2(Ω)2×2, if necessary); ||.||0,Ω stands for the norm in
L2(Ω) associated to (·, ·)Ω. L2

0(Ω) is the subspace of functions in L2(Ω) with zero mean value
on Ω. H1(Ω) is the space of square integrable scalar functions on Ω, with square integrable
first derivatives. In the sequel, we will need the following space

H1(∂x2
, Ω) = {v ∈ L2(Ω) | ∂x2

v ∈ L2(Ω)}. (4)

H1
0(Ω) stands for the closed subspace of H1(Ω) with vanishing trace on ∂Ω. Similarly, we note

H1
0(∂x2

, Ω) the following space:

3 However, the weak formulation in the general case will be given in the next remark.
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H1
0(∂x2

, Ω) = {v ∈ H1(∂x2
, Ω) | vn2|∂Ω = 0}. (5)

H1(Ω), H(Ω) and H0(Ω) are the following spaces of vector-valued functions:

H1(Ω) = H1(Ω) ×H1(Ω),
H(Ω) = H1(Ω) ×H1(∂x2

, Ω),
H0(Ω) = H1

0(Ω) ×H1
0(∂x2

, Ω).
(6)

H1(Ω) is a Hilbert space with the following scalar product:

(u,v)1,Ω = (u,v)Ω + (∇u,∇v)Ω. (7)

H(Ω) is also a Hilbert space with the scalar product:

(u,v)H(Ω) = (u,v)Ω + (∇u1,∇v1)Ω + (∂x2
u2, ∂x2

v2)Ω. (8)

This implies the following property on the norms:

∀v ∈ H1(Ω), ||v||H(Ω) ≤ ||v||1,Ω, (9)

with ||.||1,Ω the norm on H1(Ω) associated to (·, ·)1,Ω. Moreover, let us note c(·, ·, ·), aRe(·, ·),
aλ(·, ·) and a(·, ·) the continuous trilinear and bilinear forms on H0(Ω) defined by:

c : (u,v,w) 7−→ (u1 ∂x1
v1 + u2 ∂x2

v1, w1)Ω,
aRe : (u,v) 7−→ 1

Re
(∂x2

u1, ∂x2
v1)Ω,

aλ : (u,v) 7−→ (λ∇ · u,∇ · v)Ω,
a : (u,v) 7−→ aRe(u,v) + aλ(u,v).

(10)

Here, λ is a non-negative (possibly equal to zero) scalar field over Ω. The least-squares term
aλ can be added into the variational formulation without affecting the solution. Although
irrelevant for the continuous problem, this least-squares term has been introduced as a standard
stabilization for convection-dominated flow problems (see, e.g., [4] for a recent review on this
issue) an has an effect on the solution of the discrete problem (see Section 4 for a discussion).
We also introduce the continuous bilinear form b(·, ·) : L2

0(Ω) × H0(Ω) → R defined by:

b : (p, v) 7−→ −(p,∇ · v)Ω. (11)

Using these forms, we present the following weak formulation for (3): Find (u, p) ∈ H0(Ω) ×
L2

0(Ω) such that:







∀v ∈ H0(Ω), c(u,u,v) + a(u,v) + b(p, v) = (g,v)Ω,

∀q ∈ L2
0(Ω), b(q,u) = 0.

(12)

Note that from the boundary value problem, we have g = (g1, 0). Nevertheless, we will consider
the general case g2 6= 0 in the rest of the text.

Remark. In the case of non-homogeneous boundary conditions, the weak formulation (12)
is still valid with the following modifications: u belongs to HΓw

(Ω), the subspace of functions
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in H(Ω) for which trace vanishes on Γw. The inlet flow is imposed by setting u1 equal to u0
1

on Γi. The test function v belongs to HΓw∪Γi
(Ω) since the ”do-nothing” condition is chosen

for the outlet flow on Γo. Due to this condition, the functions p and q are not restricted to
L2

0(Ω) and are now in L2(Ω). �

We now return to the case of homogeneous Dirichlet condition for the analysis of the problem,
and we introduce the following space:

Hb(Ω)
DEF
= ker b = {v ∈ H0(Ω) | ∀q ∈ L2

0(Ω), b(q,v) = 0} = {v ∈ H0(Ω) | ∇ · v = 0}, (13)

where the last equality arises from the fact that ∇ · v ∈ L2
0(Ω). As for the Navier-Stokes and

Stokes equations, we reformulate this mixed weak formulation into two dependent problems.
For stability reasons (see Lemma 2 below), the convective term c(·, ·, ·) is transformed using
the following well-known relationship:

∀u,v,w ∈ H0(Ω), cs(u,v,w) = −
1

2
(∇ · u, v1w1)Ω. (14)

As a result, cs(·, ·, ·), the symmetric part of c(·, ·, ·), vanishes on Hb(Ω) and the trilinear form
is equal to its antisymmetric part:

∀u,v,w ∈ Hb(Ω),
c(u,v,w) = ca(u,v,w) = 1

2
((u1 ∂x1

v1 + u2 ∂x2
v1, w1)Ω − (u1 ∂x1

w1 + u2 ∂x2
w1, v1)Ω) .

(15)

Using (14)-(15) we can propose the following equivalent formulation for the problem (12):

– Find u ∈ Hb(Ω) such that :

∀v ∈ Hb(Ω) , ca(u,u,v) + a(u,v) = (g,v)Ω, (16)

– Find p ∈ L2
0(Ω) such that :

∀v ∈ H0(Ω) , b(p, v) = (g,v)Ω − ca(u,u,v) − a(u,v). (17)

3.2 Finite element spaces

For the continuous problem (16)-(17), a discretization first proposed in [23] for the Stokes
problem has been chosen: a discontinuous approximation of the pressure is preferred as it
provides local conservation of the mass (cf. [13]). Let {Th}h>0 be a regular family of admissible
triangulations of Ω (cf. [11]). For each K ∈ Th, hK stands for the element diameter and
h = max(K∈Th) hK . The following space has been chosen for the velocity field:

Hh = (Hh,2 ∩H1
0(Ω)) × (Hh,1 ∩H1

0(∂x2
, Ω)), (18)

where, for k = 1, 2:

Hh,k = {v ∈ C0(Ω̄) | ∀K ∈ Th, v|K ∈ Pk(K)}. (19)
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We also need to introduce the space Hh,b, defined as follows:

Hh,b = {vh ∈ Hh | ∀qh ∈ Πh, b(qh,vh) = 0}. (20)

We note that Hh,b is not necessarily a subspace of Hb(Ω). The pressure is approximated using
the following space:

Πh = {q ∈ L2
0(Ω) | ∀K ∈ Th, q|K ∈ P0(K)}. (21)

The finite element associated to this choice is called P2/P1/P0. Using this pair of spaces, we
propose the following finite element method for (16)-(17):

– Find uh ∈ Hh,b such that:

∀vh ∈ Hh,b, ca(uh,uh,vh) + a(uh,vh) = (g,vh)Ω. (22)

– Find ph ∈ Πh such that:

∀vh ∈ Hh, b(ph,vh) = (g,vh)Ω − ca(uh,uh,vh) − a(uh,vh). (23)

3.3 Analysis of the discrete problem

The aim of this section is to analyze the discrete problem (22)-(23). It will be proved that it
admits at least one solution. We start with the following technical, but fundamental result:

Lemma 1. The mapping

||.||x2
: Hh,b −→ R

vh = (vh,1, vh,2) 7−→ ||vh||x2
= ||∂x2

vh,1||0,Ω,
(24)

defines a norm on Hh,b.

Proof. The only property to check is that ||vh||x2
= 0 implies vh = 0 in Ω. The other

properties arise directly from the fact that ||.||0,Ω is a norm on L2(Ω). Let us consider vh ∈ Hh,b

such that ||vh||x2
= 0. The Poincaré inequality (see [18])

||vh,1||0,Ω ≤ C(Ω) ||∂x2
vh,1||0,Ω, (25)

implies that vh,1 = 0 in Ω. As a result, vh,2 satisfies

∀qh ∈ Πh, (qh, ∂x2
vh,2)Ω = 0. (26)

Let us now remark that the function vh,2 can be written as follows on each triangle Ki of the
mesh:

vh,2|Ki
(x1, x2) = αi + βix1 + γix2. (27)

For two given elements Ki and Kj of the mesh, the function

q̃h =
1

|Ki|
11Ki

−
1

|Kj|
11Kj

, (28)
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belongs to Πh, and then, using (26) we easily see that

γi = γj. (29)

Let D = {(x0
1, x2) | x2 ∈ R} be a vertical line, for any arbitrary x0

1 such that D ∩ Ω 6= ∅. This
line intersects the mesh in a sequence of adjacent triangles (Ki)i∈{0,...,n}. The property (29) and
the continuity of vh,2 imply that:

∀i ∈ {0, . . . , n}, αi = α0, βi = β0, γi = γ0. (30)

The boundary conditions that satisfies vh,2 are then such that: α0 = β0 = γ0 = 0. Since the
same argument may be used for every (or almost every) x0

1 such that D ∩Ω 6= ∅, then vh = 0
in Ω. �

Remark. A consequence of this lemma is that (Hh,b, (·, ·)x2
) is a Hilbert space with the

scalar product : (uh,vh)x2
= (∂x2

uh,1, ∂x2
vh,1)Ω. �

Lemma 2. For λ ≥ 0, the problem (22) admits at least one solution uh ∈ Hh,b.

Proof. We follow an approach similar to the one presented in [24] for the full Navier-Stokes
equations. In (Hh,b, (·, ·)x2

), finite dimensional Hilbert space, we introduce the mapping f from
Hh,b into itself as follows. For vh ∈ Hh,b, f(vh) is the unique vector such that:

∀wh ∈ Hh,b, (f(vh),wh)x2
= ca(vh,vh,wh) + a(vh,wh) − (g,wh)Ω. (31)

It is easy to check that f is a continuous mapping. Now, for λ ≥ 0, a(·, ·) satisfies

∀vh ∈ Hh,b, a(vh,vh) ≥
1

Re
||vh||

2
x2

, (32)

and, using the Cauchy-Schwarz inequality and the equivalence of norms in a finite dimensional
space there exists a positive constant C1,h such that:

∀vh ∈ Hh,b, |(g,vh)Ω| ≤ C1,h ||g||0,Ω ||vh||x2
. (33)

Using the previous results, f satisfies

(f(vh),vh)x2
= ca(vh,vh,vh) + a(vh,vh) − (g,vh)Ω

= a(vh,vh) − (g,vh)Ω

≥ 1
Re
||vh||

2
x2
− C1,h ||g||0,Ω ||vh||x2

≥ ||vh||x2
( 1

Re
||vh||x2

− C1,h ||g||0,Ω).

If we choose k > ReC1,h ||g||0,Ω, then for ||vh||x2
= k, (f(vh),vh)x2

> 0. As a result, the lemma
1.4 p.164 in [24] ensures the existence of a solution uh of the equation f(uh) = 0, in other
words, a solution of the discrete problem (22). �

Remark. For the inequality (33), a better majoration can be given in the case g2 = 0.
Indeed, from the Cauchy-Schwarz inequality and the Poincaré inequality, we have:

∀vh ∈ Hh,b, |(g,vh)Ω| ≤ C(Ω)||g1||0,Ω ||vh||x2
. (34)
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Hence, if we define k0 = (Re C(Ω) ||g1||0,Ω), the Lemma 1.4 in [24] also ensures that ||uh||x2
≤

k0, thus ||uh,1||0,Ω ≤ C(Ω) k0, using again the Poincaré inequality. In other words, the set
{||uh,1||0,Ω}(h>0) is bounded. �

For the problem (23), we now have the following lemma:

Lemma 3. The pair P2/P1/P0 is inf-sup stable, i.e., there exists a constant β > 0, independent
of h, such that:

inf
qh∈Πh

sup
vh∈Hh

b(qh,vh)

||vh||H(Ω)||qh||0,Ω

≥ β. (35)

Then, for a given uh, the problem (23) admits one unique solution ph ∈ Πh.

Proof. In [23] it is proved that

inf
qh∈Πh

sup
vh∈Hh

b(qh,vh)

||vh||1,Ω||qh||0,Ω

≥ β, (36)

and the result arises from (9). �

Collecting the previous results, we can state the main theorem of this section:

Theorem 1. The problem (22)-(23) admits at least one solution (uh, ph). Furthermore, in the
case of g2 = 0, the set {||uh,1||0,Ω}(h>0) is bounded by (C(Ω)2 Re ||g1||0,Ω), where C(Ω) is the
constant from the Poincaré inequality.

Remark :

(1) For the Taylor-Hood element and the Mini element, the inf-sup condition is also valid,
which ensures that the discrete problem (23) has a unique solution for a given uh. Neverthe-
less, for these elements, and λ = 0, the problem (22) might have no solution. Indeed, Lemma
2 might not be valid since for these elements, ||.||x2

might not be a norm on Hh,b (note that
the specific properties of the P2/P1/P0 element have been used in the proof of Lemma 1). This
has been confirmed by the numerical experiments that fail for these elements.

(2) Note that no majoration of the transverse velocity uh,2 has been provided. This is due to
the very particular nature of the RNS/P equations, that allow a weak control on this variable.

3.4 Description of the algorithm of resolution

For numerical simulations, boundary conditions that are not homogeneous have been consid-
ered (see equation (3) and remark below equation (12)). For the inlet flow, a Poiseuille profile
has been chosen:

u0
1(x2) = 4(1 − x2)x2. (37)

The Newton method has been used to deal with the non-linearity that arises from the convec-
tive term. At each step of the Newton loop, the linearized discrete problem is solved using a
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multi-frontal Gauss LU factorization (cf. [10]) implemented in the package UMFPACK
4 (cf. [9]).

The complete scheme of the numerical resolution is given in Fig. 2.

The first numerical parameter is λ, which is the coefficient for the least-squares term aλ(·, ·).
It has been chosen for the numerical experiments as a constant and not as a scalar function.
The two other parameters are nRe and εN which are respectively the number of steps in the
continuation loop 1 and the convergence criterion for the Newton loop. This latter has been
fixed to 10−7 for all the simulations. The convergence in the Newton loop has been measured
through computation of:

||(duh, dph)||max = max
Th

||(duh, dph)||2, (38)

where (duh, dph) is the increment in each iteration, defined in Fig. 2. All the numerical results
have been obtained using FreeFEM++ software [14].

4 Numerical results and discussion

The problem consists of computing the fluid flow in a constricted pipe, a type of geometry
which corresponds to a great variety of situations: flow in a Venturi pipe [25], in a collapsible
tube [6], in a stenosis [3], in the vocal folds [20] or in the human pharynx [22], etc. The ge-
ometry can either be symmetric (for instance in a stenosis) or asymmetrical (for instance in
the human pharynx or at the base of the tongue). Here, we have considered the asymmetrical
problem. The characteristics of one representative simplified geometry are given in Fig. 3: it
is a straight pipe which is constricted because of a bump in the upper border. The pertinent
parameters for this type of problem are the width δ and the height hb of the bump, as well as
the Reynolds number Re.

The simulations have been carried out for three types of geometries:

– (geometry 1) A long pipe with a slightly curved upper wall (δ = 5, hb = 0.2). It corresponds
to an ideal case in which the assumptions of validity of the RNS/P equations should be
encountered.

– (geometry 2) A pipe with a small obstacle (δ = 0.1, hb = 0.2), a case described in [16]. It
permits to test the method in a more realistic situation, with separation of the flow above
a given Reynolds number.

– (geometry 3) A severe constriction (δ = 0.5, hb = 0.5), a case described in [17]. The interest
is to test the method and the model itself in a situation corresponding to the limit of
validity of the RNS/P equations.

The meshes for each case are depicted Fig. 4. The range for the Reynolds number Re is
1 − 1000 for the geometry 1, 1 − 500 for the geometry 2 and 1 − 100 for the geometry 3. In
a first set of experiments, the value for λ has been fixed to 0. For comparison, the complete
Navier-Stokes equations have been solved, on the same geometry and with the same mesh.

4 http://www.netlib.org/linalg
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The numerical strategy is the same as for RNS/P equations: a continuation method with a
Newton loop to treat the non-linearity. The number of steps of the continuation method is
always the same for Navier-Stokes and RNS/P. The convergence criterion εN for the Newton
loop is fixed to the same value as for the RNS/P equations: 10−7. For discretization, P2/P1

Taylor-Hood elements have been considered (quadratic interpolation on the velocity and linear
interpolation on the pressure) [11]. No stabilization of the finite element approximation has
been used in the convection-dominated regime, since no pure oscillations have been observed
in the numerical solutions. The pressure drop ∆P between the inlet and the outlet, which is an
output of the simulations, has been compared. Moreover, the force F sup exerted by the fluid on
the upper wall has been computed since it is of particular interest in the case of fluid-structure
interaction. This force is defined as

F sup =

∫

Γsup

σfn dΓ, (39)

where Γsup is the upper part of the boundary, σf is the tensor of fluid constraints and n is the
inner unit vector normal to the boundary. It is of interest to decompose F sup as:

F sup = F p
sup +

1

Re
F τ

sup, (40)

where F p
sup is the contribution of the pressure:

F p
sup =

∫

Γsup

(−p n) dΓ, (41)

and F τ
sup is the contribution of the shear stress:

F τ
sup =

∫

Γsup

(∇u + ∇uT)n dΓ. (42)

In practice, for incompressible flows, the contribution from the shear stress is negligible with
respect to the contribution from the pressure (see e.g. [8]). The results of the computations and
of the comparisons (pressure drop ∆P and quadratic norms of F sup, F p

sup, F τ
sup) are presented

in Table 1.

For the geometry 1 and for a Reynolds number of 1000, the pressure distribution p and the
horizontal velocity u1 are depicted Fig. 5. The predictions of ∆P and F sup are in good adequa-
tion with those from the Navier-Stokes simulations, taken as a reference. The maximal error
is found for Re = 1000, and is of 2 % for ∆P and of 8 % for F sup. This error corresponds to
the quantity

|∆PNS − ∆PRNS/P|

∆PNS

, (43)

where NS indicates the prediction from Navier-Stokes simulations and RNS/P the prediction
from RNS/P simulations (the same computation is done for F sup). As a result, the simulations
for this geometry have permitted to validate the numerical method.
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For the geometry 2 and Re = 100, the pressure distribution p and the horizontal velocity u1 are
depicted in Fig. 6. For Re = 1, the prediction of ∆P and F sup corresponds to the prediction
from Navier-Stokes simulations, with errors of 6 % and 1.5 %, respectively. When the Reynolds
number Re is 100, and the convection such that recirculation effects are observed behind the
obstacle in Navier-Stokes simulations, the prediction of ∆P and F sup remains satisfying (errors
of 9 % and 2 % respectively), though the RNS/P equations are in principle not adapted for
the simulation of recirculation effects, because of the assumption ∂x2

p = 0. The reason is that
in this case, the global effect of recirculation is weak. Note however that the pressure distri-
bution at the level of the bump differs between RNS/P and Navier-Stokes. Though the drop
is approximatively of the same magnitude, it is anticipated in the RNS/P simulation, with an
abrupt pressure recovery that is not present in the Navier-Stokes simulation. Note also that the
effects of recirculation affect the values of the velocity and therefore the value of F τ

sup, which
is different between RNS/P and Navier-Stokes simulations (error of 37.5 %). For a Reynolds
number Re of 500, the recirculation is stronger. This does not prevent the RNS/P simulation
to converge but the results are quite different from those of the Navier-Stokes simulation: an
error of 24 % for ∆P and an error of 36 % for F sup.

For the geometry 3 and Re = 1, p and u1 are depicted Fig. 7. The adequation between RNS/P
and Navier-Stokes simulations is still satisfying for Re = 1, with an error of 13.5 % for ∆P
and an error of 8 % for F sup. This is slightly higher than in the precedent cases, but this fact
is somehow expected since for this kind of geometry the RNS/P equations are in their limit of
validity. Due to the recirculation effects, the error is more important when Re is increased to
50 or 100, and is up to 23 % for ∆P and 21 % for F sup (for Re = 100).

Computing times5 for each simulation are indicated in Table 1 for λ = 0. It appears from the
results that for Re ≫ 1, the RNS/P simulations are faster than the NS simulations, of approx-
imatively 30 %. This gain comes from the fact that less Newton iterations are required with
RNS/P to reach the same convergence criterion. In the case Re = O(1), the computing time
for RNS/P is comparable to the computing time for NS, except for the geometry 3 in which it
is higher for RNS/P. This might be due to the linear system which should be ill-conditioned
for small Reynolds. This case is however not physically relevant, as the RNS/P equations have
been designed for flows with high Reynolds number.

The influence of the least-squares term aλ(·, ·) has finally been assessed. Simulations have been
carried out with λ = 1 for the geometries 1 and 2. Simulations with the geometry 1 reveal the
first interest of this least-squares term: it decreases significantly the computing time. Indeed,
a speed-up of approximatively 2 is achieved in comparison to the reference simulations with
Navier-Stokes (see Table 2). This term has in particular two effects: it makes easier the resolu-
tion of the linear system at each iteration, and it decreases the number of Newton iterations at
each continuation step. Of course, for this geometry, this term does not improve the accuracy
since results were already very close to those obtained from Navier-Stokes when λ was fixed
to 0. Simulations for the geometry 2 also confirm these considerations on the computing time
(see Table 3). The role of simulations on this geometry is then to show the other interest of the

5 The computer on which simulations have been carried out is a Power PC G4 1.2 GHz, with RAM of 256 MO.
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term aλ(·, ·): it may improve the performance of prediction. For this geometry and Re ≤ 100,
the results are very close to the ones obtained with λ = 0, so that the difference with the
Navier-Stokes simulations is nearly the same. Concerning the prediction of the shear stress
component F τ

sup at Re = 100, the results are better with λ = 1, as the error is of 15 % instead
of the 37.5 % mentioned previously for λ = 0. For Re > 100, the results presented in Table 3
show clearly that the performance of prediction is improved with λ = 1. Concerning ∆P , the
error is of 7.5 % for λ = 1 instead of 14 % for λ = 0 when Re = 200 (respectively, 6 % and 24
% when Re = 500). For F sup, the error decreases from 5 % to 2 % when λ changes from 0 to 1,
when Re = 200 (respectively from 36 % to 15 % when Re = 500). Indeed, when the Reynolds
number is high and the convection effects become predominant in the fluid, the least-square
term allows an ad-hoc reproduction of the recirculation behind the obstacle, though under-
estimated if compared to those observed in the Navier-Stokes simulations (see Fig. 8). This
explains the better estimation of F τ

sup (see Table 3) and F sup in particular.

As the choice λ = 1 is of course not the only possible, a sensitivity study has been carried out,
which results are presented in Table 4. First, we noted that the value of this parameter has
not a significant impact on the computing time when it is chosen different from 0: for λ ≥ 1,
this time remained to be 1’21 (1’44 for λ = 0). Nevertheless, concerning the performance of
prediction, the value of λ = 2 is the optimal for F sup (0.6 % of error) and λ = 3 is the optimal
for ∆P (0.7 % of error), so a value of λ between 2 and 3 should be the best for carrying out
simulations. Though increasing λ reduces the error on F τ

sup, it increases the error on ∆P and
F sup if λ > 3, so values of λ greater than 3 might not be a good choice.

5 Concluding remarks

A finite element method to solve the Reduced Navier-Stokes/Prandtl (RNS/P) equations has
been described and tested. The discretization is based on an element originally defined in [23]
for the Stokes equations. With this element, called P2/P1/P0, the velocity is approximated with
continuous piecewise quadratic and linear functions, while the pressure is approximated with
a piecewise constant function. This element, as Taylor-Hood and the Mini element, verifies the
inf-sup condition for the RNS/P equations. However, the subproblem of computing the discrete
velocity uh might be ill-posed for the Taylor-Hood and the Mini element, which systematically
leaded to failures in the numerical experiments. In opposite, we show that with the proposed
P2/P1/P0 element, this subproblem admits a solution. Furthermore, it was shown that the
longitudinal component of uh is bounded by a constant independent of h, the parameter of
discretization.

Numerical experiments permitted to test the method for some particular geometries, and to
show that the prediction of the pressure drop and of the constraints on the surrounding walls
is comparable to the prediction from Navier-Stokes simulation. Moreover, the current method
avoids limitations of the precedent finite differences method used for instance in [15], which
lacks of adaptivity for some geometries and for coupling with other physical entities, such as a
moving wall. Also, a bidimensional problem has been chosen for the simplicity of the presen-
tation, but the extension to three-dimensional geometries is straightforward. Even in the case
of moderate recirculation effects (small obstacle in a duct for instance), the method still gives
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a correct approximation of the predicted variables, whereas in the finite difference context, the
computation had to be stopped, and only a prediction of the pressure and of the velocity on the
upstream part of the domain was provided [17]. In the case of strong recirculation, for instance
in a severe constriction, both finite differences and finite elements are unsatisfying. However,
in this case, the RNS/P equations are out of their domain of validity, and a Navier-Stokes
solver should be used instead for an accurate simulation.

Concerning the performance of the method, a gain has been observed systematically in com-
parison with Navier-Stokes simulation. The reason is that less Newton iterations are required
to reach convergence with the RNS/P equations. Moreover, the least-squares stabilization term
has a positive impact on the speed-up, by its effect on the resolution of the linear system at
each Newton iteration, and as it decreases even more the number of Newton iterations. In
addition, this gain should be increased significantly, more specifically in the three-dimensional
case, by improving the method for the resolution of the linear system which is built at each
iteration. For instance, it would be interesting to design preconditioners adapted to this sys-
tem. Another possibility would consist in implementing and studying the effect of stabilization
techniques much more sophisticated than the simple one that has been used (see e.g. [12] for
the Navier-Stokes case). These two points will be object of future research.

Another perspective concerns shallow water flows, for which the Navier-Stokes equations are
simplified in a very similar manner [1, 2]. Nevertheless, the term ∂2

x2
1

u1 is conserved in the

laplacian, though it is not justified asymptotically. Thus, it would be interesting to study the
applicability of the proposed method to shallow water equations. The last perspective is the
extension of this finite element method to a coupled fluid/structure interaction problem and
to three-dimensional geometries.
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geometry Re ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

1 215.4 2218.0 2216.8 96.6 0’36

(1) 100 2.16 20.80 20.79 96.6 0’45

500 0.46 3.51 3.51 97.6 2’07

1000 0.26 1.62 1.62 100.1 3’29

1 40.98 105.14 103.03 21.92 0’45

(2) 100 0.42 1.03 0.99 21.87 1’03

500 0.10 0.17 0.17 20.81 4’16

1 71.33 157.66 150.72 31.96 1’16

(3) 50 1.53 2.53 2.48 31.38 1’03

100 0.85 0.94 0.94 30.95 4’32

geometry Re ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

1 216.1 2174.8 2173.6 97.1 0’41

(1) 100 2.16 20.36 20.35 97.0 1’12

500 0.46 3.38 3.37 98.0 2’53

1000 0.25 1.51 1.50 100.3 5’10

1 43.52 106.66 105.66 18.55 0’40

(2) 100 0.46 1.01 1.00 15.91 1’23

500 0.13 0.13 0.12 9.41 6’15

1 82.47 171.20 165.16 26.58 0’38

(3) 50 1.85 2.92 2.90 24.35 1’30

100 1.10 1.19 1.19 21.16 6’20

Table 1. Results of the computations for the RNS/P equations (left) and the full Navier-Stokes equations (right). The
pressure difference and the force on the superior wall are indicated, as well as the computing time (in minutes/seconds)
of the simulations.

equations ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

Navier-Stokes 1.09 9.58 9.56 97.04 1’32

RNS/P (λ = 0) 1.09 9.81 9.79 96.61 1’10

RNS/P (λ = 1) 1.09 9.79 9.77 96.95 0’40

equations ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

Navier-Stokes 0.46 3.38 3.37 98.0 2’53

RNS/P (λ = 0) 0.46 3.51 3.51 97.6 2’07

RNS/P (λ = 1) 0.46 3.46 3.45 97.8 1’22

Table 2. Influence of the parameter λ for simulations with the geometry 1. The Reynolds number Re is 200 (left) and
500 (right).

equations ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

Navier-Stokes 0.25 0.46 0.45 13.79 2’44

RNS/P (λ = 0) 0.21 0.48 0.48 21.56 1’44

RNS/P (λ = 1) 0.23 0.45 0.45 16.61 1’23

equations ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

Navier-Stokes 0.13 0.13 0.12 9.41 6’15

RNS/P (λ = 0) 0.10 0.17 0.17 20.81 4’16

RNS/P (λ = 1) 0.12 0.15 0.15 13.09 3’16

Table 3. Influence of the parameter λ for simulations with the geometry 2. The Reynolds number Re is 200 (left) and
500 (right).

λ ∆P ||F sup|| ||F
p
sup|| ||F

τ
sup|| time

0 14.1 5.3 5.5 56.3 1’44

1 7.5 1.7 1.1 20.4 1’23

2 3.6 0.6 0.1 13.7 1’21

3 0.7 1.3 2.2 9.8 1’20

4 1.8 3.4 4.5 7.0 1’21

5 4.3 5.5 6.9 4.9 1’21

Table 4. Study of the parameter λ for simulations with the geometry 2. The Reynolds number Re is 200. The relative
error in % in comparison to Navier-Stokes simulations is given for each variable.
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Init:

• Read the simulation parameters and the mesh.
• Init the velocity and the pressure: (uh, ph).
• Init the Reynolds number Re.

Loop 1: Continuation strategy.

• Loop 2: Newton iteration.

• Solve the linearized problem:

Find (duh, dph) such that

8
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>

:

∀vh,
ca(uh, duh, vh) + ca(duh, uh, vh) +

a(duh, vh)− (dph,∇ · vh)Ω

=
(g, vh)Ω − ca(uh, uh, vh)
−a(uh, vh) + (ph,∇ · vh)Ω ,

∀qh, −(qh,∇ · duh)Ω = (qh,∇ · uh)Ω .

• Update the velocity and the pressure:

uh ← uh + duh

ph ← ph + dph

• End Loop 2.

• Increase the Reynolds number Re.

End Loop 1.

End.

Fig. 2. The complete algorithm of numerical solving of the RNS/P equations.

(a)

Fig. 3. The asymmetrical constricted pipe.
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(a)

(b)

(c)

Fig. 4. The finite element meshes for the three fluid flow problems.
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Fig. 5. Fluid flow in a constricted pipe. Geometry 1. Simulations with RNS/P equations and P2/P1/P0 elements.
Re = 1000. λ = 0. Are depicted: (a) the pressure distribution p (comparison with Navier-Stokes equations), (b) the
horizontal velocity u1.
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Fig. 6. Fluid flow in a constricted pipe. Geometry 2. Simulations with RNS/P equations and P2/P1/P0 elements.
Re = 100. λ = 0. Are depicted: (a) the pressure distribution p (comparison with Navier-Stokes equations). (b) the
horizontal velocity u1.
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Fig. 7. Fluid flow in a constricted pipe. Geometry 3. Simulations with RNS/P equations and P2/P1/P0 elements.
Re = 1. λ = 0. Are depicted: (a) the pressure distribution p (comparison with Navier-Stokes equations). (b) the
horizontal velocity u1.
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(a)

(b)

Fig. 8. Fluid flow in a constricted pipe. Geometry 2. Effect of the least-squares term aλ(·, ·). Re = 500. λ = 1. Is
depicted: the horizontal velocity u1. (a) RNS/P simulation. (b) Navier-Stokes simulation.
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