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Abstract

In this paper, the main goal is to design an approach that
performs fault detection, isolation and estimation for a
large class of nonlinear systems. Fault diagnosis is es-
tablished by regarding system as a convex combination of
linear time invariant (LTI) stochastic models and not as a
single global model. The nonlinear representation is based
on a bank of decoupled Kalman filters. This paper consists
in generating a robust model selection of the “best” rep-
resentative linear model. Under fault isolation conditions,
the main contribution is to design an adaptive filter which
makes possible multiple faults detection which appear si-
multaneously or in a sequential way, isolation and estima-
tion over the whole operating range of nonlinear system.
The stability conditions of the adaptive filter are developed.
These conditions result in convex linear matrix inequali-
ties (LMIs) that can be solved efficiently with optimization
techniques. Performances of the method are tested on an
academic example.Copyright@2003 EJC.

1 Introduction

Fault detection and isolation (FDI) has been developed
traditionally with model-based approaches using linear or
linearized models. Several papers have been published:
these works lead to robust methods of parametric uncer-
tainties and system modelling errors when noise is or is
not present (CHEN and PATTON, 1999). These diagnosis
methods are based on residual generation. One solution
is to use nonlinear methods. Fault detection and isolation
(FDI) problems for nonlinear systems provide a challeng-
ing current research topic (FRANK et al., 2000). (CHEN

and PATTON, 1999) have proposed FDI scheme using lin-
ear observers and Takagi-Sugeno configuration for nonlin-
ear system representation in the deterministic case. This
technique is based on the decomposition of the original
system into a set of linear models. This structure is consid-
ered as multiple model (MM) approach. In nonlinear sys-
tems, the MM structure has been proposed for control do-

main. The robust control using one controller has been pre-
sented in (BANERJEEet al., 1995), the multi-control tech-
nique such as gain scheduling interpolation method in con-
trol domain (LEITH and LEITHEAD, 2000) and adaptive or
learning control based on neural network have been devel-
oped (NARENDRA et al., 1995). However, these methods
have not been frequently used for FDI. Under this consid-
eration, the paper aims and contributes to the design of a
multiple fault detection, isolation adaptive filter in nonlin-
ear system represented as a convex set of LTI distribution
matrices. In our approach, the term “adaptive” should not
be associated by readers to an on-line parameter estimation
as developed by (NARENDRA et al., 1995).
Our goal is to design a scheme which allows FDI and a
robust model selection in the nonlinear system represented
as a convex combination of the multiple LTI model. To
achieve this purpose, an adaptive filter based on an inter-
polated multiple model is developed. The proposed filter
will perform an efficient FDI according to an available con-
vex set representation in faulty case based on decoupled
Kalman filter developed by (KELLER, 1999). Moreover,
the magnitude, the time of occurrence and the localization
of the faults are considered as unknown.
The paper is organised as follows: in the second section,
the general problem of the robust selection in nonlinear
systems described by MM is developed. A solution based
on the design of a bank of decoupled Kalman filters is then
developed and justified. This section gives us a formula-
tion of the nonlinear system representation in faulty case
based in a convex set of the multiple LTI models. In section
III, the design of the adaptive filter is developed. The ques-
tion of stability was addressed in the terms of Lyapunov
quadratic stability by using a LMI technique in Section IV.
In next Section, an academic example is considered to il-
lustrate the theoretical results. Finally, the last section is
devoted to the conclusions and future search.

2 Fault Diagnosis in nonlinear systems

2.1 Problem statement

Dynamic systems such as nonlinear, linear time-invariant,
linear time-variant, linear piecewise and hybrid can be rep-
resented by a decomposition of the full operating range



into a number of possibly overlapping operating regimes
(LEITH and LEITHEAD, 2000). For each regime, a simple
local linear system is defined. Let us assume the following
general faulty stochastic system as considered by (VARGA,
1996) and (MURRAY-SMITH and JOHANSEN, 1997)

{
Xk+1 = AjXk+BjUk+∆Xj

+Fjdk+ω
j
k

Yk = CXk+∆Yj
+ν

j
k

(1)

whereX ∈ <n represents the state vector,U ∈ <p is
the input vector,Y ∈ <m is the measurement vector and
d ∈ <q is the fault vector. Each linear model is defined
aroundjth operating point, notedPj ∀j = [1, 2, · · ·,M ],
whereM is the total number of operating points. Each
operating point is defined by a pair of input/output sig-
nals (YPj , UPj). The termsωj and νj are two inde-
pendent zero mean white noises with variance-covariance
matrices defined respectively byQj and Rj . Aj , Bj ,
and C are constant matrices with appropriate dimen-
sions. Around thejth operating point it is assumed that
∀j, rank(C) = m. ∆Xj

and∆Yj
are contant vectors de-

pending on thejth linear model.Fj is the fault distribution
matrix representing actuator, sensor or component faults
with ∀j, rank(Fj) = q. Without loss of generality accord-
ing to (PARK et al., 1994), in the presence of sensor, ac-
tuator or component faults, the system may be represented
by a linear system as (1). This linear system (1) can be
specified by the set of system matrices as:

Sj =

[
Aj Bj ∆Xj

Fj ωj

C ∆Yj
νj

]
,∀j = [1, 2, ...,M ]

(2)
Let Sk be a matrix sequence varying within a convex set,
defined as:

Sk :=

{
∑M

j=1 ϕ
j
kSj : ϕ

j
k ≥ 0,

∑M
j=1 ϕ

j
k =1

}
(3)

In the MM framework,Sk characterizes at each sample the
nonlinear system. Consequently, the dynamic behavior of
nonlinear system can be defined by a convex set of a mul-
tiple LTI models, notedΥ

(
Υ :=

{
[S1, S2, ...SM ]

})
.

The state space representation (3) under a convex set can
be considered as:
– a conventional modelling approach for non linear smooth
plant whereϕj

k is an appropriate weighting functions. The
functionsϕ

j
k, which can be a vector or a scalar, embod-

ies the nonlinearity of the plant as discussed in fault free
case (LEITH and LEITHEAD, 2000) or (MURRAY-SMITH

and JOHANSEN, 1997).
In order to achieve multi-control and FDI, a bank of

Kalman filter is designed. Under assumption that the non-
linear system evolves around thejth operating point, the
Kalman filter is described by:

{
X̂i

k+1 = AiX̂
i
k+BiUk + ∆Xi

+Ki
k(Yk−Ŷ i

k )

Ŷ i
k = CX̂i

k + ∆Yi

(4)

whereX̂i
k ∈ <n denotes the estimated state vector and

Ŷ i
k ∈ <m is the output estimation obtained from the linear

filter based on theith linear model. Ki
k ∈ <n×m is the

Kalman filter gain matrix. In this paper, the fault distribu-
tion matrix Fj is also is represented asFi with the same
rank.
In the MM framework, the construction of a bank of
Kalman filters defined fromΥ, ∀i = [1, 2, ...,M ] is con-
sidered in order to establish fault detection, isolation and
the robust model selection on all the operating range of the
system. Based in the needs to develop a robust model se-
lector in faulty or free case, a bank of Kalman filters leads
us to obtain the estimated error (εi

k (εi
k = Xk − X̂i

k) and
the output residual vectorsri

k (ri
k = Yk − Ŷ i

k )) when the
both fault and operating point change occurs (j 6= i and
d 6= 0). This difference between the representation system
to be considered and the filters is represented by equation
(5) and (6) as:

εi
k+1 =(Ai−Ki

kC)εi
k+Fjdk (5)

−Ki
kν

j
k+ω

j
k+(∆∆i

Xj
−Ki

k∆∆i
Yj

)ξi
j,k

and,
ri
k = Ciε

i
k + ν

j
k + ∆∆i

Yj
ξi
j,k (6)

whereξi
j,k ∈ <(n+p+1)×1 corresponds to the uncertain-

ties magnitude between nonlinear system represented by
the jth linear system and theith linear model used for the
Kalman filters computation (i.e., operating point switches).
∆∆i

Xj
∈ <n×(n+p+1) and∆∆i

Yj
∈ <m×(n+p+1) are the

distribution matrices of uncertainties associated with the
state system equation and the output equation, respectively.
Equations (5) and (6) show that residual is sensitive to
modelling errors (i.e, a change in the operating point) and
at the same time to faults. The use of Kalman filters leads
to the following residual properties (∀i ∈ [1, · · · ,M ]):

ri
k
∼ N , if d = 0, i = j

ri
k

� N , if d = 0, i 6= j

ri
k

� N , if d 6= 0, ∀i

(7)

In faulty case (d 6= 0) and whatever the operating point,
direct application of nonlinear system using Kalman fil-
ters based on a MM framework can be considered, but at
the cost of certain degradations in performance. Indeed,
in faulty cases, FDI cannot be done correctly since the
residual vector is corrupted by two pieces of information at
the same time: operating point exchanges and fault occur-
rences. The probabilistic Bayes method cannot define the
best representative model (ADAM -MEDINA et al., 2003).
Firstly, in this paper, we are interested in knowing which
linear model is more representative at each time both in
fault free and faulty cases. These considerations yield a
new residual generator definition allowing the decoupling
of fault effects and modelling errors. This new residual
generator gives a first signal insensitive to faults, but sen-
sitive to modelling errors and a second signal sensitive to
faults. The new residual generator is expressed as:

r̃i
k =

[
Σ
Ξ

]
ri
k (8)

whereΣ andΞ are terms introduced in order to decouple
the residuals with appropriate dimensions andr̃i

k is the new



residual vector. One solution is proposed in the following
paragraph.

2.2 Robust model selection in free and faulty case.

Under the hypotheses that a fault occurs at timekd (k >

kd), and that operating point switches at timeke (k > ke),
the residual vector of theith filter is expressed as:

ri
k = r̄i

k + ∆∆iξi
j,k

+ ρk,kd
[dkd

dkd+1 · · · dk−1] (9)

+ βk,ke
[ξi

j,ke
ξi
j,ke+1 · · · ξi

j,k−1]

whereρk,kd
, βk,ke

,Γ
(kd,ke)
i,k , Li

k are matrices with appro-
priate dimensions. Equation(9) allows us to confirm that
residual is affected by both fault effects and modelling er-
rors. We wish to generate residuals insensitive to fault ef-
fects but sensitive only to modelling errors, that is:

(
Ai − Ki

kC
)
Fi = 0 (10)

Supposing that condition (10) is fulfilled and the num-
ber of fault is strictly lower than the number of outputs
(i.e.,∀i, rank(CFi) = q < m), a solution was proposed
by (KELLER, 1999) which defined a Kalman filter gain as:

Ki
k = ωiΞi + K̄i

kΣi (11)

with Ξi = (CFi)
+, ωi = AiFi, Σi = αi(Im−CFiΞi) and

αi ∈ <(m−q)×m is an arbitrary constant matrix defined so
that the matrixΣi is of full row rank. According to (11)
and the previous matrices properties, the residual vectorr̃i

k

can be obtained as suggested in (8):

[
Σi(Yk−Ŷ i

k )

Ξi(Y (k)−Ŷ i
k )

]
=

[
Σir

i
k

Ξri
k

]
=

[
γi

k

Ωi
k

]
= r̃i

k (12)

whereγi
k ∈ <m−q is the residual vector decoupled to fault

andΩi
k ∈ <q is the residual vector sensitive to fault. Fol-

lowing these assumptions, when nonlinear system operates
around thejth operating point, the new residualγi

k insen-
sitive to fault has the following properties:

∀d

{
γi

k ∼ N if i = j

γi
k � N if i 6= j

(13)

whereΘi
k defines the covariance matrix of the residuals

γi
k, equal to(C̄P̄ i

kC̄T + V̄i). Considering that residualγi
k

aroundjth operating point follows a Gaussian distribution,
in the same way as (Banerjee et al., 1995) the residuals vec-
tor can then be used to compute the probability distribution
as:

℘i
k =

exp{−0.5γi
k(Θi

k)−1(γi
k)T }

[(2π)det(Θi
k)]1/2

(14)

The mode probability decoupled from faults is expressed
as:

ϕ(γi
k+1) =

℘i
kϕ(γi

k)
∑M

l=1 ℘l
kϕ(γl

k)
(15)

The probability algorithm allows to obtain theith linear
model describing the system behavior in both fault free and
faulty cases. The mode probabilities allows us to deter-
mine the operating point where nonlinear system is evolv-
ing. These probabilities are used to isolate the operating
point and consequently define a robust model selector.

The robust model selector is used to represent the plant
behavior as a convex set of multiple linear models. This
representation is described in equation (16):

S?
k

:=

{
∑M

i=1
ϕ(γi

k
)Si : ϕ(γi

k
) ≥ 0,

∑M
i=1

ϕ(γi
k
)=1

}
(16)

whereS?(k) represents the global model andSi is defined
as:

Si =

[
Ai Bi ∆Xi

Fi

C ∆Yi

]
,∀i = [1, 2, ...,M ]

(17)

By taking in to account the nonlinear system convex set
notation in (16), the nonlinear state space representationis
then defined as:

{
Xk+1 = A?

kXk+B?
kUk+∆?

X,k+F ?
k dk

Yk = CXk+∆?
Y,k

(18)

with
A?

k
=

M∑

i=1

ϕ(γi
k)Ai, B?

k
=

M∑

i=1

ϕ(γi
k)Bi

∆?
X,k

=

M∑

i=1

ϕ(γi
k)∆Xi, ∆?

Y,k
=

M∑

i=1

ϕ(γi
k)∆Yi

F ?
k

=

M∑

i=1

ϕ(γi
k)Fi

(19)

The equations (18) and (19) represent the original nonlin-
ear system. In this representation, the noisy function has
already been considered in the convex set representation.
This convex set representation is used for the design of an
adaptive filter which is developed for the fault detection,
isolation and estimation (see Fig.1) in the following sec-
tion.
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Figure 1: FDI and nonlinear representation scheme



3 Adaptive filter

3.1 A new convex representation of the nonlinear sys-
tem

To design the adaptive filter, an unique formulation of
the convex faulty representation is proposed. In the state
space representation (18), a matrixF ?

k is calculated as:
F ?

k =
∑M

i=1 ϕ(γi
k)Fi where matrixFi ∈ R

n×q is fault
distribution matrix of each modeli. Faults contribution on
the system is described into state space representation as:( ∑M

i=1 ϕ(γi
k)Fi

)
dk.

According to someFi matrix conditions, the convex com-
bination can be transformed into an unique form:

Definition 1 Matrix Fh
i (respectively=h) defines thehth

column of matrixFi (respectively=).

Theorem 1 ∀h ∈ [1..q], ∀i ∈ [1..M ], with Rank[Fi] = q

if Rank[Fh
1 ..Fh

i ..Fh
M ] = 1, then(∑M

i=1 ϕ(γi
k)Fi

)
dk = =fk

whered ∈ R
q represents “true” fault vector andf ∈ R

q

is an image of fault vector, where= ∈ R
n×q is a constant

fault distribution matrix which columns vectors get direc-
tion of columns vectors of matricesFi.

Proof (THEILLIOL et al., 2003)

3.2 Adaptive filter design

In order to detect and isolate faults, a classical discret filter
with a gainKk could be designed according to matrices
A?

k andC defined in (18) and (19):

{
X̂k+1 = A?

kX̂k + B?
kUk + ∆?

X,k + Kk(Yk − Ŷk)

Ŷk = CX̂k + ∆?
Y,k

(20)

whereX̂ andŶ represent the estimated state and the esti-
mated output.
According to (20) estimation errorek (ek = Xk−X̂k) and
output residualrk (rk = Yk − Ŷk) are expressed as:

{
ek+1 = (A?

k − KkC)ek + =fk

rk = C ek
(21)

Under the assumption that a fault occurs at timekd (k >

kd), residual vector is defined as:

rk = r̄k + ρk,kd
[fkd

fkd+1 · · · fk−1] (22)

wherer̄k represents the residual in fault free case and

ρk,kd
= C




Γkd+1
k =

Γkd+2
k =
· · ·
=


 (23)

with

Γkd

k =

k−1∏

τ=kd

Lτ (24)

Lk = (A?
k − KkC) (25)

As developed by (KELLER, 1999), we proposed to design

the gainKk such that
(
(A?

k − KkC)=
)

is equal to zero.

Under the general classical condition, that the number of
faults must not be greater than the number of measure-
ments (i.e. rank(C=) < m), a fault diagnosis adaptive
filter is designed with the following gain definition:

Kk = ωkΠ + K̄kΣ (26)

with Π = (C=)+, ωk = A?
k=, andΣ = α(Im − C=Π)

whereα is an arbitrary matrix determined so that matrixΣ
is of full row rank.
According to (26), the adaptive filter is defined as:





X̃k+1 = A?
kX̃k + B?

kUk + ∆?
X,k

+ (ωkΠ + K̄kΣ)(Yk − Ỹk)

Ỹk = CX̃k + ∆?
Y,k

(27)

whereX̃k andỸk are respectively the estimated state and
the estimated output.
The gain decomposition, defined in (26), involves the fol-
lowing matrices properties

ΠC= = I and ΣC= = 0 (28)

and makes possible the generation of modified residual
vector:

[
γ?

k

q?
k

]
=

[
Σ
Π

]
rk =

[
Σr̄k

Πr̄k + fk−1

]
(29)

It must be noticed thatγ?
k ∈ R

m−q is a residual vector in-
sensitive to faults andq?

k ∈ R
q is a residual vector sensitive

to faults and defines also an fault estimation vector.
The gainK̄k, in (26), is the unique degree of freedom in
the adaptive filter synthesis. In the multiple model frame-
work, it is designed such as an interpolation of gainK̄i (see
(STIWELL and RUGH, 1999) or (LEITH and LEITHEAD,
2000)). Then, in the following,̄Kk is notedK̄?

k . For the
determination ofK̄?

k , eachK̄i is computed off-line by a
classical eigenstructure assignment of(Āi − K̄iC̄) with
C̄ = C= andĀi = Ai(I −=ΠC). We are now expressed
necessary and sufficient conditions for adaptive filter sta-
bility.

4 Stability on a convex hull
Using Lyapunov stability definition, the gain̄Ki, establish-
ing off-line by eigenstructure assignement in order that ma-
trix (Āi − K̄iC̄) is Hurtwitz, must verified and solved the
following inequality :

{
(Āi − K̄iC̄)T P (Āi − K̄iC̄) − P < 0

P > 0
(30)



A Schur complement operation transforms the inequal-
ity (30) into an LMI and as proposed for LPV system in
fault free case by (DAAFOUZ and BERNUSSOU, 2001) or
(OLIVEIRA et al., 1999), this inequality can be extended on
convex setsΓ (idem forK̄?

k ) and a new LMI is generated:




P

M∑

i=1

ϕ(γi
k)(Āi − K̄iC̄)T P

P

M∑

i=1

ϕ(γi
k)(Āi − K̄iC̄) P




> 0

(31)

Γ =

{
Ā?

k
: Ā?

k
=

∑M
i=1

ϕ(γi
k
)Āi,

∑M
i=1

ϕ(γi
k
) = 1

}

(32)

Eq.(31) is equivalent to:

(
P (Ā?

k − K̄?
kC̄)T P

P (Ā?
k − K̄?

kC̄) P

)
> 0 (33)

Then, (33) is equivalent to Lyapunov quadratic stability in
discrete case of matrice(A?

k − K?
kC):

{
(A?

k − K?
kC)T P (A?

k − K?
kC) − P < 0

P > 0
(34)

Thus, find an unique solutionP for all [i = 1...M ] assures
the stability of the filter (27) and the convergence of error
estimation defined as follows:

ēk+1 = (A?
k − K?

kC)ēk (35)

The stability of the adaptive filter has been analyzed and
correspond to find an unique matrix to solve a set of
inequality. To show the performances of this method an
academic example is illustrated in the next section.

5 Example

5.1 System representation

The proposed method is applied to an open loop discrete
nonlinear system. This stochastic discret system, SIMO
(single-input/multiple-output) withX ∈ <4, U ∈ <1, and
Y ∈ <3. Thejth linear system represents the system be-
havior around thejth operating point depending directly on
the magnitudes of the inputs defined in table 1. Other ma-
trices are the same for each model:∀j, Bj = [1 0 0 0]T ,

C =




0 1 0 0
0 0 1 0
0 0 0 1


, Qj = diag([0.9 0 0.5 0.3])T and

Rj = I3×3.

The faulty distribution matrices are different:

F1 =




0 0
0.9 0
0 2.8
0 0


, F2 =




0 0
2.4 0
0 1.4
0 0


 andF3 =




0 0
3.2 0
0 3.7
0 0




Table 1: Definition of the operating points.
Operating
point (Pj)

j = 1 j = 2 j = 3
U ∈ [0; 3[ U ∈ [3; 6[ U ∈ [6; 9[

YPj

3.2-5.0 5.82-8.54 9.88-15.62
2.58 4.88 8.34

UPj
2 4 7

Eigenvalues
of Aj




0.15
0.37
0.60
0.22







0.01
0.02
0.04
0.01







0.20
0.50
0.80
0.30



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Figure 2: System input and model selector evolution in
faulty case.

5.2 Simulation results

The simulation example considered is developed in a mul-
tiple faults case(d ∈ <2) with a system inputU chosen
as successive steps with smooth transitions (see Fig. 2a).
In order to evaluate the method, we consider two faults :
a first at timekd = 25 seconds with a constant magnitude
equal to 2, and a second appears at timekd = 150 seconds
with a constant magnitude equal to 5 as shown on Fig. 2a.

A bank of three decoupled Kalman filters in multiple mod-
els framework is proposed. It was developed to show the
selection of the true model and nonlinear representation,
when residual vector is corrupted by two pieces of infor-
mation: operating point evolution and fault occurrence. In
Fig. 2b, we can observe that in the faulty case, how the
probabilities evolution allow the robust model selection.
The results obtained show a robust model selector which
is insensitive to faults. The same figure shows the tran-
sition from model ”1” to model ”2” and after to model
”3” without the probabilities being affected by fault occur-
rences. The model selection allows to represent the non-
linear system via a convex set of the multiple LTI models.
This representation is used to realize the fault detection,
isolation and estimation via an adaptive filter. In FDI con-
text and according to adaptive filter design, different condi-
tions are verified:rank(C=) < 3, Theorem 1 is available,
∀i, (Āi, C̄) is observable and three gains̄Ki are computed.

As illustrated in Fig. 3a and after a pseudo-inverse ma-
trix computation (THEILLIOL et al., 2003) that permits the
obtention of accurate fault magnitude estimation whered
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Figure 3: Residuals generated by adaptive filter

is a fault estimation ofq?
k. The good performances of the

adaptive filter in terms of fault detection, fault isolationis
achieved. Based on this residual vector, it is easy to imag-
ine a residual evaluation test with an elementary logic de-
cision in order to develop a multiple faults detection, isola-
tion and estimation module integrated in supervision plat-
form.

Fig. 3b illustrates the residual vectorγ?
k ∈ <1. In this aca-

demic example, where uncertainties or error models are
not considered, these residuals vector, designed as a se-
quence insensitive to faults, are obviously close to zero
during the experiment. Meanwhile, in practical case, the
residual vectorγ?

k will not be close to zero due to uncer-
tainties or model errors but it can be exploited to indicate
the confidence degree of the adaptive filter.

6 Conclusion

The FDI problem for nonlinear systems based on a mul-
tiple models framework has been addressed in this paper.
It is based on a robust model selector that permits to iden-
tify the most representative linear model of the nonlinear
system in free or faulty case. A robust isolation filter is
designed to detect, isolate and estimate faults for a large
class of systems through an LTI convex set representation.
In order to guarantee stability of the adaptive filter, a stabil-
ity analysis has been realized using linear matrix inequal-
ity formulation. The developed adaptive filter was demon-
strated using a simulation example on an academic model.
Moreover, the residual insensitive to fault can be used to
supervise the adaptive filter itself. In the presence of model
errors or uncertainties, this residual is corrupted by these
perturbations and is different from zero. The adaptive fil-
ter quality can be evaluated through this residual. Futur
work are directly linked to the previous remark, concerns
the robustness against uncertainties and will be dedicated
to industrial processes.
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