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Abstract: In this paper, an active Fault Tolerant Control (FTC) strategy is
developed to nonlinear systems described by multiple linear models to prevent
the system deterioration by the synthesis of adapted controllers. By considering
that Fault Detection, Isolation (FDI) and estimation is realized, the synthesis of an
appropriate combination of predesigned gains is performed. The main contribution
concerns the design of state feedback gains through LMI both in fault-free and
faulty cases in order to preserve the system performances. For each separate
actuator, a robust pole placement is designed by pole clustering. The effectiveness
and performances of the method are illustrated in simulation by considering a
nonlinear system: a Three-Tank system. Copyright c© 2005 IFAC
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1. INTRODUCTION

To overcome the limitations of conventional feed-
back control, new controllers have been devel-
oped with accommodation capabilities or toler-
ance to faults. The objective of Fault Tolerant
Control system (FTC) is to maintain current per-
formances closed to desirable performances and
preserve stability conditions in the presence of
component and/or instrument faults ; in some
circumstances reduced performance could be ac-
cepted as a trade-off. Accommodation capability
of a control system depends on many factors
such as the severity of the failure, the robust-
ness of the nominal system, and the actuators
redundancy. FTC can be motivated by different
goals depending on the application under consid-
eration, for instance, safety in flight control or
reliability or quality improvements in industrial
processes. Various approaches for FTC have been
suggested in the literature (Patton, 1997), (Zhang

and Jiang, 2003) but often deal with linear sys-
tems. For nonlinear systems, the design of Fault
Tolerant controller is far more complicated. Non-
linear systems based on multiple linear models,
represents an attractive solution to deal with the
control of nonlinear systems (Leith and Leithead,
2000), (Banerjee et al., 1995) or FDI methods as
in the chapter nine of (Chen and Patton, 1999)
where nonlinear dynamic systems are described
by a number of locally linearized models based on
the idea of Tagaki-Sugeno fuzzy models or as in-
terpolated multiple linear models (Murray-Smith
and Johansen, 1997). Various recent FDI/FTC
studies, based on a multiple model method have
been developed in order to detect, isolate and
estimated an accurate state of a system in pres-
ence of faults/failures around an operating point
(Maybeck, 1999), (Zhang and Jiang, 2001). Com-
pared to multi-model based reconfigurable con-
trol method presented by (Aström et al., 2001),
this paper not consider some redundant hardware
which is very useful when failures are supposed



to occur on the system. In this paper, an active
fault tolerant strategy is developed so as to avoid
actuator fault effect on nonlinear system where
faults are assumed to be incipient, abrupt but
not generate a total actuator failure. Under the
assumption that the fault is detected, isolated and
estimated, the developed method preserves the
system performances through an appropriate gain
synthesis in faulty case. It is a big difference with
robust control which does not deal with a FDI
module and does not take into account fault es-
timation for reconfiguration. Compared to recent
work applied to similar nonlinear system (Theilliol
et al., 2003a), where a multi-model representation
is considered, the proposed FTC strategy is not
based on an additional control law but on the re-
design of appropriate gain in faulty case allowing
stability and performances of the system.

This appropriate design is inspired from a previ-
ous work made by (Kanev and Verhaegen, 2002)
where a FTC strategy is devoted for each ac-
tuator. However, this work considers only linear
case with a single operating point. Our paper
contributes to improve it on real systems with
multi-operating points and a relaxed LMI region
for stability. The paper is organized as follows. In
section II, an active state space representation is
derived from an additive one by underlying the
links between them. A global state space repre-
sentation of nonlinear system is given through a
multi-model approach. In section III, we introduce
a pole placement by LMI region and then a
gain synthesis for each actuator generate an ac-
tive global state feedback synthesis. A simulation
example is given in section IV to illustrate the
proposed method. Finally, concluding remarks are
given in the last section.

2. PROBLEM STATEMENT

It is assumed that dynamic behaviour of the
system operating at different operating points
can be approximated by a set of N linear time
invariant models. Consider the following state
space representation of a nonlinear system around
j-th operating point with actuator faults:

{

x
j
k+1

= Ajx
j
k + Bju

j
k + Fjfk + ∆xj

y
j
k = Cjx

j
k + ∆yj

(1)

where xj ∈ R
n represents the state vector, uj ∈

R
p is the input vector, yj ∈ R

m is the output
vector and fk ∈ R

p represents the actuator fault
vector. Aj ∈ R

n×n, Bj ∈ R
n×p, Cj ∈ R

m×n

and the fault distribution matrix Fj ∈ R
n×f

are invariant matrices defined around the jth

operating point (OPj). We consider the terms
∆xj , ∆yj :

∆xj = −Ajx
j
e − Bju

j
e + xj

e

∆yj = −Cjx
j
e + yj

e

(2)

where (xj
e, y

j
e, u

j
e) are a family of operating points

of the nonlinear plant. As considered in (Johansen
et al., 1998), (Murray-Smith and Johansen, 1997)
and (Theilliol et al., 2003b), a possible model that
would be able to catch the full range of opera-
tion is made from N weighting local models OPj

by interpolation functions ρ
j
k. These activation

functions ρ
j
k ∀j ∈ [1, 2, .., N ] lie in a convex

set Ω = {ρj
k ∈ R

N , ρk = [ρ1
k ....ρN

k ]T , ρ
j
k ≥

0 ∀j and
∑N

j=1
ρ

j
k = 1} and these functions

are generated via works of (Adam-Medina et

al., 2003) and (Theilliol et al., 2003b), which per-
mit to generate insensitive residual to faults and
some uncertainties. So, activation functions are
robust against faults and errors modeling and the
dynamic system is well represented. The plant
dynamics are formulated as a blended multiple
representation as in (Theilliol et al., 2003a):

xk =
∑N

j=1
ρ

j
kx

j
k yk =

∑N

j=1
ρ

j
ky

j
k

(3)

The representation considers additive fault repre-
sentation but there exists multiplicative represen-
tation for specific actuator fault as in (Kanev and
Verhaegen, 2002). So, consider a local multiplica-
tive actuator fault representation as:

{

x
j
k+1

= Ajx
j
k + Bj(I − γa)uj

k + ∆xj

y
j
k = Cjx

j
k + ∆yj

(4)

with γa , diag[γa
1 , γa

2 , ..., γa
p ], γa

1 ∈ R, such that
γa

i = 1 represents a total lost, a failure of i-th
actuator and γa

i = 0 implies that i-th actuator
operates normally. The relation between state
space representations (1) and (4) is equivalent to

Fjfk = −Bjγ
au

j
k (5)

In closed-loop, the fault occurrence could be de-
tected as described in (Noura et al., 2000) for
linear case and (Theilliol et al., 2003a) for multi-
linear systems and Fault Tolerant Control could
be performed via an additional control law as
in (Theilliol et al., 2002) which permits to avoid
fault on a system based on a state space repre-
sentation as (1). In these papers, the goal was
to synthesize a new control law UFTC with a
nominal one unom and additional one uad. The
term uad was performed in order to vanish fault on
the system. The global control law is obtained by
interpolating gains of each local controller (Leith
and Leithead, 2000) and is defined as:

UFTC =
N

∑

j=1

ρ
j
k(uj

nom + u
j
ad) (6)

with uj
nom = −Kj

nomx
j
k. The gains were only

performed for nominal cases and do not take into
account fault occurrence. Based on a multiplica-
tive fault representation defined in (4), the new
control law u

j
FTC must vanish all faults on the

system as:
u

j
FTC = [I − γa]+uj

nom (7)



Note that u
j
FTC = [I − γa]+uj

nom = −[I −

γa]+Kj
nomx

j
k = −K

j
FTCx

j
k. So, without consid-

ering total fault, this specific control law in the
state space representation (4) leads to:

Bj(I − γa)uj
k = Bj(I − γa)(I − γa)+uj

nom

= Bju
j
nom

(8)

As previously defined in (6), the model probability
is viewed as a scheduled variable in the synthesis
of the controller and the global control law is
defined as:

UFTC =

N
∑

j=1

ρ
j
ku

j
FTC (9)

with u
j
FTC the output of each local controller

defined around each operating point. In order
to synthesize state feedback for FTC ensuring
both active control in multi-model philosophy
and quadratic stability, use of LMI provide a
well toolbox for these purposes. Total failures are
not consider in this paper but only partial ones.
We attract attention that the system has to be
observable in all around each operating points and
we will consider now only nonlinear plant defined
around Equilibrium Points (EP) i.e. ∆xj = 0.

3. FAULT TOLERANT CONTROL ON
MULTIPLE OPERATING POINTS

3.1 Pole clustering

In the synthesis of control system, some desired
performances should be considered in addition to
stability. In fact, classical stability conditions do
not deal with transient responses of the closed-
loop system. In contrast, a satisfactory transient
response can be guaranteed by confining its poles
in a prescribed region. For many real problems,
exact pole assignment may not be necessary: it
suffices to locate the closed-loop poles in a pre-
scribed subregion in the complex plane. We will
discuss about pole clustering by introducing the
following LMI-based representation of stability
regions.

Definition 1. LMI stability region (Chilali and
Gahinet, 1996). A subset D of the complex plane
is called an LMI region if there exist a symmetric
matrix α = [αkl] ∈ R

n×n and a matrix β = [βkl] ∈
R

n×n such that

D = {z ∈ C : fD(z) < 0} (10)

where the characteristic function fD(z) is given
by

fD(z) = [αkl + βklz + βlkz̄]1≤k,l≤n (11)

(fD is valued in the space of n×n Hermitian ma-
trices). 2

Moreover, LMI regions are convex and symmet-
ric with respect to the real axis since for any
z ∈ DfD(z̄) = fD(z) < 0. Then, a matrix A

has all its eigenvalue in D, if and only if there

exists a symmetric matrix P such that (Chilali
and Gahinet, 1996):

MD(A,P ) = α ⊗ P + β ⊗ (AP ) + βT ⊗ (AP )T

= [αklP + βklAP + βlkPAT ]1≤k,l≤m (12)

with M = [µkl]1≤k,l≤n means that M is an n × n

matrix (respectively, bloc matrix) with generic
entry (respectively bloc) µkl. Note that MD(A,P )
in (12) and fD(z) in (11) are related by the
substitution (P,AP, PAT ) ↔ (1, z, z̄). It is easily
seen that LMI regions are convex and symmetric
with respect to real axis. Specifically, the circular
LMI region D is considered:

D = {x + jy ∈ C : (x + q)2 + y2 < r2} (13)

centered at (−q, 0) with radius r > 0, where the
characteristic function fD(z) is given by:

fD(z) =

(

−r z̄ + q

z + q −r

)

(14)

Therefore, this circular region puts a lower bound
on both the exponential decay rate and the damp-
ing ratio of the closed-loop response, and thus
is very common in practical control design. It is
obvious that well chosen LMI region is needed
for ensuring stability and good results: the pa-
rameters q, r have to be defined by the engineer.

3.2 Control law synthesis in fault-free case

Let consider the state space representation (4) of
nonlinear system defined around the Equilibrium
Points EPj , ∀j = 1, 2, .., N

{

x
j
k+1

= Ajx
j
k + Bi

j(I − γa)uj
k

y
j
k = Cjx

j
k

(15)

with i = 1, 2, .., p the actuators for each EPj .
Consider the matrix representing total faults in
all actuators but the i-th:

Bi
j = [0, .., 0, bi

j , 0, ..., 0] (16)

and Bj = [b1
j , b

2
j , ..., b

p
j , ] with bi

j ∈ R
n×1. It is

assumed that each column of Bj is full column
rank whatever the EPj . The pairs (Aj , b

i
j),∀i =

1, ..., p are assumed to be controllable for all ∀j =
1, ..., N . Let D, a LMI region defining a disk with
a center (−q, 0), and a radius r with (q + r) < 1
for defining pole assignment in the unit circle.
Assume that for each Bi

j , there exist matrices

Xi = XT
i > 0 and Yi, ∀j = 1, ..., N,∀i = 1, 2, ..., p

such as:
(

−rXi qXi + (AjXi − Bi
j
Yi)

T

qXi + AjXi − Bi
j
Yi −rXi

)

< 0

(17)

It can be noticed that if q = 0 and r = 1, the
previous equation (17) is equivalent to solve a
classical quadratic stability problem.

Based on the assumptions that for each OPj each
pairs (Aj , b

i
j) are controllable, it is possible to find



a Lyapunov matrices Xi > 0 and state-feedback
Ki with Yi = KiXi and finally form a global state-
feedback gain Knom.

Theorem 1. Consider the system (15) in fault-free
case (γa = 0) defined for all EPj , j = 1, 2, .., N :
it is possible to develop a mixing of pre-designed
state-feedback gains matrices Ki = YiX

−1
i for

each actuator i with i = 1, 2, .., p such that (17)
holds for all j = 1, ..., N . The state feedback
control for each operating point is given by:

u
j
k = uj

nom = −(

p
∑

i=1

GiYi)(

p
∑

i=1

Xi)
−1x

j
k

= −Y X−1x
j
k = −Knomx

j
k

(18)

with
∑p

i=1
GiYi = Y , X =

∑p

i=1
Xi and Gi =

Bi+
j Bi

j is matrix that has zeros everywhere except
in entry (i, i) where it has a one. The general
control law for all EPj could be defined as:

Unom =
∑N

j=1
ρ

j
kuj

nom (19)

2

Proof:
Summation of (17) for i = 1, 2, .., p gives for one
equilibrium point j

p
∑

i=1

(

−rXi qXi + (AjXi − Bi
j
Yi)

T

qXi + (AjXi − Bi
j
Yi) −rXi

)

< 0

(20)

related to the quadratic D-stability in a prescribed
LMI region as in (Chilali and Gahinet, 1996).
Next, denote X =

∑p

i=1
Xi (with X = XT > 0)

to obtain










−rX qX + (AjX −

p
∑

i=1

Bi
jYi)

T

qX + (AjX −

p
∑

i=1

Bi
jYi) −rX











< 0

(21)

Now, denote the l-th row of the matrix Yi as Y l
i ,

i = 1, ..., p et l = 1, .., p, i.e.

Y l
i = GlYi (22)

Therefore,

p
∑

i=1

Bi
jYi =

p
∑

i=1

[0, .., 0, bi
j , 0, ..., 0]Y i

i = Bj

p
∑

i=1

Y i
i

(23)

leading to
p

∑

i=1

Bi
jYi = Bj(

p
∑

i=1

GiYi) (24)

Thus, taking Y =
∑p

i=1
GiYi, equation (24) be-

comes
p

∑

i=1

Bi
jYi = BjY (25)

which, substituted into LMI (21), finally makes
(

−rX qX + (AjX − BjY )T

qX + (AjX − BjY ) −rX

)

< 0 (26)

for EPj , j = 1, 2, .., N . By multiplying each LMI

(26) by ρ
j
k and summing all of them, we obtain













−rX qX +

N
∑

j=1

ρj

k
(AjX − BjY )T

qX +

N
∑

j=1

ρj

k
(AjX − BjY ) −rX













< 0

(27)

it is equivalent to
(

−rX qX + (A(ρ)X − B(ρ)Y )T

qX + (A(ρ)X − B(ρ)Y ) −rX

)

< 0

(28)

with A(ρ) =
∑n

j=1
ρ

j
kAj and B(ρ) =

∑n

j=1
ρ

j
kBj .

Hence quadratic D-stability is ensured by solving
(27) and Y = KnomX quadratically stabilizes the
system (15) by solving (28) with a state feedback
law uj

nom = −Y X−1x
j
k. ⋄

Remark1: It could be noticed that gain synthesis
through multiple operating point with such LMI
consideration provide only one single gain for all
OP due to Bilinear Matrix inequality (BMI)
problem in term (2, 1) of LMI (17). However,
other system such piecewise linear system could
use the same approach with a multiple gain syn-
thesis as in (Ozkan et al., 2003).

3.3 Active Fault Tolerant Control design

As indicated in equation (8) and based on the pre-
vious synthesis control law, the FTC method can
be developed in this section where only actuator
faults are considered under assumptions that fault
occurrence and fault magnitude γa are known.

Theorem 2. Consider the system (15) in faulty
case (γa 6= 0) coupled with regulators with gains
Ki = YiX

−1
i for all equilibrium point j = 1, ..., N

and for each actuator i with i = 1, 2, .., p. Let
introduce the set of indexes of all actuators that
are not completely lost, i.e.
Θ , {i : i ∈ (1, 2, .., p), γa

i 6= 1}. The control
action is

u
j
k = u

j
FTC = −(I − γa)+

(
∑

i∈Θ

GiYi

(
∑

i∈Θ

Xi

)−1
x

j
k

)

(29)
where Gi = Bi+

j Bi
j , applied to the faulty system

allows to constrain pole placement in prescribed
LMI region. 2

Proof: Applying the new control law (29) to the
faulty system (15), leads to the following equation

Bj(I − γa)uj
k = BjΓ

a(
∑

i∈Θ

GiYi)(
∑

i∈Θ

Xi)
−1x

j
k

(30)
with Γa =

(

Ip−h 0
0 Oh

)

(31)

Γa is a diagonal matrix which contains only en-
tries zero (representing total faults) and one (no
fault). But here h = 0, which is the number of



actuators completely lost, due to the fact that
only the set Θ is considered. Since BjΓ

a =
∑

i∈Θ

B
j
i models only the actuators that are not

completely lost, then performing the summations
in the proof of Theorem (1) over the elements
of Θ shows that (

∑p

i=1
GiYi)(

∑p

i=1
Xi)

−1 is the
state-feedback gain matrix for the faulty system
(Aj ,

∑

i∈Θ

B
j
i , Cj). ⋄

The control law in equation (29) implies that

u
j
k = u

j
FTC = −KFTCx

j
k

(32)

with
KFTC = (I − γa)+

∑

i∈Θ

GiYi(
∑

i∈Θ

Xi)
−1 (33)

The global control law UFTC of the system is
realized as:

UFTC =
∑N

j=1
ρ

j
ku

j
FTC (34)

4. APPLICATION

4.1 Process description

The approach presented in this paper has been
applied to the well known three tanks benchmark
as in (Theilliol et al., 2003a). As all the three
liquid levels are measured by level sensors, the
output vector Y is [l1 l2 l3]

T . The control input
vector is U = [q1 q2]

T . The goal is to control
the system around three equilibrium points with
∆xj = 0. Thus, 3 linear models have been identi-
fied around each of these equilibrium points and
the operating conditions are given in Table (1).
The linearized system is described by a discrete

Table 1.

Operating point n◦1 n◦2 n◦3

0.20; 0.50; 0.50;

yj
e(m) 0.15; 0.15; 0.405;

0.175 0.325 0.45

uj
e 1.7509; 4.6324; 2.4761;

(m3/s) × 10−5 4.0390 1.1574 6.9787

state space representation with a sampling pe-
riod Ts = 1s. For each OP, each control matrix
pair (Aj , b

i
j) is controllable. Controllers have been

designed for levels l1 and l2 to track reference
input vector Y r ∈ R

2. Nominal controllers have
been designed through Theorem (1), leading to
two state feedback gain matrices K1,K2 (due to 2
actuators) for all the three OP in order to achieve
satisfying tracking performances. The simulation
of actuator faults on the system does not affect the
controllability and observability of the system.

4.2 Results and comments

Simulations have been performed such as the 3
operating conditions described in Table (1) are
reached and weighting functions for each local

model are presented in figure (1) always close to
the dynamic behaviour of the nonlinear system
according to the considered operating regimes.
Figure (2) shows the time history of the outputs
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Fig. 1. Weighting functions

with respect to set-point changes occur at time
instant 500s and after at time instant 2500s. In
the simulation, gaussian noises (N(0, 1e−42

)) are
added to each output signal. The reference inputs
correspond to step changes for l1 and l2. The
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Fig. 2. System outputs in fault-free case with a
nominal control law

consequence of an actuator fault is illustrated in
figure (3). A gain degradation of pump 1 (clogged
or rusty pump) equivalent to 80% loss of effective-
ness is supposed to occur at time instant 1000s.
Consequently, the dynamic behaviour of the other
levels is also affected by this fault and control
system tries to cancel the static error created
by the corrupted input. Consequently, the real
output is different from the reference input and
the control law is different from its nominal value.
Since an actuator fault acts on the system as a
perturbation, and in spite of the presence of an
integral controller, the system outputs can not
reach again their nominal values. In the same
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Fig. 3. System outputs with pump degradation
and a nominal controller



way, the actuator Fault Tolerant Control method’s
ability to compensate faults is illustrated in the
presence of the same fault. Once the fault is iso-
lated and simultaneously estimated, a new control
law (34) is computed in order to reduce the fault
effect on the system. Indeed, since the effect of
an actuator fault is quite similar to the effect of
a perturbation, the system outputs reach again
their nominal values, as illustrated in figure (4).
A time delay between fault occurrence and fault
compensation equals to 10 samples is considered
in our simulation. Computation of the tracking
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Fig. 4. System outputs with pump degradation
and a FTC controller

error norm in fault-free case, in faulty case with-
out and with FTC underlines the performances of
this approach as seen in Table (2). With FTC, the
tracking error norm for output l1 is a bit larger
than with the fault-free case but it still widely
smaller than the one without FTC. The actuator
Fault Tolerant Control is able to maintain per-
formances as close as possible to nominal ones
and to ensure the closed-loop stability despite the
presence of instruments malfunction.

Table 2.

Error Fault-free case Actuator fault
norm without FTC with FTC

el1 1.1063 3.3365 1.1176

5. CONCLUSION

The method developed in this paper emphasises
the importance of the active Fault Tolerant Con-
trol of nonlinear systems based on multi-model
representation. This method is suitable for actu-
ator faults on the whole operating range of the
system. A robust controller is designed for each
separate actuator through an LMI pole place-
ment in fault-free case and faulty case. It allows
the system to continue operating safely, to avoid
stopping it immediately and to ensure stability.
The synthesis of this active state feedback control
takes into account the information provided by
FDI scheme. The performances and the effective-
ness of this active Fault Tolerant Control based
on multiple model approach have been illustrated
in this simulation example. Futures works will
deal with total failures, restructuration and will
improve the limits of the strategy.
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