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Keywords: Nonlinear system, multiple linear modelsmain. The robust control using one controller has been pre-
fault detection and isolation, stability, adaptive filter. sented in (ANERJEEet al,, 1995), the multi-control tech-
nigue such as gain scheduling interpolation method in con-
Abstract trol domain (LEITH and LEITHEAD, 2000) and adaptive or
learning control based on neural network have been devel-
In this paper, the main goal is to design an approach tigied (MRENDRA et al, 1995). However, these methods
performs fault detection, isolation and estimation for Bave not been frequently used for FDI. Under this consid-
large class of nonlinear systems. Fault diagnosis is €$ation, the paper aims and contributes to the design of a
tablished by regarding system as a convex combinationrofiltiple fault detection, isolation adaptive filter in noml
linear time invariant (LTI) stochastic models and not asegar system represented as a convex set of LTI distribution
single global model. The nonlinear representation is bas@etrices. In our approach, the term “adaptive” should not
on a bank of decoupled Kalman filters. This paper considte associated by readers to an on-line parameter estimation
in generating a robust model selection of the “best” reps developed by (N\RENDRA et al,, 1995).
resentative linear model. Under fault isolation condigipnOur goal is to design a scheme which allows FDI and a
the main contribution is to design an adaptive filter whictpbust model selection in the nonlinear system represented
makes possible multiple faults detection which appear €is a convex combination of the multiple LTI model. To
multaneously or in a sequential way, isolation and estimachieve this purpose, an adaptive filter based on an inter-
tion over the whole operating range of nonlinear systemolated multiple model is developed. The proposed filter
The stability conditions of the adaptive filter are develhpeWwill perform an efficient FDI according to an available con-
These conditions result in convex linear matrix inequalkex set representation in faulty case based on decoupled
ties (LMIs) that can be solved efficiently with optimizatiorKalman filter developed by (KLLER, 1999). Moreover,
techniques. Performances of the method are tested ortla@magnitude, the time of occurrence and the localization
academic exampleéCopyright@2003 EJC of the faults are considered as unknown.
The paper is organised as follows: in the second section,
the general problem of the robust selection in nonlinear
systems described by MM is developed. A solution based

Fault detection and isolation (FDI) has been develop& the design of a bank of decoupled Kalman filters is then
traditionally with model-based approaches using linear 8eveloped and justified. This section gives us a formula-
linearized models. Several papers have been publisht@n of the nonlinear system representation in faulty case
these works lead to robust methods of parametric uncéﬂsed in a convex set of the multlple LTI models. In section
tainties and system modelling errors when noise is or i the design of the adaptive filter is developed. The ques-
not present (BEN and RTTON, 1999). These diagnosistion of stability was addressed in the terms of Lyapunov
methods are based on residual generation. One solutfiadratic stability by using a LMI technique in Section IV.
is to use nonlinear methods. Fault detection and isolatifhnext Section, an academic example is considered to il-
(FD|) prob|ems for nonlinear systems provide a Cha“en@JStrate the theoretical results. Fina”y, the last seci®

ing current research topic KANK et al, 2000). (GiEN devoted to the conclusions and future search.

and RTTON, 1999) have proposed FDI scheme using lir2  Fault Diagnosis in nonlinear systems

ear observers and Takagi-Sugeno configuration for nonlin-

ear system representation in the deterministic case. TRi¢ Problem statement

techmqge is based on the decomeS|t|on of th? or'g”’_’ﬁ!/namic systems such as nonlinear, linear time-invariant,
system into a set of linear models. This structure is consigh. .. time-variant, linear piecewise and hybrid can be rep

ered as multiple model (MM) approach. In nonlinear SY¥esented by a decomposition of the full operating range
tems, the MM structure has been proposed for control do-

1 Introduction



into a number of possibly overlapping operating regimditer based on the" linear model. K € R™™ is the
(LEITH and LEITHEAD, 2000). For each regime, a simplKalman filter gain matrix. In this paper, the fault distribu-
local linear system is defined. Let us assume the followirign matrix F; is also is represented @ with the same
general faulty stochastic system as considered ByR@GA, rank.
1996) and (MURRAY-SMITH and DHANSEN, 1997) In the MM framework, the construction of a bank of
i Kalman filters defined fronT, Vi = [1,2,..., M] is con-
{ Xir= A Xy 4 BUs+ Ax, + Fidy+wy, (1) sidered in order to establish fault detection, isolatiod an
V= CXp+Ay, 413 the robust model selection on all the operating range of the
where X € R" represents the state vectdf, ¢ R is system. Based in the needs to develop a robust model se-
the input vectory € R is the measurement vector andectorin fa}ulty or frge case, a b‘ank qf Kalman fjlters leads
d € R is the fault vector. Each linear model is defineyfS t0 Obtain the estimated errej,( (¢}, = Xy —Xj) and
around;*" operating point, noted; Vj = [1,2, - -, M], the output residual vectorg (r;, =Y, —Y})) when the
where M is the total number of operating points. EacRoth fault and operating point change occuis i and
operating point is defined by a pair of input/output sigd 7 0). This difference between the representation system
nals (Yp;,Up;). The termsw’ and v/ are two inde- 10 be considered and the filters is represented by equation
pendent zero mean white noises with variance-covariari@ and (6) as:
matrices defined respectively t@f and R/, Aj, Bj, eh o1 =(Ai—K}C)eh+Fydy, (5)
and C' are constant matrices with appropriate dimen- PG ; ; P\
sions. Around the/™ operating point it is assumed that _Kkyk+wk+(AAX.j _KkAAYj) -k
Vj,rank(C') = m. Ax; and Ay, are contant vectors de-gnq, _ _ .y
pending on the*” linear model.F; is the fault distribution r, = Cigp + v+ AAY &y (6)
matrix representing actuator, sensor or component fayf{§a e 531 . € RrrHDX1 corresponds to the uncertain-

with v, rank(F};) = q. Without loss of generality accord-ies magnitude between nonlinear system represented by
ing to (PARK et al, 1994), in the presence of SeNsSOr, aGpe jth |inear system and thd" linear model used for the

tuator'or component faults, the.sy'stem may be represengegman filters computation (i.e., operating point switches
by a linear system as (1). This linear system (1) can %A?'X € RPX (D) and AAL € RMX 4+ are the

specified by the set of system matrices as: distribution matrices of uncertainties associated with th

A; B Ax, F & . state system equation and the output equation, respeactivel

S = [C’ Ay i } Vi=1[1,2,..,M]  Equations (5) and (6) show that residual is sensitive to
! (2) modelling errors (i.e, a change in the operating point) and

Let S, be a matrix sequence varying within a convex sedt the same time to faults. The use of Kalman filters leads

defined as: to the following residual properties{ € [1,--- , M]):
T]Z:CN%, i]:d:O,i:j
M j j M j v , ifd=0,1#j 7
Sk::{zj—l iS¢k 20,355 ‘Pi:l} 3) :2:N :fd;éo, ;Lﬁ#j ()

Inthe MM framework,S;, characterizes at each sample tht faulty case ¢ # 0) and whatever the operating point,
nonlinear system. Consequently, the dynamic behavior@fect application of nonlinear system using Kalman fil-
nonlinear system can be defined by a convex set of a mtits based on a MM framework can be considered, but at

tiple LTI models, notedl (Y := {[S1, S2,...Sm]}). the cost of certain degradations in performance. Indeed,
The state space representation (3) under a convex set @afulty cases, FDI cannot be done correctly since the
be considered as: residual vector is corrupted by two pieces of information at

—a conventional modelling approach for non linear smoothe same time: operating point exchanges and fault occur-
plant wherep], is an appropriate weighting functions. Théences. The propabilistic Bayes method cannot define the
functions¢?, which can be a vector or a scalar, embodest representative model gAM-MEDINA et al, 2003).
ies the nonlinearity of the plant as discussed in fault frddrstly, in this paper, we are interested in knowing which
case (IEITH and LEITHEAD, 2000) or (VURRAY-SmiTH lineéar model is more representative at each time both in
and bHANSEN, 1997). fault free and faulty cases. These considerations yield a
In order to achieve multi-control and FDI, a bank of€W residual generator definition allowing the decoupling
Kalman filter is designed. Under assumption that the noof fault effects and modelling errors. This new residual
linear system evolves around thi# operating point, the generator gives a first signal insensitive to faults, but sen
Kalman filter is described by: sitive to modelling errors and a second signal sensitive to
. . , . faults. The new residual generator is expressed as:
{ Xi = AX;+BUs+ Ax, +Ki (Y, —Y}) @ ]
Yi= CXj+ Ay, o= H r (8)

—
—

vyheref(,i € R" denotes the estimated state vector anghereX and= are terms introduced in order to decouple
Y;: € R™ is the output estimation obtained from the lineathe residuals with appropriate dimensions ahs the new



; ore(n)
) = —k Tk 15
#0r) S ko) (19)

residual vector. One solution is proposed in the following
paragraph.

2.2 Robust model selection in free and faulty case. The probability algorithm allows to obtain th# linear
model describing the system behavior in both fault free and

Under the hypotheses that a fault occurs at tipék > faulty cases. The mode probabilities allows us to deter-

k4), and that operating point switches at time(k > k.), mine the operating point where nonlinear system is evolv-

the residual vector of th&" filter is expressed as: ing. These probabilities are used to isolate the operating
point and consequently define a robust model selector.

i =i Qg

Tk = Th AN, The robust model selector is used to represent the plant
+ Prkgldry deger -+ di—1] (9) behavior as a convex set of multiple linear models. This
+ Brn, [S;k 5;'% IS g;‘_ 1) representation is described in equation (16):

) SF = M )8t p(vi) >0, M iy=1 16
Wherepkﬁkd,ﬁm,Ff-f“;’k‘i),L;C are matrices with appro- b {ZL—“”(W P(15) 2 0,352 2 () } (16)

priate dimensions. Equatidi) allows us to confirm that . '
residual is affected by both fault effects and modelling ey\_/hereS*(k:) represents the global model afigs defined
rors. We wish to generate residuals insensitive to fault &S

fects but sensitive only to modelling errors, that is: S, = [éf ABz Ax, F } Vi=[1,2, ..., M]
, Yi
(Ai - K,gc) F, = 0 (10) (17)

By taking in to account the nonlinear system convex set
Supposing that condition (10) is fulfiled and the numnotation in (16), the nonlinear state space representggtion
ber of fault is strictly lower than the number of outputshen defined as:
(i.e.,Vi,rank(CF;) = ¢ < m), a solution was proposed
by (KELLER, 1999) which defined a Kalman filter gain as: Xipy1= AXp+BiUc+AX +Fde

Y. = CX;C-i-A*Y,k (18)
(= 7€
Ky = wiBi + K2 11) with M ’ M .
Ar = > o)A, B = > »(i)Bi
with == (CFZ)+, w; = Azey Y= OZZ(Im —CFZEZ) and i=1 i=1

a; € R(mM=9*m is an arbitrary constant matrix defined so Az,
that the matrix®; is of full row rank. According to (11) =]
and the previous matrices properties, the residual vegtor o= S wthR
can be obtained as suggested in (8): iz

i)

M ) M )
Yoe(AX, AL, =D e(i)AY;  (19)
i=1 =1

Sirt 7 y The equations (18) and (19) represent the'original .nonlin-
:[Eri }:[QZ} =T (12) ear system. In this representation, the noisy function has
k k already been considered in the convex set representation.
wherey;, € %™~ is the residual vector decoupled to faulf NS Convex set representation is used for the design of an
andQ}; € R is the residual vector sensitive to fault. Fol_adaptlve filter which is developed for the fault detection,

lowing these assumptions, when nonlinear system operd?ecgat'on and estimation (see Fig.1) in the following sec-
around thej™ operating point, the new residug insen-

sitive to fault has the following properties: were [ Ty oo S
i N 'f R . E 1 DETEFR?IIIITII\TION
Ve N ITe=) ) .
Vd{ v, * Nifi#j (13) L“ii‘i‘.ﬂif" -
FILTER 1 1 — v v
. . . . . DECOUPLED 5 i o s N A

where ©;, defines the covariance matrix of the residuals | — e L

. —_ = . = — . . . . a2z ROBUST ADAPTIVE
7%, equal to(CPiCT + V;). Considering that residuaf. : : S0 T s
around;*" operating point follows a Gaussian distribution, : il 1 grpe=evn _ J‘vk
. . . DECOUPLED Ik
in the same way as (Banerjee et al., 1995) the residuals vec- ey v con
tor can then be used to compute the probability distribution e |ESTMATION

as: UNDER A CONVEX

exp{—0.57;.(0}) " ()"}
[(2m)det©})]'/

The mode probability decoupled from faults is expressed Figure 1: FDI and nonlinear representation scheme
as:

(14) OPERATING POINT DETERMINATION AND DIAGNOSIS
STATE SPACE REPRESENTATION

ol



3 Adaptive filter

3.1 A new convex representation of the nonlinear sys-

tem

To design the adaptive filter, an unique formulation of

with
k—1
e = ] Z- (24)
T:k’d
Ly = (Af - KiC) (25)

the convex faulty representation is proposed. In the state

space representation (18), a matfi§ is calculated as:

Fr = M o(yi)F; where matrixF; € R™* is fault

As developed by (KLLER, 1999), we proposed to design
the gainK}, such that((A; — KkC)%) is equal to zero.

distribution matrix of each model Faults contribution on Under the genera| classical condition, that the number of

the 4
(X1 e (Vi) Fy) .

system is described into state space representationfasits must not be greater than the number of measure-

ments {.e. rank(C<S) < m), a fault diagnosis adaptive

According to somé; matrix conditions, the convex com-filter is designed with the following gain definition:

bination can be transformed into an unique form:

Definition 1 Matrix F/* (respectivelys”) defines theé:!”
column of matrixt; (respectivelys).

Theorem 1 Vh € [1..q], Vi € [1..M], with Rank[F;] = ¢
if Rank;[F{l..Fih..F]’&[] =1, then
(2?11 so(wi)ﬂ)dk =Sf

whered € R? represents “true” fault vector angf € R¢?
is an image of fault vector, whef@ € R"*? is a constant

K, = wi Il + K2 (26)

with IT = (C9) 7T, wy, = A;S, andX = a(I,, — CSII)
whereq is an arbitrary matrix determined so that mafrix
is of full row rank.

According to (26), the adaptive filter is defined as:

Xivr = AXi+ BiUs + A%y,
+ (wkH + Kkz)(Yk - Yk) (27)
Yo = OXp+AY,

fault distribution matrix which columns vectors get direcwhere X, andY; are respectively the estimated state and

tion of columns vectors of matricés.

Proof (THEILLIOL etal., 2003)

3.2 Adaptive filter design

the estimated output.
The gain decomposition, defined in (26), involves the fol-
lowing matrices properties

JION; I and XC¥ = 0 (28)
and makes possible the generation of modified residual

In order to detect and isolate faults, a classical disctetfil vector:

with a gain K, could be designed according to matrices

Ay andC defined in (18) and (19):
Xt AL Xy + BiU + A%+ Ko (Vi — Vi)
Yy

CXi+ A}, 20

whereX andY represent the estimated state and the e

mated output. R
According to (20) estimation errey, (e, = X — X;) and
output residuaty, (r, = Y, — Yi) are expressed as:

€k+1
Tk

Under the assumption that a fault occurs at tikge(k >
kq), residual vector is defined as:

(A; — KkC)ek + %fk

Cen (21)

. fkfl}

wherer, represents the residual in fault free case and

Tk = Tk + Phoka fra frat1 (22)

[ratle
Iyt

Prky =C (23)

R

by
II

% | _ _ X7
IR E L P
It must be noticed thaf; € R™~9 is a residual vector in-
sensitive to faults angl; ¢ R? is a residual vector sensitive
to faults and defines also an fault estimation vector.

"he gaink, in (26), is the unique degree of freedom in
e adaptive filter synthesis. In the multiple model frame-
work, it is designed such as an interpolation of gainsee
(STIwELL and RUGH, 1999) or (LEITH and LEITHEAD,
2000)). Then, in the followingk, is notedK;. For the
determination ofK;, eachkK; is computed off-line by a
classical eigenstructure assignment(df — K;C) with

C = CSandA; = A;(I — STIC). We are now expressed
necessary and sufficient conditions for adaptive filter sta-
bility.

} (29)

4 Stability on a convex hull

Using Lyapunov stability definition, the gais;, establish-
ing off-line by eigenstructure assignementin order that ma
trix (A; — K;C) is Hurtwitz, must verified and solved the
following inequality :



A Schur complement operation transforms the inequal-

ity (30) into an LMI and as proposed for LPV system in Table 1: Definition of the operating points.

fault free case by (BAFouz and BERNUSSOY 2001) or Oop;a]tre(llt;h)g Uj :0%3 Uj :3?6 Uj :6:-))9
(OLIVEIRA etal, 1999), this inequality can be extended o bol J € [0:3] € [3:6] € [6:9]
convex set§’ (idem for K7) and a new LMI is generated: Yp. 3.2-5.0 | 5.82-8.54| 9.88-15.62
7 2.58 4.88 8.34
M Up, 2 4 7
P > o) (A - KiC)'P 0.15 0.01 0.20
y P 20 | Eigenvalues| |07 0.02 0.50
PR _ of A 0.60 0.04 0.80
P> ()4 — KiC) p j 0.22 0.01 0.30
=1
(31)
0= {A A =S DA, e =1 ; 414 1
(32) 4 OGW(Wé 99(7/?) 99(,,/}36)
Eq.(31) is equivalent to: i o
P (A - K:O)'P B h m e
(P(A; _RKiC) P >0 (39

(a) System inpuU and fault occurrences (b) Probabilitiese (’yi ).
d.

Then, (33) is equivalent to Lyapunov quadratic stability in. _ ) q del sel lution i
discrete case of matridel? — K +C): Figure 2: System input and model selector evolution in

faulty case.
(A; — K;C)TP(A; — K;C)—P <0
(34) ) .
P>0 5.2 Simulation results

Thus, find an unique solutioR for all [i = 1...M] assures The simulation example considered is developed in a mul-
the stability of the filter (27) and the convergence of errdiple faults casgd € R*) with a system inpuUU chosen

estimation defined as follows: as successive steps with smooth transitions (see Fig. 2a).
In order to evaluate the method, we consider two faults :
érr1 = (A —KjC)ey (35) @ first at timek; = 25 seconds with a constant magnitude

equal to 2, and a second appears at thpe- 150 seconds

The stability of the adaptive filter has been analyzed a¥dth @ constant magnitude equal to 5 as shown on Fig. 2a.

correspond to find an unique matrix to solve a set @f pank of three decoupled Kalman filters in multiple mod-
inequality. To show the performances of this method afls framework is proposed. It was developed to show the

academic example is illustrated in the next section. selection of the true model and nonlinear representation,

5 Example when residual vector is corrupted by two pieces of infor-
mation: operating point evolution and fault occurrence. In

5.1 System representation Fig. 2b, we can observe that in the faulty case, how the

. . _ probabilities evolution allow the robust model selection.
The proposed method is applied to an open loop discrgtge results obtained show a robust model selector which

nonlinear system. This stochastic disc;ret systtlem, SIM@insensitive to faults. The same figure shows the tran-
(single-input/multiple-output) withk’ € %, U € 3t', and _ sijtion from model "1” to model "2” and after to model

Y € R Thej" linear system represents the system beg» yithout the probabilities being affected by fault oceur
havior around thg™ operating point depending directly onrences. The model selection allows to represent the non-
the magnitudes of the inputs defined in table 1. Oth}ar Mhear system via a convex set of the multiple LTI models.
trices are the same for each modey;, B; = [1 000",  Thjs representation is used to realize the fault detection,

0100 isolation and estimation via an adaptive filter. In FDI con-
C=10 0 1 0f,Q; = diag([0.900.50.3])" and text and according to adaptive filter design, different dond

0001 tions are verifiedrank(C3) < 3, Theorem 1 is available,
Rj = I3xs. Vi, (4;,C) is observable and three gaifis are computed.
The faulty distribution matrices are different:

0o 0 0 0 U As illustrated in Fig. 3a and after a pseudo-inverse ma-
=% 0l =%t Olandm = |32 0 trix computation (HEILLIOL et al,, 2003) that permits the

0 14 0 3.7 : . oo
0 0 0 0 0 0 obtention of accurate fault magnitude estimation whére



model selection in multiple linear models framework.
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