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In this paper, an active Fault Tolerant Control (FTC) strategy is developed to nonlinear systems described by multiple linear models to prevent the system deterioration by the synthesis of adapted controllers. By considering that Fault Detection, Isolation (FDI) and estimation is realized, the synthesis of an appropriate combination of predesigned gains is performed. The main contribution concerns the design of state feedback gains through LMI both in fault-free and faulty cases in order to preserve the system performances. For each separate actuator, a robust pole placement is designed by pole clustering. The effectiveness and performances of the method are illustrated in simulation by considering a nonlinear system: a Three-Tank system.

INTRODUCTION

To overcome the limitations of conventional feedback control, new controllers have been developed with accommodation capabilities or tolerance to faults. The objective of Fault Tolerant Control system (FTC) is to maintain current performances closed to desirable performances and preserve stability conditions in the presence of component and/or instrument faults ; in some circumstances reduced performance could be accepted as a trade-off. Accommodation capability of a control system depends on many factors such as the severity of the failure, the robustness of the nominal system, and the actuators redundancy. FTC can be motivated by different goals depending on the application under consideration, for instance, safety in flight control or reliability or quality improvements in industrial processes. Various approaches for FTC have been suggested in the literature [START_REF] Patton | Fault-tolerant control: the 1997 situation[END_REF], [START_REF] Zhang | Bibliographical review on reconfigurable Fault-Tolerant Control systems[END_REF] but often deal with linear systems. For nonlinear systems, the design of Fault Tolerant controller is far more complicated. Nonlinear systems based on multiple linear models, represents an attractive solution to deal with the control of nonlinear systems [START_REF] Leith | Survey of gainscheduling analysis and design[END_REF], [START_REF] Banerjee | Hinf control of nonlinear processes using multiple linear models[END_REF] or FDI methods as in the chapter nine of [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF] where nonlinear dynamic systems are described by a number of locally linearized models based on the idea of Tagaki-Sugeno fuzzy models or as interpolated multiple linear models (Murray-Smith and [START_REF] Murray-Smith | Multiple Model Approaches to Modelling and Control[END_REF]. Various recent FDI/FTC studies, based on a multiple model method have been developed in order to detect, isolate and estimated an accurate state of a system in presence of faults/failures around an operating point [START_REF] Maybeck | Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems[END_REF], [START_REF] Zhang | Integrated active Fault-Tolerant Control using IMM approach[END_REF]. Compared to multi-model based reconfigurable control method presented by [START_REF] Aström | Control of complex systems[END_REF], this paper not consider some redundant hardware which is very useful when failures are supposed to occur on the system. In this paper, an active fault tolerant strategy is developed so as to avoid actuator fault effect on nonlinear system where faults are assumed to be incipient, abrupt but not generate a total actuator failure. Under the assumption that the fault is detected, isolated and estimated, the developed method preserves the system performances through an appropriate gain synthesis in faulty case. It is a big difference with robust control which does not deal with a FDI module and does not take into account fault estimation for reconfiguration. Compared to recent work applied to similar nonlinear system (Theilliol et al., 2003a), where a multi-model representation is considered, the proposed FTC strategy is not based on an additional control law but on the redesign of appropriate gain in faulty case allowing stability and performances of the system. This appropriate design is inspired from a previous work made by [START_REF] Kanev | Reconfigurable robust fault-tolerant control and state estimation[END_REF] where a FTC strategy is devoted for each actuator. However, this work considers only linear case with a single operating point. Our paper contributes to improve it on real systems with multi-operating points and a relaxed LMI region for stability. The paper is organized as follows. In section II, an active state space representation is derived from an additive one by underlying the links between them. A global state space representation of nonlinear system is given through a multi-model approach. In section III, we introduce a pole placement by LMI region and then a gain synthesis for each actuator generate an active global state feedback synthesis. A simulation example is given in section IV to illustrate the proposed method. Finally, concluding remarks are given in the last section.

PROBLEM STATEMENT

It is assumed that dynamic behaviour of the system operating at different operating points can be approximated by a set of N linear time invariant models. Consider the following state space representation of a nonlinear system around j-th operating point with actuator faults:

x j k+1 = A j x j k + B j u j k + F j f k + ∆x j y j k = C j x j k + ∆y j (1)
where x j ∈ R n represents the state vector, u j ∈ R p is the input vector, y j ∈ R m is the output vector and f k ∈ R p represents the actuator fault vector. A j ∈ R n×n , B j ∈ R n×p , C j ∈ R m×n and the fault distribution matrix F j ∈ R n×f are invariant matrices defined around the j th operating point (OP j ). We consider the terms ∆x j , ∆y j : ∆x j = -A j x j e -B j u j e + x j e ∆y j = -C j x j e + y j e

(2)

where (x j e , y j e , u j e ) are a family of operating points of the nonlinear plant. As considered in [START_REF] Johansen | Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control[END_REF], [START_REF] Murray-Smith | Multiple Model Approaches to Modelling and Control[END_REF] and (Theilliol et al., 2003b), a possible model that would be able to catch the full range of operation is made from N weighting local models OP j by interpolation functions ρ j k . These activation functions ρ

j k ∀j ∈ [1, 2, .., N ] lie in a convex set Ω = {ρ j k ∈ R N , ρ k = [ρ 1 k ....ρ N k ] T , ρ j k ≥ 0 ∀j and N j=1 ρ j k = 1}
and these functions are generated via works of (Adam-Medina et al., 2003) and (Theilliol et al., 2003b), which permit to generate insensitive residual to faults and some uncertainties. So, activation functions are robust against faults and errors modeling and the dynamic system is well represented. The plant dynamics are formulated as a blended multiple representation as in (Theilliol et al., 2003a):

x k = N j=1 ρ j k x j k y k = N j=1 ρ j k y j k (3)
The representation considers additive fault representation but there exists multiplicative representation for specific actuator fault as in [START_REF] Kanev | Reconfigurable robust fault-tolerant control and state estimation[END_REF]. So, consider a local multiplicative actuator fault representation as:

x j k+1 = A j x j k + B j (I -γ a )u j k + ∆x j y j k = C j x j k + ∆y j (4) with γ a diag[γ a 1 , γ a 2 , ..., γ a p ], γ a 1 ∈ R, such that γ a i = 1
represents a total lost, a failure of i-th actuator and γ a i = 0 implies that i-th actuator operates normally. The relation between state space representations (1) and ( 4) is equivalent to

F j f k = -B j γ a u j k (5)
In closed-loop, the fault occurrence could be detected as described in [START_REF] Noura | Fault-tolerant control in dynamic systems: Application to a winding machine[END_REF] for linear case and (Theilliol et al., 2003a) for multilinear systems and Fault Tolerant Control could be performed via an additional control law as in [START_REF] Theilliol | Fault diagnosis and accommodation of three-tank system bsaed on analytical redundancy[END_REF] which permits to avoid fault on a system based on a state space representation as (1). In these papers, the goal was to synthesize a new control law U F T C with a nominal one u nom and additional one u ad . The term u ad was performed in order to vanish fault on the system. The global control law is obtained by interpolating gains of each local controller [START_REF] Leith | Survey of gainscheduling analysis and design[END_REF] and is defined as:

U F T C = N j=1 ρ j k (u j nom + u j ad ) (6) 
with u j nom = -K j nom x j k . The gains were only performed for nominal cases and do not take into account fault occurrence. Based on a multiplicative fault representation defined in (4), the new control law u j F T C must vanish all faults on the system as:

u j F T C = [I -γ a ] + u j nom (7) Note that u j F T C = [I -γ a ] + u j nom = -[I - γ a ] + K j nom x j k = -K j F T C x j k .
So, without considering total fault, this specific control law in the state space representation (4) leads to:

B j (I -γ a )u j k = B j (I -γ a )(I -γ a ) + u j nom = B j u j nom (8)
As previously defined in (6), the model probability is viewed as a scheduled variable in the synthesis of the controller and the global control law is defined as:

U F T C = N j=1 ρ j k u j F T C (9) 
with u j F T C the output of each local controller defined around each operating point. In order to synthesize state feedback for FTC ensuring both active control in multi-model philosophy and quadratic stability, use of LMI provide a well toolbox for these purposes. Total failures are not consider in this paper but only partial ones. We attract attention that the system has to be observable in all around each operating points and we will consider now only nonlinear plant defined around Equilibrium Points (EP) i.e. ∆x j = 0.

FAULT TOLERANT CONTROL ON MULTIPLE OPERATING POINTS

Pole clustering

In the synthesis of control system, some desired performances should be considered in addition to stability. In fact, classical stability conditions do not deal with transient responses of the closedloop system. In contrast, a satisfactory transient response can be guaranteed by confining its poles in a prescribed region. For many real problems, exact pole assignment may not be necessary: it suffices to locate the closed-loop poles in a prescribed subregion in the complex plane. We will discuss about pole clustering by introducing the following LMI-based representation of stability regions.

Definition 1. LMI stability region [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF]. A subset D of the complex plane is called an LMI region if there exist a symmetric

matrix α = [α kl ] ∈ R n×n and a matrix β = [β kl ] ∈ R n×n such that D = {z ∈ C : f D (z) < 0} (10)
where the characteristic function

f D (z) is given by f D (z) = [α kl + β kl z + β lk z] 1≤k,l≤n (11) 
(f D is valued in the space of n × n Hermitian matrices). 2 Moreover, LMI regions are convex and symmetric with respect to the real axis since for any z ∈ Df D (z) = f D (z) < 0. Then, a matrix A has all its eigenvalue in D, if and only if there exists a symmetric matrix P such that [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF]:

M D (A, P ) = α ⊗ P + β ⊗ (AP ) + β T ⊗ (AP ) T = [α kl P + β kl AP + β lk P A T ] 1≤k,l≤m (12) 
with M = [µ kl ] 1≤k,l≤n means that M is an n × n matrix (respectively, bloc matrix) with generic entry (respectively bloc) µ kl . Note that M D (A, P ) in ( 12) and f D (z) in ( 11) are related by the substitution (P, AP, P A T ) ↔ (1, z, z). It is easily seen that LMI regions are convex and symmetric with respect to real axis. Specifically, the circular LMI region D is considered:

D = {x + jy ∈ C : (x + q) 2 + y 2 < r 2 } (13)
centered at (-q, 0) with radius r > 0, where the characteristic function f D (z) is given by:

f D (z) = -r z + q z + q -r (14) 
Therefore, this circular region puts a lower bound on both the exponential decay rate and the damping ratio of the closed-loop response, and thus is very common in practical control design. It is obvious that well chosen LMI region is needed for ensuring stability and good results: the parameters q, r have to be defined by the engineer.

Control law synthesis in fault-free case

Let consider the state space representation (4) of nonlinear system defined around the Equilibrium Points EP j , ∀j = 1, 2, .., N

x j k+1 = A j x j k + B i j (I -γ a )u j k y j k = C j x j k ( 15 
)
with i = 1, 2, .., p the actuators for each EP j . Consider the matrix representing total faults in all actuators but the i-th:

B i j = [0, .., 0, b i j , 0, ..., 0] (16) 
and

B j = [b 1 j , b 2 j , ..., b p j , ] with b i j ∈ R n×1 .
It is assumed that each column of B j is full column rank whatever the EP j . The pairs (A j , b i j ), ∀i = 1, ..., p are assumed to be controllable for all ∀j = 1, ..., N . Let D, a LMI region defining a disk with a center (-q, 0), and a radius r with (q + r) < 1 for defining pole assignment in the unit circle. Assume that for each B i j , there exist matrices X i = X T i > 0 and Y i , ∀j = 1, ..., N, ∀i = 1, 2, ..., p such as:

-rX i qX i + (A j X i -B i j Y i ) T qX i + A j X i -B i j Y i -rX i < 0 (17)
It can be noticed that if q = 0 and r = 1, the previous equation ( 17) is equivalent to solve a classical quadratic stability problem.

Based on the assumptions that for each OP j each pairs (A j , b i j ) are controllable, it is possible to find a Lyapunov matrices X i > 0 and state-feedback K i with Y i = K i X i and finally form a global statefeedback gain K nom .

Theorem 1. Consider the system (15) in fault-free case (γ a = 0) defined for all EP j , j = 1, 2, .., N : it is possible to develop a mixing of pre-designed state-feedback gains matrices K i = Y i X -1 i for each actuator i with i = 1, 2, .., p such that ( 17) holds for all j = 1, ..., N . The state feedback control for each operating point is given by:

u j k = u j nom = -( p i=1 G i Y i )( p i=1 X i ) -1 x j k = -Y X -1 x j k = -K nom x j k (18) with p i=1 G i Y i = Y , X = p i=1 X i and G i = B i+
j B i j is matrix that has zeros everywhere except in entry (i, i) where it has a one. The general control law for all EP j could be defined as:

U nom = N j=1 ρ j k u j nom (19)
2 Proof: Summation of ( 17) for i = 1, 2, .., p gives for one equilibrium point

j p i=1 -rX i qX i + (A j X i -B i j Y i ) T qX i + (A j X i -B i j Y i ) -rX i < 0 (20)
related to the quadratic D-stability in a prescribed LMI region as in [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF].

Next, denote X = p i=1 X i (with X = X T > 0) to obtain      -rX qX + (A j X - p i=1 B i j Y i ) T qX + (A j X - p i=1 B i j Y i ) -rX      < 0 (21)
Now, denote the l-th row of the matrix Y i as Y l i , i = 1, ..., p et l = 1, .., p, i.e.

Y l i = G l Y i (22) Therefore, p i=1 B i j Y i = p i=1 [0, .., 0, b i j , 0, ..., 0]Y i i = B j p i=1 Y i i (23) leading to p i=1 B i j Y i = B j ( p i=1 G i Y i ) (24) Thus, taking Y = p i=1 G i Y i , equation (24) be- comes p i=1 B i j Y i = B j Y (25)
which, substituted into LMI (21), finally makes

-rX qX + (A j X -B j Y ) T qX + (A j X -B j Y ) -rX < 0 (26)
for EP j , j = 1, 2, .., N . By multiplying each LMI (26) by ρ j k and summing all of them, we obtain

      -rX qX + N j=1 ρ j k (A j X -B j Y ) T qX + N j=1 ρ j k (A j X -B j Y ) -rX       < 0 (27)
it is equivalent to (17). However, other system such piecewise linear system could use the same approach with a multiple gain synthesis as in [START_REF] Ozkan | Control of a solution copolymerization reactor using multimodel predictive control[END_REF].

-rX qX + (A(ρ)X -B(ρ)Y ) T qX + (A(ρ)X -B(ρ)Y ) -rX < 0 (28) with A(ρ) = n j=1 ρ j k A j and B(ρ) = n j=1 ρ j k B j . Hence quadratic D-

Active Fault Tolerant Control design

As indicated in equation ( 8) and based on the previous synthesis control law, the FTC method can be developed in this section where only actuator faults are considered under assumptions that fault occurrence and fault magnitude γ a are known.

Theorem 2. Consider the system (15) in faulty case (γ a = 0) coupled with regulators with gains K i = Y i X -1 i for all equilibrium point j = 1, ..., N and for each actuator i with i = 1, 2, .., p. Let introduce the set of indexes of all actuators that are not completely lost, i.e. Θ {i : i ∈ (1, 2, .., p), γ a i = 1}. The control action is

u j k = u j F T C = -(I -γ a ) + i∈Θ G i Y i i∈Θ X i -1 x j k (29) where G i = B i+ j B i j
, applied to the faulty system allows to constrain pole placement in prescribed LMI region.

2 Proof: Applying the new control law (29) to the faulty system (15), leads to the following equation

B j (I -γ a )u j k = B j Γ a ( i∈Θ G i Y i )( i∈Θ X i ) -1 x j k (30) with Γ a = I p-h 0 0 O h (31)
Γ a is a diagonal matrix which contains only entries zero (representing total faults) and one (no fault). But here h = 0, which is the number of actuators completely lost, due to the fact that only the set Θ is considered. Since B j Γ a = i∈Θ B j i models only the actuators that are not completely lost, then performing the summations in the proof of Theorem (1) over the elements of Θ shows that (

p i=1 G i Y i )( p i=1 X i ) -1
is the state-feedback gain matrix for the faulty system

(A j , i∈Θ B j i , C j ). ⋄
The control law in equation ( 29) implies that

u j k = u j F T C = -K F T C x j k (32) with K F T C = (I -γ a ) + i∈Θ G i Y i ( i∈Θ X i ) -1 (33) 
The global control law U F T C of the system is realized as:

U F T C = N j=1 ρ j k u j F T C (34) 
4. APPLICATION

Process description

The approach presented in this paper has been applied to the well known three tanks benchmark as in (Theilliol et al., 2003a). As all the three liquid levels are measured by level sensors, the output vector Y is [l 1 l 2 l 3 ] T . The control input vector is U = [q 1 q 2 ] T . The goal is to control the system around three equilibrium points with ∆x j = 0. Thus, 3 linear models have been identified around each of these equilibrium points and the operating conditions are given in Table (1). The linearized system is described by a discrete Table 1. state space representation with a sampling period T s = 1s. For each OP, each control matrix pair (A j , b i j ) is controllable. Controllers have been designed for levels l 1 and l 2 to track reference input vector Y r ∈ R 2 . Nominal controllers have been designed through Theorem (1), leading to two state feedback gain matrices K 1 , K 2 (due to 2 actuators) for all the three OP in order to achieve satisfying tracking performances. The simulation of actuator faults on the system does not affect the controllability and observability of the system.

Results and comments

Simulations have been performed such as the 3 operating conditions described in Table (1 Consequently, the dynamic behaviour of the other levels is also affected by this fault and control system tries to cancel the static error created by the corrupted input. Consequently, the real output is different from the reference input and the control law is different from its nominal value.

Since an actuator fault acts on the system as a perturbation, and in spite of the presence of an integral controller, the system outputs can not reach again their nominal values. In the same way, the actuator Fault Tolerant Control method's ability to compensate faults is illustrated in the presence of the same fault. Once the fault is isolated and simultaneously estimated, a new control law (34) is computed in order to reduce the fault effect on the system. Indeed, since the effect of an actuator fault is quite similar to the effect of a perturbation, the system outputs reach again their nominal values, as illustrated in figure (4).

A time delay between fault occurrence and fault compensation equals to 10 samples is considered in our simulation. Computation of the tracking error norm in fault-free case, in faulty case without and with FTC underlines the performances of this approach as seen in Table (2). With FTC, the tracking error norm for output l 1 is a bit larger than with the fault-free case but it still widely smaller than the one without FTC. The actuator Fault Tolerant Control is able to maintain performances as close as possible to nominal ones and to ensure the closed-loop stability despite the presence of instruments malfunction. 

CONCLUSION

The method developed in this paper emphasises the importance of the active Fault Tolerant Control of nonlinear systems based on multi-model representation. This method is suitable for actuator faults on the whole operating range of the system. A robust controller is designed for each separate actuator through an LMI pole placement in fault-free case and faulty case. It allows the system to continue operating safely, to avoid stopping it immediately and to ensure stability. The synthesis of this active state feedback control takes into account the information provided by FDI scheme. The performances and the effectiveness of this active Fault Tolerant Control based on multiple model approach have been illustrated in this simulation example. Futures works will deal with total failures, restructuration and will improve the limits of the strategy.
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Fig. 3 .
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	Error	Fault-free case	Actuator fault
	norm		without FTC	with FTC
	l1	1.1063	3.3365	1.1176