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Design of an Active Fault Tolerant Control for Nonlinear Systems
described by a Multi-Model Representation

Mickaël Rodrigues, Didier Theilliol and Dominique Sauter

Abstract— In this paper, an new active Fault Tolerant
Control (FTC) strategy is developed to nonlinear systems
described by multiple linear models to prevent the system
deterioration by the synthesis of adapted controllers. When a
fault is detected by the fault detection and diagnosis scheme,
the reconfigurable controller is designed automatically using
a robust gain scheduling strategy. The main contribution
concerns the design of state feedback gains throughLMI

both in fault-free and faulty cases in order to preserve
the system performances over a wide operating range. For
each separate actuator with which the system is robustly
stabilizable, a robust pole placement is designed by pole
clustering. The effectiveness and performances of the method
have been illustrated in simulation considering a classical
nonlinear benchmark.

I. INTRODUCTION

The increasing demands for higher system performance,
product quality, productivity and cost efficiency lead to a
continuous growth of the complexity and automation degree
of technical processes. Typical instances of such kind of
complex and distributed systems are sophisticated vehicles,
civil aircraft, environment treatment processes, large fleets
and infrastructures [1]. Associated with these development
trends, high reliability, availability and safety become an
important system requirement which is included in many
international standards and regulations. The objective of
Fault Tolerant Control system (FTC) is to maintain current
performances closed to desirable performances and preserve
stability conditions in the presence of component and/or
instrument faults; in some circumstances reduced perfor-
mance could be accepted as a trade-off. Accommodation
capability of a control system depends on many factors
such as the severity of the failure, the robustness of the
nominal system, and the actuators redundancy. FTC can be
motivated by different goals depending on the application
under consideration, for instance, safety in flight controlor
reliability or quality improvements in industrial processes.
Various approaches for FTC have been suggested in the
literature [2], [3], [4] and [5] but often deal with linear
systems. For nonlinear systems, the design of Fault Tolerant
controller is far more complicated. Nonlinear systems based
on multiple linear models, represents an attractive solution
to deal with the control of nonlinear systems [6], [7], [8] or
FDI methods as in the chapter nine of [9] where nonlinear
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dynamic systems are described by a number of locally
linearized models based on the idea of Tagaki-Sugeno fuzzy
models or as interpolated multiple linear models [10]. A
great number of gain scheduling strategies are developed in
fault-free case [6] and we proposed to develop one of them
in faulty-case. Various recent FDI/FTC studies, based on
a multiple model method have been developed in order to
detect, isolate and estimated an accurate state of a system
in presence of faults/failures around an unique operating
point [11], [12] and in chapter7 of [4]. Compared to
multi-model based reconfigurable control method presented
by [13], this paper not consider some redundant hardware
which is very useful when failures are supposed to occur on
the system. In this paper, an active fault tolerant strategyis
developed so as to avoid actuator fault effect on nonlinear
system where faults are assumed to be incipient, abrupt but
not generate a total actuator fault i.e. a failure. Under the
assumption that the fault is detected, isolated and estimated,
the developed method preserves the system performances
through an appropriate gain scheduling synthesis in faulty
case. Compared to recent work applied to similar non-
linear system [14], where a multi-model representation is
considered, the proposed FTC strategy is not based on an
additional control law but on the redesign of appropriate
gain in faulty case allowing stability and performances of
the system.
The paper is organized as follows. In section II, we in-
troduce a state space representation with both additive
and multiplicative fault defined around operating points.
A global state space representation of nonlinear system is
given through a multi-model approach. In section III, we
introduce a pole placement byLMI region and then a gain
synthesis for each actuator generate an active global state
feedback synthesis. This scheme provides a new active Fault
Tolerant Control synthesis. A simulation example is given
in section IV to illustrate the proposed method. Finally,
concluding remarks are given in the last section.

II. N ONLINEAR REPRESENTATION ANDFAULT

TOLERANT CONTROL STRATEGY

A. Nonlinear representation

Consider a discrete-time nonlinear dynamical system
described by:

{

x(k + 1) = g
(

xk, uk

)

y(k) = h
(

xk, uk

) (1)

where xk ∈ X ∈ R
n represents the state vector,uk ∈

U ∈ R
p is the input vector andy ∈ R

m is the output



vector. We assume that functionsg
(

xk, uk

)

andh
(

xk, uk

)

are continuously differentiable.
Definition:[15] Given a setU , a pointx0 ∈ X ⊆ R

n is
an equilibrium point of the system (1) if a controlu0 ∈
U exists such thatx0 = g(x0, u0). We call a connected
set of equilibrium points an equilibrium surface. Suppose
(xe, ue, ye) is a point on an equilibrium surface and define
a shifted statēx = x−xe and a shifted input̄u = u−ue, the
nonlinear system with respect to(xe, ue) can be expressed
as:
{

x̄(k + 1) = g
(

x(k), u(k)
)

− g
(

xe, ue)
)

, f
(

x̄(k), ū(k)
)

ȳ(k) = h
(

x(k), u(k)
)

− h
(

xe, ue)
)

, v
(

x̄(k), ū(k)
)

(2)

¤

It is assumed that dynamic behaviour of the system operat-
ing at different operating points can be approximated by a
set ofN linear time invariant models in chapter1 of [10]
and in the following references [16], [8], [15]. Consider the
following state space representation of a nonlinear system
around j-th operating point,j ∈ [1, . . . , N ], with additive
actuator faults:

xk+1 − xj
e = Aj(xk − xj

e) + Bj(uk − uj
e) + Fjfk

yk − yj
e = Cj(xk − xj

e) + Dj(uk − uj
e)

(3)
Matrices (Aj , Bj , Cj ,Dj) are invariant matrices defined
around thejth operating point (OPj) generally obtained
from a nonlinear system using a first-order Taylor expansion
about(xj

e, u
j
e) or identification of a nonlinear system around

predefined operating points as for example in chemical
processes in [17], [18]. The fault distribution matrix is
represented byFj ∈ R

n×p. fk ∈ R
p represents the actuator

fault vector and in fault-free case it is obviously equal to
zero. In the following, we consider thatDj = 0. This linear
system (3) can be specified by the set of system matrices
as in fault-free case in [10], [8] and in faulty-case in [16]:

Sj =

[

Aj Bj Fj

Cj

]

,∀j = [1, . . . , N ] (4)

Let Sk be a matrix sequence varying within a convex set,
defined as:

Sk :=

{

∑N

j=1
ρ

j
kSj : ρ

j
k ≥ 0,

∑N

j=1
ρ

j
k =1

}

(5)

In the Multi-Model framework,Sk characterizes at each
sample the nonlinear system and consequently, the dynamic
behavior of nonlinear system can be defined by a convex
set of a multiple LTI models. As considered in [10] and
[18], a possible model that would be able to catch the
full range of operation is made fromN weighting local
modelsOPj by interpolation functionsρj

k. These activation
functions ρ

j
k ∀j ∈ [1, . . . , N ] lie in a convex setΩ =

{ρj
k ∈ R

N , ρk = [ρ1
k . . . ρN

k ]T , ρ
j
k ≥ 0 ∀j and

∑N

j=1
ρ

j
k = 1} and these functions are generated via works

of [19] and [18], which permit to generate insensitive
residual to faults and some uncertainties. So, activation
functions are robust against faults and errors modeling and
the dynamic system is well represented. The representation

(3) considers additive fault representation but there exists
multiplicative representation for specific actuator faultas:

xk+1 = Aj(xk − xj
e) + Bj(I − γa)(uk − uj

e) + xj
e

yk = Cj(xk − xj
e) + yj

e (6)

So, let consider a local multiplicative actuator fault repre-
sentation as a blended representation (as in [8] in fault-free
case):
xk+1 =

N
∑

j=1

ρ
j
k[Aj(xk − xj

e) + Bj(I − γa)(uk − uj
e) + xj

e]

yk =

N
∑

j=1

ρ
j
k[Cj(xk − xj

e) + yj
e] (7)

with γa , diag[γa
1 , γa

2 , . . . , γa
p ], γa

i ∈ R, such thatγa
i = 1

represents a total lost, a failure of i-th actuator,i ∈ [1, . . . , p]
andγa

i = 0 implies that i-th actuator operates normally. The
objective of fault detection and diagnosis is to determine the
extent of the loss in the control effectiveness by estimating
γa

i on-line in real-time [16] so that an on-line automatic
reconfigurable controller can be synthesized. The matrices
(Aj , Bj , Cj) ∈ Sk and the relation between state space
representations (3) and (6) is equivalent to

Fjfk = −Bjγ
a(uk − uj

e) (8)

B. Fault Tolerant Control design

In closed-loop, the fault occurrence could be detected as
described in [1] for linear case and [14] for multi-linear
systems and Fault Tolerant Control could be performed via
an additional control law as in [20] which permits to avoid
fault on a system based on a state space representation as
(3). In these papers, the goal was to synthesize a new control
law uFTC with a nominal oneunom and additional oneuad.
The termuad was performed in order to vanish fault on the
system. The global control law is obtained by interpolating
gains of each local controller [6] and is defined as:

u
j
FTC = uj

nom + u
j
ad (9)

with uj
nom = −Knom(xk − xj

e) + uj
e. The gains were

only performed for nominal cases and do not take into
account fault occurrence. Under the assumption that fault is
detected, isolated and estimated, based on a multiplicative
fault representation defined in (7), we propose a control
law u

j
FTC , around an Operating Pointj, which must vanish

faults as the following form:
u

j
FTC = −(I − γa)+K(xk − xj

e) + uj
e (10)

The objective of fault accommodation consists in a strategy
by which the faulty system is controlled in a specific way,
so as to achieve the objectives which were (before the fault)
achieved by the healthy system. So, note that
u

j
FTC(k) = [I − γa]+uj

nom(k) = −[I − γa]+Knom(xk−

xj
e) + uj

e = −KFTC(xk − xj
e) + uj

e (11)

In the following, we will noteu
j
FTC(k) asu

j
FTC so as to

relax notations and have a better understanding. We note
(.)+ the Moore-Penrose matrix inverse and it is assumed



that matrix [I − γa], which is diagonal, has full column
rank i.e. the dimensionn of the system is greater than
number ofp actuators. Assuming that there is no mismatch
between fault and their estimation and without considering
total fault, this state feedback is inserted in the state space
representation (6) around anOPj and leads to:
xk+1 − xj

e = Aj(xk − xj
e) + Bj(I − γa)(−KFTC(xk − xj

e)

+ uj
e − uj

e)

= (Aj − BjKnom)(xk − xj
e)

(12)

Even if there is an actuator fault on the system, this one
still operates normally with the new state feedback gain
KFTC = [I −γa]+Knom. As previously defined in (5), the
model probability is viewed as a scheduled variable in the
synthesis of the controller like in [6], [8] and [14], and the
new global control law is defined as:

uk =

N
∑

j=1

ρ
j
ku

j
FTC = −

N
∑

j=1

ρ
j
k[KFTC(xk−xj

e)+uj
e] (13)

with u
j
FTC the output of each local controller defined

around eachOPj . In order to synthesize state feedback for
FTC ensuring both active control in multi-model philosophy
and quadratic stability, use ofLMI provide a well toolbox
for these purposes. Total failures are not consider in this
paper but only partial ones. We attract attention that the
system has to be observable in all around each operating
points.

III. FAULT TOLERANT CONTROL ON MULTIPLE

OPERATING POINTS

A. Pole clustering

In the synthesis of control system, some desired perfor-
mances should be considered in addition to stability. In
fact, classical stability conditions do not deal with transient
responses of the closed-loop system. In contrast, a satis-
factory transient response can be guaranteed by confining
its poles in a prescribed region. For many real problems,
exact pole assignment may not be necessary: it suffices to
locate the closed-loop poles in a prescribed subregion in
the complex plane. We will discuss about pole clustering
by introducing the followingLMI-based representation of
stability regions.

Definition 1: LMI stability region [21]. A subset D of
the complex plane is called an LMI region if there exist
a symmetric matrixα = [αkl] ∈ R

n×n and a matrixβ =
[βkl] ∈ R

n×n such that
D = {z ∈ C : fD(z) < 0} (14)

where the characteristic functionfD(z) is given by
fD(z) = [αkl + βklz + βlkz̄]1≤k,l≤n (15)

(fD is valued in the space ofn× n Hermitian matrices).¤
Moreover,LMI regions are convex and symmetric with
respect to the real axis since for anyz ∈ D : fD(z̄) =
fD(z) < 0. Then, pole location in a givenLMI region
can be characterized in terms of a block matrix if and only
if there exists a symmetric matrixP > 0 such that [21]:

MD(Acl, P ) = α ⊗ P + β ⊗ (AclP ) + βT ⊗ (AclP )T

= [αklP + βklAclP + βlkPAT
cl]1≤k,l≤m (16)

with Acl = A − BK and M = [µkl]1≤k,l≤n means that
M is an n × n matrix (respectively, bloc matrix) with
generic entry (respectively bloc)µkl. Note thatMD(Acl, P )
in (16) andfD(z) in (15) are related by the substitution
(P,AclP, PAT

cl) ↔ (1, z, z̄). It is easily seen thatLMI
regions are convex and symmetric with respect to real axis.
Specifically, the circularLMI regionD is considered:

D = {x + jy ∈ C : (x + q)2 + y2 < r2} (17)

centered at(−q, 0) with radiusr > 0, where the character-
istic functionfD(z) is given by:

fD(z) =

(

−r z̄ + q

z + q −r

)

(18)

Therefore, this circular region puts a lower bound on both
the exponential decay rate and the damping ratio of the
closed-loop response, and thus is very common in practical
control design. It is obvious that well chosenLMI region
is needed for ensuring stability and good results: the pa-
rametersq, r have to be defined by the engineer.

B. Control law synthesis in fault-free case

Let consider the state space representation (7) of non-
linear system defined around the Operating PointsOPj ,
∀j = 1, . . . , N

xk+1=

N
∑

j=1

ρ
j
k

[

Aj(xk − xj
e)+

∑

i∈I

Bi
j(I − γa)(uk − uj

e)+ xj
e

]

yk =

N
∑

j=1

ρ
j
k[Cj(xk − xj

e) + yj
e] (19)

with I : i = 1, . . . , p the actuators for eachOPj and
matrices(Aj , Bj , Cj) ∈ Sk defined in (5). Consider the
matrix representing total faults in all actuators but the i-th:

Bi
j = [0, . . . , 0, bi

j , 0, . . . , 0] (20)

and Bj = [b1
j , b

2
j , . . . , b

p
j , ] with bi

j ∈ R
n×1. It is assumed

that each column ofBj is full column rank whatever the
OPj . The pairs(Aj , b

i
j),∀i = 1, . . . , p are assumed to be

controllable for all∀j = 1, . . . , N . Let D, a LMI region
defining a disk with a center(−q, 0), and a radiusr with
(q + r) < 1 for defining pole assignment in the unit circle.
Assume that for eachBi

j , there exist matricesXi = XT
i > 0

andYi, ∀j = 1, . . . , N,∀i = 1, . . . , p such as:
(

−rXi qXi + (AjXi − Bi
jYi)

T

qXi + AjXi − Bi
jYi −rXi

)

< 0

(21)
It can be noticed that ifq = 0 and r = 1, the previous
equation (21) is equivalent to solve a classical quadratic
stability problem. Based on the assumptions that for each
OPj each pairs(Aj , b

i
j) are controllable, it is possible to

find a Lyapunov matricesXi > 0 and state-feedbackKi

with Yi = KiXi and finally form a global state-feedback
gain Knom.



Theorem 1:Consider the system (19) in fault-free case
(γa = 0) defined for allOPj , j = 1, . . . , N : it is possible
to develop a mixing of pre-designed state-feedback gains
matricesKi = YiX

−1
i for each actuatori with i = 1, . . . , p

such that (21) holds for allj = 1, . . . , N . The state feedback
control for each operating point is given by:

uj
nom = −(

p
∑

i=1

GiYi)(

p
∑

i=1

Xi)
−1(xk − xj

e) + uj
e (22)

= −Y X−1(xk − xj
e) + uj

e = −Knom(xk − xj
e) + uj

e

with
∑p

i=1
GiYi = Y , X =

∑p

i=1
Xi and Gi = Bi+

j Bi
j

is matrix that has zeros everywhere except in entry(i, i)
where it has a one. The general control law for allOPj

could be defined as:

uk =

N
∑

j=1

ρ
j
kuj

nom = −

N
∑

j=1

ρ
j
k[Knom(xk − xj

e) + uj
e] (23)

¥

Proof:
Summation of (21) fori = 1, . . . , p gives for one equilib-
rium point j

p
∑

i=1

(

−rXi qXi + (AjXi − Bi
jYi)

T

qXi + (AjXi − Bi
jYi) −rXi

)

< 0

(24)
related to the quadraticD-stability in a prescribedLMI
region. Next, denoteX =

∑p

i=1
Xi (with X = XT > 0)

to obtain












−rX qX + (AjX −

p
∑

i=1

Bi
jYi)

T

qX + (AjX −

p
∑

i=1

Bi
jYi) −rX













< 0 (25)

Now, denote the l-th row of the matrixYi asY l
i , i = 1, ..., p

and l = 1, . . . , p, i.e.
Y l

i = GlYi (26)

Therefore,
p

∑

i=1

Bi
jYi =

p
∑

i=1

[0, . . . , 0, bi
j , 0, . . . , 0]Y i

i = Bj

p
∑

i=1

Y i
i

(27)

leading to p
∑

i=1

Bi
jYi = Bj(

p
∑

i=1

GiYi) (28)

Thus, takingY =
∑p

i=1
GiYi, equation (28) becomes

p
∑

i=1

Bi
jYi =

∑

i∈I

Bi
jYi = BjY (29)

which, substituted intoLMI (25), finally makes
(

−rX qX + (AjX − BjY )T

qX + (AjX − BjY ) −rX

)

< 0 (30)

for all OPj , j = 1, . . . , N . By multiplying eachLMI (30)
by ρ

j
k and summing all of them, we obtain













−rX qX +

N
∑

j=1

ρ
j
k(AjX − BjY )T

qX +
N

∑

j=1

ρ
j
k(AjX − BjY ) −rX













< 0

(31)

it is equivalent to
(

−rX qX + (A(ρ)X − B(ρ)Y )T

qX + (A(ρ)X − B(ρ)Y ) −rX

)

< 0

(32)
with A(ρ) =

∑N

j=1
ρ

j
kAj ∈ Sk andB(ρ) =

∑N

j=1
ρ

j
kBj ∈

Sk. Hence quadraticD-stability is ensured by solving (31)
and Y = KnomX quadratically stabilizes the system (19)
under the setSk by solving (32) with a state feedback law
uk =

∑N

j=1
ρ

j
kuj

nom = −
∑N

j=1
ρ

j
k[Y X−1(xk − xj

e) + uj
e].

¤

Remark1: It could be noticed that gain synthesis through
multiple operating point with suchLMI consideration
provide only one single gain for allOP due to Bilinear
Matrix inequality (BMI) problem in term(2, 1) of LMI
(21). However, other system such piecewise linear system
could use the same approach with a multiple gain synthesis
as in [17].
Remark2: If all local models have the sameBj matrices,
i.e. Bj = B for all j = 1, . . . , N , it is also possible to
use the following parameter-dependent state feedback law
instead of (23):

uk =
N

∑

j=1

ρ
j
kuj

nom = −
N

∑

j=1

ρ
j
k[Kj(xk − xj

e) + uj
e] (33)

with Kj = YjQ
−1. The resulting matrices remain the same

except thatKj replacesK, B replacesBj andYj replaces
Y .
C. Active Fault Tolerant Control design

By considering the system (19) and based on the previous
synthesis control law, the FTC method can be developed in
this section where only partial actuator faults are considered
under assumptions that fault occurrence and fault magnitude
γa are exactly known.

Theorem 2:Consider the system (19) in faulty case
(γa 6= 0) coupled with regulators with gainsKi = YiX

−1
i

for all equilibrium pointj = 1, ..., N and for each actuator
i with i = 1, 2, .., p. Let introduce the set of indexes of all
actuators that are not completely lost, i.e.

Θ , {i : i ∈ (1, 2, .., p), γa
i 6= 1}

The control action is
u

j
FTC = −(I − γa)+

(

∑

i∈Θ

GiYi

(

∑

i∈Θ

Xi

)−1)

(xk − xj
e) + uj

e

(34)
whereGi = Bi+

j Bi
j , applied to the faulty system allows to

constrain pole placement in prescribedLMI region. ¥

Proof: Applying the new control law (34) to the faulty
system (7), leads to the following equation
Bj(I−γa)uj

FTC = BjΓ
a(

∑

i∈Θ

GiYi)(
∑

i∈Θ

Xi)
−1(xk−xj

e)+uj
e

(35)
with

Γa =

(

Ip−h 0
0 Oh

)

(36)

Γa is a diagonal matrix which contains only entries zero
(representing total faults) and one (no fault). But here
h = 0, which is the number of actuators completely lost,



due to the fact that only the setΘ is considered. Since
BjΓ

a =
∑

i∈Θ

Bi
j models only the actuators that are not

completely lost, then performing the summations in the
proof of Theorem (1) over the elements ofΘ shows that
(
∑p

i=1
GiYi)(

∑p

i=1
Xi)

−1 is the state-feedback gain matrix
for the faulty system(Aj ,

∑

i∈Θ

Bi
j , Cj). ¤

The control law in equation (34) implies that

u
j
FTC = −KFTC(xk − xj

e) + uj
e (37)

with
KFTC = (I − γa)+

∑

i∈Θ

GiYi(
∑

i∈Θ

Xi)
−1 (38)

The global control lawUFTC of the system is realized as:

uk =
∑N

j=1
ρ

j
ku

j
FTC

= −
∑N

j=1
ρ

j
k[KFTC(xk − xj

e) + uj
e]

(39)

IV. A PPLICATION

A. Process description

The approach presented in this paper has been applied
to the well known three tanks benchmark as in [14]. As all
the three liquid levels are measured by level sensors, the
output vectorY is [l1 l2 l3]

T . The control input vector
is U = [q1 q2]

T . The goal is to control the system around
three equilibrium points. Thus,3 linear models have been
identified around each of these equilibrium points and the
operating conditions are given in Table (I). The linearized

TABLE I

Operating point n1 n2 n3
0.20; 0.50; 0.50;

yj
e(m) 0.15; 0.15; 0.405;

0.175 0.325 0.45

uj
e 1.7509; 4.6324; 2.4761;

(m3/s) × 10−5 4.0390 1.1574 6.9787

system is described by a discrete state space representation
with a sampling periodTs = 1s. For eachOP, each
control matrix pair(Aj , b

i
j) is controllable. Controllers have

been designed for levelsl1 and l2 to track reference input
vector Y r ∈ R

2. Nominal controllers have been designed
through Theorem (1), leading to two state feedback gain
matricesK1,K2 (due to2 actuators) for all the threeOP
in order to achieve satisfying tracking performances. The
simulation of actuator faults on the system does not affect
the controllability and observability of the system.

B. Results and comments

Simulations have been performed such as the3 oper-
ating conditions described in Table (I) are reached and
weighting functions for each local model are presented
in figure (1) always close to the dynamic behaviour of
the nonlinear system according to the considered operating
regimes. Figure (2) shows the time history of the outputs
with respect to set-point changes occur at time instant500s

and after at time instant2500s. In the simulation, gaussian
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Fig. 1. Weighting functions

noises(N(0, 1e−42
)) are added to each output signal. The

reference inputs correspond to step changes forl1 and
l2. The consequence of an actuator fault is illustrated in
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Fig. 2. System outputs in fault-free case with a nominal control law

figure (3). A gain degradation of pump1 (clogged or rusty
pump) equivalent to80% loss of effectiveness is supposed
to occur at time instant1000s. Consequently, the dynamic
behaviour of the other levels is also affected by this fault and
control system tries to cancel the static error created by the
corrupted input. Consequently, the real output is different
from the reference input and the control law is different
from its nominal value. Since an actuator fault acts on the
system as a perturbation, and in spite of the presence of an
integral controller, the system outputs can not reach again
their nominal values. In the same way, the actuator Fault
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Fig. 3. System outputs with pump degradation and a nominal controller

Tolerant Control method’s ability to compensate faults is
illustrated in the presence of the same fault. Once the fault
is isolated and simultaneously estimated, a new control law
(39) is computed in order to reduce the fault effect on
the system. Indeed, since the effect of an actuator fault



is quite similar to the effect of a perturbation, the system
outputs reach again their nominal values, as illustrated in
figure (4). A time delay between fault occurrence and
fault compensation equals to10 samples is considered in
our simulation. Computation of the tracking error norm
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Fig. 4. System outputs with pump degradation and a FTC controller

in fault-free case, in faulty case without and with FTC
underlines the performances of this approach as seen in
Table (II). With FTC, the tracking error norm for output
l1 is a bit larger than with the fault-free case but it still
widely smaller than the one without FTC. The actuator Fault
Tolerant Control is able to maintain performances as close
as possible to nominal ones and to ensure the closed-loop
stability despite the presence of instruments malfunction.
Remark:This proposed scheme could have an interesting

TABLE II

Error Fault-free case Actuator fault
norm without FTC with FTC
el1 1.1063 3.3365 1.1176

development in aeronautic, for example, where redundant
actuators are available and where a wide operating range is
considered.

V. CONCLUSION

The method developed in this paper emphasises the
importance of the active Fault Tolerant Control of nonlinear
systems based on multi-model representation. This method
is suitable for partial actuator faults on a wide operating
range of the system. A robust controller is designed for each
separate actuator through anLMI pole placement in fault-
free case and faulty case. It allows the system to continue
operating safely, to avoid stopping it immediately and to
ensure stability. The synthesis of this active state feedback
control takes into account the information provided on-line
by FDI scheme. The performances and the effectiveness
of this active Fault Tolerant Control based on a multiple
model approach have been illustrated through a nonlinear
benchmark. Futures works will deal with total failures,
restructuration and will improve the limits of the strategy.
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