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Design of a Robust Polytopic Unknown Input Observer for FDI: Application for Systems described by a Multi-Model Representation

The main goal of this paper consists in fault diagnosis of systems represented by a multi-model approach. Partial knowledge of the system representation around operating points must allow to obtain its dynamic behaviour under modeling errors consideration. The goal of this paper is to decouple modeling errors through a wide operating range by a dedicated polytopic Unknown Input Observer (UIO). The robust polytopic observer allows an optimization of modeling errors matrix distribution and permits to develop a fault diagnosis strategy on a wide operating range. Polytopic observer stability is guaranteed by pole assignment established through Linear Matrix Inequality (LMI). The effectiveness and performances of the method are illustrated in simulation considering a CSTR.

I. INTRODUCTION

The increasing demands for good performance and higher standards of safety and reliability result in more emphasis on fault diagnosis. Fault detection and isolation (FDI) refers to the task of inferring the occurrence of faults in a process and finding the root causes of the faults. Fault diagnosis based on analytical models is developed for exact and uncertain linear mathematical description of the system, several books are dedicated to these topics: [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF] and [START_REF] Gertler | Fault detection and diagnosis in engineering systems[END_REF]. FDI on nonlinear systems remains a challenge due to the problem of discriminating between disturbances and faults through a wide range of operating conditions. Different techniques based on an exact knowledge of the nonlinear system allow to generate residuals insensitive to fault by specific decoupling methods [START_REF] Alcorta-Garcia | Deterministic nonlinear observer based approaches to fault diagnosis: a survey[END_REF], [START_REF] Kinnaert | Robust fault detection based on observers for bilinear systems[END_REF] or geometric approach [START_REF] Persis | A geometric approach to nonlinear fault detection[END_REF], [START_REF] Hammouri | A geometric approach to fault detection and isolation for bilinear systems[END_REF]. An attractive alternative to nonlinear modeling problem is to use a multi-linear model approach. This approach is successfully used for some nonlinear systems in control field but rarely in FDI, and consists in partitioning the operating range of a system into separate regions in order to synthesize a global representation. The reader could refer to [START_REF] Murray-Smith | Multiple Model Approaches to Modelling and Control[END_REF] for a global review on multiple models strategy, and also for well developed identification method and modeling problems. A polytopic representation is sometimes used in multi-model for nonlinear systems modeling as for example in fault-free case in [START_REF] Angeli | Constrained predictive control of nonlinear plants via polytopic linear system embedding[END_REF], [START_REF] Tayebi | Iterative learning control for nonlinear systems described by a blended multiple model representation[END_REF], [START_REF] Wan | Efficient scheduled stabilizing model predictive control for constrained nonlinear systems[END_REF] and [START_REF] Ozkan | Control of a solution copolymerization reactor using multi-model predictive control[END_REF], and in faulty case in [START_REF] Theilliol | Adaptive filter design for FDI in nonlinear systems based on multiple model approach[END_REF]. Multiple Model Adaptive Estimation (MMAE) [START_REF] Maybeck | Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems[END_REF] or Interacting Multiple Model (IMM) [START_REF] Blom | The interacting multiple model algorithm for systems with Markovian switching coefficients[END_REF] introduce a multi-model approach for FDI, but these techniques are developed around an unique operating point (OP). Indeed, This work was not supported by any organization M. Rodrigues, D. Theilliol and D. Sauter are with Centre de Recherche en Automatique de Nancy -CNRS UMR 7039, Université Henri Poincaré, BP 239 -54506 Vandoeuvre Cedex -France.

Phone: +33 383 684 465 -Fax: +33 383 684 462mickael.rodrigues@cran.uhp-nancy.fr these methods consider a particular multi-model approach where each model is dedicated to a specified fault. A fuzzy logic development is also mentioned in [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF] for diagnosis but only with Kalman or Luenberger filters which do not permit to deal with modeling errors. Moreover, the activation functions for each model may be not robust to faults. This paper addresses a different method that could allow to detect both actuator or sensor fault in nonlinear systems which are known and exploited around few local models, i.e. we suppose only local identification as in some industrial systems around specific operating point. Compared to methods that could detect both operating conditions evolution and detect, isolate and estimate faults in nonlinear system as proposed by [START_REF] Theilliol | Adaptive filter design for FDI in nonlinear systems based on multiple model approach[END_REF] and [START_REF] Adam-Medina | Fault diagnosis in nonlinear systems through an adaptive filter under a convex set representation[END_REF], this paper considers time varying modeling errors. Thus, the main contribution of this paper consists in the synthesis of a residual generator based on a Polytopic Unknown Input Observer (PUIO) which generates robust residual against error modeling under fault occurrence. Another kind of UIO was developed in [START_REF] Millerioux | Unknown input observers for messageembedded chaos synchronization of discrete-time systems[END_REF] for communication purposes but not for fault diagnosis and more over we would like to consider possible multiple different unknown inputs matrices which can be re-designed in a unique matrix in order to ensure fault detection during models transitions. The paper is organized as follows:

Section II deals with the nonlinear system representation under a convex set through a multi-model approach with taking into account modeling errors in the state space representation. Section III presents an optimal representation of modeling errors and the synthesis of the PUIO. In Section IV, stability of the PUIO is performed by use of Linear Matrix Inequalities (LMI) for observer gain synthesis. In the last Section, the performances of the PUIO are illustrated through a nonlinear CSTR simulation.

II. NONLINEAR REPRESENTATION AND FDI FOR POLYTOPIC SYSTEMS

A. Nonlinear Representation

Consider a discrete-time nonlinear dynamical system in fault-free case described by:

x k+1 = g x k , u k y k = h x k , u k (1) 
where x k ∈ X ∈ R n represents the state vector, u k ∈ U ∈ R p is the input vector and y ∈ R m is the output vector. We assume that functions g x k , u k and h x k , u k are continuously differentiable.

It is assumed that dynamic behaviour of the system operating at different operating points can be approximated by a set of N linear time invariant models. Consider the following state space representation of a nonlinear system around i-th operating point, ∀i ∈ [1, . . . , N ], with additive actuator faults:

x k+1 -x i e =A i (x k -x i e ) + B i (u k -u i e ) + E i d k + F i f k y k -y i e = C i (x k -x i e ) + D i (u k -u i e ) (2 
) Matrices (A i , B i , C i , D i ) are invariant matrices defined around the i th operating point (OP i ) generally obtained from a nonlinear system using a first-order Taylor expansion around (x i e , u i e ) with y i e = C i x i e + D i u i e or identification of a nonlinear system around predefined operating points as for example in chemical processes in [START_REF] Ozkan | Control of a solution copolymerization reactor using multi-model predictive control[END_REF] and [START_REF] Wan | Efficient scheduled stabilizing model predictive control for constrained nonlinear systems[END_REF]. The fault distribution matrix is represented by F i ∈ R n×p . f k ∈ R p represents the actuator fault vector and in faultfree case it is obviously equal to zero. The modeling errors matrix are noted as E i ∈ R n×q and are supposed to be full column rank for each operating point and d k ∈ R q is the associated modeling error vector. These matrices E i can be obtained from a second-order Taylor expansion or through an identification procedure as treated in [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. In the following, we consider that D i = 0. As proposed in fault-free case in [START_REF] Murray-Smith | Multiple Model Approaches to Modelling and Control[END_REF], [START_REF] Tayebi | Iterative learning control for nonlinear systems described by a blended multiple model representation[END_REF] and in faulty-case in [START_REF] Rodrigues | Fault Diagnosis on Industrial Systems based on a Multiple Model approach[END_REF](where E i was not considered), (2) can be specified by the set of system matrices:

M i = A i B i E i F i C i , ∀i ∈ [1 . . . N ] (3) 
Let S k be a matrix sequence varying within a convex set, defined as:

M k := N i=1 ρ i k M i : ρ i k ≥ 0, N i=1 ρ i k = 1 (4) 
So, M k characterizes at each sample the nonlinear system from an OP to another. Consequently, the dynamic behavior of nonlinear system can be defined by a convex set of a multiple LTI models, noted Υ Υ := [M 1 , . . . , M N ] . The representation (4) under a convex set can be considered as a conventional modeling approach for nonlinear smooth plant where ρ i k is an appropriate weighting function. The function ρ i k embodies the nonlinearity of the plant and

ρ i k ∀i ∈ [1 . . . N ] lie in a convex set Ω = {ρ i k ∈ R N , ρ k = [ρ 1 k ....ρ N k ] T , ρ i k ≥ 0 ∀i and N i=1 ρ i k =
1} and these functions are directly generated via works of [START_REF] Adam-Medina | Fault diagnosis in nonlinear systems through an adaptive filter under a convex set representation[END_REF] and [START_REF] Theilliol | Adaptive filter design for FDI in nonlinear systems based on multiple model approach[END_REF], which permit to generate insensitive residual to faults. Under the assumptions that these weighting functions ρ i k are considered as scheduling variables which are not affected by faults or modeling errors as proposed by [START_REF] Adam-Medina | Fault diagnosis in nonlinear systems through an adaptive filter under a convex set representation[END_REF] and [START_REF] Theilliol | Adaptive filter design for FDI in nonlinear systems based on multiple model approach[END_REF], the nonlinear system (1) can be described by the following state space representation:

x k+1 = N i=1 ρ i k A i x k + B i u k + E i d k + F i f k + ∆x i y k = N i=1 ρ i k C i x k (5 
) with the term ∆x i , around an ith operating point, equals to:

∆x i = -A i x i e -B i u i e + x i e (6)
As referred in [START_REF] Alcorta-Garcia | Deterministic nonlinear observer based approaches to fault diagnosis: a survey[END_REF], a new set of matrices is designed with the additional term ∆x i such that:

S i = A i B i E i F i ∆x i C i , ∀i ∈ [1 . . . N ] (7) 
Based on the representation (5), we focus our attention on the synthesis of the Polytopic Unknown Input Observer. In order to realize an efficient FDI, a decoupled residual against modeling errors should be generated and modeling errors matrices definition must be reconsidered.

III. MODELING ERRORS REPRESENTATION

Modeling errors E i are likely different for each operating point with different distribution matrices. One way to achieve a fault diagnosis robust to modeling errors is to make disturbance de-coupling conditions hold true (in an optimal sense) for all disturbance distribution matrices. This can be done by using a single optimal disturbance distribution matrix E * to approximate all of them as proposed by [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. This optimal matrix E * with full column rank makes possible de-coupling residual from modeling errors between different OP. An exact de-coupling for each OP is robust against modeling errors around the OP but not during transitions between the different OP.

Let consider a set R which contains N modeling errors modeling matrices such that

[E 1 E 2 . . . E N ] = R (8) 
An optimal matrix E * that can approximate the set R is equivalent to the following optimization problem:

min R * R -R * 2 F (9) subject to rank(R * ) ≤ m
where . 2 F denotes the Frobenius norm. The matrix R * is thus chosen so that the sum of the squared distances between the columns of R and R * is minimized subject to the constraint R * ≤ m. Moreover, the rank condition is due to the fact that FDI scheme can distinguish faults and modeling errors with all most m independent outputs. This optimization problem can be solved by using Singular Value Decomposition (SVD) on the set R * .

The second step is to obtain the required distribution matrix E * with appropriate dimension by decomposing the rank deficient matrix R * as:

R * = R 1 R 2 (10) 
where R 1 ∈ R n×q is full column rank and R 2 ∈ R q×(N ×q) . An optimal approximation for the modeling errors distribution matrix is R 1 with rank q equivalent to matrix E * . Consequently, the following state space representation could be considered to describe the dynamic behaviour of the nonlinear system:

x k+1 ≃ N i=1 ρ i k A i x k + B i u k + E * d k + F i f k + ∆x i y k = Cx k (11)
Moreover, it is often possible to consider only one output matrix C if there is no nonlinearity on the outputs.

So, based on equation [START_REF] Ozkan | Control of a solution copolymerization reactor using multi-model predictive control[END_REF], a robust polytopic unknown input observer against modeling errors is developed in the next section.

IV. POLYTOPIC UNKNOWN INPUT OBSERVER DESIGN

Definition 1: (Polytopic Unknown Input Observer) A polytopic observer is defined as a polytopic unknown input observer for the system described by [START_REF] Ozkan | Control of a solution copolymerization reactor using multi-model predictive control[END_REF] without fault (f k = 0), if the estimation error tends asymptotically to zero despite unknown disturbances on the system. This polytopic unknown input observer is defined such that:

z k+1 = N i=1 ρ i k S i z k + T B i u k + K i y k + ∆z i x k+1 = z k+1 + H * y k+1
where x is the state space estimation of x. The estimation error is equivalent to

e k+1 = x k+1 -x k+1 = x k+1 -(z k+1 + H * y k+1 ) = x k+1 -H * (Cx k+1 ) -z k+1 = [I -H * C]x k+1 -(S(ρ)z k + T B(ρ)u k + K(ρ)y k + ∆z(ρ)) (12) with notation ( )(ρ) stands for N i=1 ρ i k ( ) i
. By taking into account gain decomposition K(ρ) such as K(ρ) = K 1 (ρ) + Π(ρ), the equation ( 12) leads to:

e k+1 = [I -H * C](A(ρ)x k + B(ρ)u k + E * d k + F (ρ)f k + ∆x(ρ)) -∆z(ρ) -T B(ρ)u k -S(ρ)(x k -e k -H * y k ) -K 1 (ρ)Cx k -Π(ρ)y k (13)
The estimation error is equivalent to:

e k+1 = S(ρ)e k -[S(ρ) -(I -H * C)A(ρ) -K 1 (ρ)C]x k + (I -H * C)E * d k -[Π(ρ) -S(ρ)H * ]y k + [I -H * C]∆x(ρ) + (I -H * C)F (ρ)f k -∆z(ρ) -[T -(I -H * C)]B(ρ)u k (14) 
S(ρ), T, K(ρ) and H * are designed so as to ensure the stability and the convergence of the estimation error e k = x kx k without fault on the system (f k = 0). To obtain an exact decoupling, based on an optimal modeling errors distribution matrix E * , the following conditions should be satisfied:

S(ρ) = T A(ρ) -K 1 (ρ)C Π(ρ) = S(ρ)H * (15) (I -H * C)E * = 0 T = I -H * C T ∆x(ρ) = ∆z(ρ)
The robust polytopic UIO design is realized when equations (15) hold true and S(ρ) stable. So, estimation error without fault occurrence, denoted ēk , tends asymptotically to zero if all these conditions (15) are satisfied. The gain design K 1 (ρ) is addressed in the next section. The necessary and sufficient conditions for the existence of a polytopic UIO are:

(i) Rank(CE * ) = Rank(E * ) (ii) (T A i , C) are detectable pairs, ∀i ∈ [1, 2, . . . , N ].
These conditions are related in linear case [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF].

If condition (i) is true, the synthesis of matrix H * , which can permit to avoid unknown input effects, is performed by:

H * = E * (CE * ) + (16) 
It should be noted that the matrix E * is a constant matrix ∀i ∈ [1, 2, . . . , N ]. If conditions (15) hold true, the estimation error e k and the residual r k are described as:

e k+1 = S(ρ)e k + (I -H * C)F (ρ)f k r k = Ce k (17) 
Moreover, condition (ii) ensures that a gain K 1 (ρ) can be synthesized in order to obtain a Hurwitz matrix S(ρ) = T A(ρ) -K 1 (ρ)C and an estimation error which tends to zero without fault. E * is a fixed matrix over the operating range and for detection and isolation purposes, it is important to constraint q + f < m, i.e. the rank q of modeling errors matrix and the rank f of the faulty distribution matrix have to be smaller than the number m of the outputs. For an actuator fault isolation, a bank of p polytopic UIO has to be used where each polytopic UIO is computed with a different unknown input such as E new = [E * F j (ρ)](with rank of E new equals to q + f ), with F j (ρ) is the jth column of matrix F (ρ). If ( 15) and ( 16) are fulfilled, the estimation error e k and residual r k lead to:

e k+1 = S(ρ)e k + T F (ρ)f k r k = Ce k (18) 
with an exact de-coupling on E * . However, it is essential to examine faulty distribution matrices F i with modeling error matrix E * which have to generate different spaces. Indeed, de-coupling can reject perturbations through the term T E * in equation ( 15), whereas fault are represented by the term T F (ρ). If it is very important in FDI scheme to cancel perturbation on a system, it is widely important to be able to detect and isolate fault through estimation error e k and r k . Thus, some relations have to be verified around all the operating points:

Rank[T F (ρ)] = rank[F (ρ)], ∀ρ ∈ Ω (19) 
This condition allows to verify that de-coupling do not affect fault detection by the estimation error. This condition can be translated in a geometric way such as:

N i=1 Im(F i ) ⊆ Im(T T ) (20) 
If the union image F i is included in the image of decoupling matrix T T , then fault detection is possible over all the operating range. It is equivalent to:

N i=1 Im(F i ) Ker(T ) = {0} = Im([F 1 . . . F i . . . F N ]) Ker(T ) = {0} (21) 
If condition [START_REF] Gatzke | Multiple model approach for CSTR control[END_REF], which can be checked off-line, is fulfilled, de-coupling do not affect fault detection. It could be noticed that all F i are supposed to be full column rank in order to avoid fault compensation of non-independent columns. The estimation error is not corrupt by modeling errors based on an approximated matrix E * over the all operating range; but there should remain a little difference due to the minimization criterion (9).

V. GAIN SYNTHESIS BY LMI

A. Introduction on LMI Region

Pole assignment by LMI is dedicated for convex sets [START_REF] Oliveira | A New Discrete-time Robust Stability Condition[END_REF]. The main objective is to ensure, at first, polytopic observer stability and in a second time to constraint its poles in a specified region of the complex plane. The observer dynamic is performed by decomposing complex plane in LMI region.

Definition 2: LMI region [19] A subset D of the complex plane is called an LMI region if there exists a symmetric matrix α ∈ R m×m and a matrix

β ∈ R m×m , such that D = z ∈ C : f D (z) < 0 (22) with f D (z) = α + zβ + zβ T where f D is called the characteristic function.
Eigenvalues of a real matrix A lie in D [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF], if and only if there exists a symmetric positive definite matrix P > 0, such that

M D (A, P ) = α ⊗ P + β ⊗ (AP ) + β T ⊗ (AP ) T < 0 (23)
Then, it is both possible to constraint poles of the observer to a prescribed region and ensure it stability.

B. Poles Placement of the Robust Polytopic UIO under LMI Constraints

According to [START_REF] Oliveira | A New Discrete-time Robust Stability Condition[END_REF], the estimation error ēk , without fault, is expressed as

ēk+1 = S(ρ)ē k = (I -H * C)A(ρ) -K 1 (ρ)C ēk = Ā(ρ) -K 1 (ρ)C ēk ( 
24) Proposition 1: Let D(r) a LMI region defining a disk (included in the unit circle) with a center (0, 0) and a radius 0 < r < 1. The estimation error (24) is called quadratically D-stabilizable (all the complex poles lie in LMI region D) if there exists matrices R i for i = [1 . . . N ] and a positive symmetric matrix X > 0 with appropriate dimensions such that ∀i ∈ [1 . . . N ]:

-rX ĀT i X -C T R T i X Āi -R i C -rX < 0 (25) with R i = XK 1 i . Proof: If (25) is fulfilled ∀i ∈ [1 . . . N ], then by using notation R i = XK 1 i , it follows that -rX ( Āi -K 1 i C) T X X( Āi -K 1 i C) -rX < 0 (26)
The poles of the matrix ( Āi -K 1 i C) lie in a circle with a center (0, 0) and a radius 0 < r < 1 (Cf. Definitions of such elementary LMI regions in [START_REF] Chilali | H∞ design with pole placement constraints: an LMI approach[END_REF]). By weighting each LMI (26) by ρ i and summing all of them with N i=1 ρ i = 1, the inequality (26) leads to

-rX N i=1 ρ i ( Āi -K 1 i C) T X X N i=1 ρ i ( Āi -K 1 i C) -rX < 0 (27) where matrix N i=1 ρ i ( Āi -K 1 i C
) can be written as ( Ā(ρ)-K 1 (ρ)C) under the convex set Ω, ensuring that poles of the estimation error ēk in (24) lie in region D with gains

K 1 (ρ) = N i=1 ρ i X -1 R i , ∀i ∈ [1, . . . , N ].
The estimation is said quadratic D-stable.

Remark: if parameter r = 1 then LMI in (25) expresses quadratic stability in discrete case with notation R i = XK 1 i and with a Schür Complement, we find after some computations:

( Āi -K 1 i C) T P ( Āi -K 1 i C
) -P < 0 and P > 0 that is the quadratic stability of estimation error with respect to

X -1 = P > 0 at each vertex ∀i ∈ [1, . . . , N ].
We should note that using LMI, observer gain synthesis is made through a polytopic form and estimation error (24) satisfies to the condition of quadratic D-stability with X > 0 for the Lyapunov matrix. This proposed solution allows to ensure a quadratic D-stability for the estimation error (without fault) and to fixe the dynamic of the polytopic UIO for the considered system. Poles constraints are specified with LMI defining a prescribed region of the complex plan.

VI. CSTR: CONTINUOUS STIRRED TANK REACTION

A. System Description

The performance of the robust polytopic UIO is illustrated through a Continuous Stirred Tank Reaction simulation (CSTR). A full description of the CSTR could be found in [START_REF] Chen | Nonlinear predictive control of a benchmark cstr[END_REF]. This system is a nonlinear chemical reactor that exhibits many interesting properties like input multiplicity, a gain sign change, asymmetric response and both minimum and nonminimum phase behavior [START_REF] Gatzke | Multiple model approach for CSTR control[END_REF]. The, so called van der Vusse reaction, is summarized by the following reaction scheme: A ⇛ B with B ⇛ C and 2A ⇛ D. The dynamic behaviour of the reactor is classically described by the following nonlinear differential equations:

                   ĊA = V Vr (C A0 -C A ) -k 1 (v)C A -k 3 (v)C 2 A ĊB = V Vr C B + k 1 (v)C A -k 2 (v)C B v = V Vr (v 0 -v) -1 ρCp k1(v)C A ∆H RAB + k2(v)C B × ∆H RBC k1(v) + k 3 (v)C 2 A ∆H RAD + kw Ar ρCpVr (v -v k ) vk = 1 m k C P K × (( Qk -v k ) + kwAr(v -v k )) (28) 
with

k i (v) = k i0 e E i v+273
. 15 . The model has four states: concentration of A (C A ) with an initial concentration C A0 , concentration of B (C B ), temperature v with a fixed value for the feed temperature v 0 and cooling jacket temperature v k . It is assumed that states are directly measurable except for v k . The input variables are the flow rate normalized by the reactor volume V Vr and the heat removal Qk .

B. Operating Conditions

A specific condition, reported in the benchmark [START_REF] Chen | Nonlinear predictive control of a benchmark cstr[END_REF], underlines the fact that concentration of B should be taken into the range [0.8; 1.09] mol.l -1 for manipulated variables V Vr lying in [3h -1 ; 35h -1 ] and [-9000kJ.h -1 ; 0] for Qk . The feed temperature v 0 is considered as a fixed value at 105 o C as proposed in [START_REF] Chen | Nonlinear predictive control of a benchmark cstr[END_REF]. In the proposed study, the CSTR is controlled in an open-loop way with multiple desirable concentrations of product B, each of them defining an operating point. Thus, CSTR could produce different concentrations C B and the system is described around predefined operating points. By taking into account the static characteristic illustrated in figure [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF] and in order to exploit the nonlinear system in a wide range, concentrations of B are C B1 , C B2 , C B3 with respectively 0.85, 1.00, 1.09mol.L -1 . 4) that permits to cover the wide operating range conditions. It could be noticed that there is non-minimum phase behaviour appearing on concentrations of A and B during a transition.

C. Experiments and Results

Based on the physical dynamic equation of the system, linear state space models were obtained around four OP using a first order linearization. These four operating points developed are: C B1 = 0.85mol.L -1 , C B3 = 1.09mol.L -1 and C B2 = 1.00mol.L -1 with V21 Vr = 7.8570h -1 and C B2 = 1.00mol.L -1 with V22 Vr = 27.90h -1 . The nonlinear model has been discretized through a Tustin method in order to provide discrete linear models represented in equation [START_REF] Ozkan | Control of a solution copolymerization reactor using multi-model predictive control[END_REF]. Disturbance matrices of modeling error E i are directly obtained by a second order linearization and an unique matrix E * is computed through an optimization technique based on Singular Value Decomposition as proposed in [START_REF] Chen | Robust model-based fault diagnosis for dynamic systems[END_REF]. An unique actuator fault on the manipulated variables V Vr is considered, fault matrices F i are related with the column of B i . According to the four linear models and under the assumptions that the interpolation functions ρ i are insensitive to faults , figure [START_REF] Alcorta-Garcia | Deterministic nonlinear observer based approaches to fault diagnosis: a survey[END_REF] shows the sequence of activation functions ρ i generated from [START_REF] Rodrigues | Fault Diagnosis on Industrial Systems based on a Multiple Model approach[END_REF]. Based on the unique disturbance matrice E * ∈ R 4×2 , the polytopic observer gain synthesis is performed by pole placement developed in the previous paragraph by a LMI region defined with r = 0.5. The different matrices are given in the Appendix.

In a first experiment, the polytopic UIO is evaluated without fault with the control input illustrated in figure [START_REF] Kinnaert | Robust fault detection based on observers for bilinear systems[END_REF]. This residual norm is presented in figure [START_REF] Persis | A geometric approach to nonlinear fault detection[END_REF]. It can be observed that this norm is different from zero around operating points because polytopic UIO is synthesized in order to obtain an exact decoupling against E * , but this matrix is just an optimal approximation of modeling errors. During transitions, uncertainties are minimized and the norm is very closed to zero. The magnitude of the residual norm is almost constant through all operating points and represents the modeling errors due to approximations of modeling error representation. We should underline that an adaptive threshold could be taken into account the specificities of the polytopic UIO synthesis in order to generate an efficient residual evaluation.

In a second experiment, an actuator fault with a loss of 65% from the nominal value, is introduced as in figure [START_REF] Kinnaert | Robust fault detection based on observers for bilinear systems[END_REF] during the second and the third operating point. The faulty control input is sent to the system and the computed control input is exploited by the polytopic UIO. This experiment simulates an actuator fault that would be stuck between OP 1 and OP 2 , then, a partial lost of an actuator fault is simulated during transitions of OP 2 and OP 3 . At the last change of operating point OP 3 -OP 4 , the actuator fault disappears. Due to the fact that we consider only one actuator fault which can occur into the system, the fault detection is equivalent to a fault isolation result. According to the synthesis of the robust polytopic UIO, the residual norm is sensitive to the fault occurrence. As illustrated in figure [START_REF] Persis | A geometric approach to nonlinear fault detection[END_REF], the residual norm of In this paper, a new residual generator robust against modeling errors was developed. This residual generation is dedicated to fault diagnosis of systems based on a multimodel approach which operate around specific and predefined OP. The modelling errors approximation over a set of OP allows an unique decoupling for all the system range even during transitions. Our contribution is underlined by a polytopic UIO that generates decoupled residuals from modeling errors. The observer gain synthesis is realized by LMI so as to ensure both stability and pole assignment of the polytopic UIO. 
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 1 Fig. 1. Steady state gainsIt can be noted that concentration C B2 = 1.00mol.L -1 could be obtained for two different control values V Vr : two operating points are associated to this concentration.
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  Actuator fault diagnosis of nonlinear systems is realized under modeling errors. The illustration is made through a CSTR simulation around multi operating conditions.

				-0.8142	APPENDIX 1.3831   0.42	-0.49	-0.03	
	E	* =	  	-0.0032 11.7210	-1.6090 0.0956	   H	* =	  	-0.49 -0.03	0.57 -0.03	-0.03 0.99	  
					0	0						0			0	0
					0.43	0.51	0.03				0.38	0.47	0.02	
		K 1 = 1	  	0.54 0.04	0.24 0.03	0.02 -0.19	   K 2 = 1   	0.50 0.04	0.20 0.03	0.02 -0.19	  
					3.78	3.27	0.79					3.64	3.21	0.78
		K 3 = 1	   	0.41 0.52 0.04 3.81	0.50 0.23 0.03 3.25	0.03 0.02 -0.19 0.79	    K 4 =  1     	0.30 0.43 0.03 3.84	0.41 0.15 0.02 3.12	0.02 0.02 -0.19 0.75	     
	X = 10 3 ×	     		1.50 0.24 0.01 -0.06	0.24 1.42 0.01 -0.05	0.01 0.01 1.21 -0.01		-0.06 -0.05 -0.01 0.01	     	C =	 	0 0 1	0 1 0	1 0 0	0 0 0	



Matrices R 1 , R 2 , R 3 , R 4 are not reported. It could be done by the relation R i = XK 1 i .