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Abstract: The main goal of this paper consists in fault diagnosis of nonlinear
systems represented by a multi-model approach. Partial knowledge of the system
representation around operating points must allow to obtain its dynamic behaviour
under modeling errors consideration. The goal of this paper is to decouple modeling
errors through a wide operating range by a dedicated polytopic Unknown Input
Observer (UIO). The robust polytopic observer allows an optimization of modeling
errors matrix distribution and permits to develop a fault diagnosis strategy on a
wide operating range. Stability of the polytopic observer is guaranteed by pole
assignment established through Linear Matrix Inequality (LMI).
Copyright c©IFAC 2005
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1. INTRODUCTION

The increasing demands for good performance
and higher standards of safety and reliability re-
sult in more emphasis on fault diagnosis. Fault
detection and isolation (FDI) refers to the task
of inferring the occurrence of faults in a process
and finding the root causes of the faults. Fault
diagnosis based on analytical models is developed
for exact and uncertain linear mathematical de-
scription of the system, several books are dedi-
cated to these topics: (Chen and Patton, 1999)
and (Gertler, 1998). FDI on nonlinear systems
remains a challenge due to the problem of discrim-
inating between disturbances and faults through a
wide range of operating conditions. Different tech-
niques based on an exact knowledge of the nonlin-
ear system allow to generate residuals insensitive
to fault by specific decoupling methods (Alcorta-
Garcia and Frank, 1997), (Kinnaert, 1999) or
geometric approach (Persis and Isidori, 2001),
(Hammouri et al., 2001).
An attractive alternative to nonlinear modeling
problem is to use a multi-linear model approach.
This approach is successfully used for some non-
linear systems in control field (Ozkan et al., 2003)
but rarely for FDI, and consists in partitioning the

operating range of a system into separate regions
in order to synthesize a global representation.
The reader could refer to (Murray-Smith and Jo-
hansen, 1997) for a global review on multiple mod-
els strategy, and also for well developed identifi-
cation method and modeling problems. Multiple
Model Adaptive Estimation (MMAE) (Maybeck,
1999) or Interacting Multiple Model (IMM) devel-
opped by (Blom and Bar Shalom, 1988) introduce
a multi-model approach for FDI, but these tech-
niques are developed around an unique operating
point (OP). Indeed, these methods consider a par-
ticular multi-model approach where each model is
dedicated to a specified fault. A polytopic repre-
sentation is sometimes used in multi-model and
also for LTV systems (Angeli et al., 2000) and
(Ozkan et al., 2003).
This paper addresses a more general method that
could allow to detect both actuator or sensor
fault in a nonlinear system. Time occurrence and
fault magnitude are supposed to be unknown.
Compared to methods that could detect both
operating conditions evolution and detect, isolate
and estimate faults in nonlinear system as pro-
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posed by (Adam-Medina et al., 2003), the pa-
per considers time varying error modeling. Thus,
the main contribution of this paper consists in
the synthesis of a decoupled residual generator
based on a Polytopic Unknown Input Observer
(UIO) which generates robust residual against
error modeling under fault occurrence. Another
kind of UIO was developed in (Millerioux and
Daafouz, 2004) for communication purposes but
not for fault diagnosis. Consequently, a polytopic
UIO is developed to make diagnosis on nonlinear
systems. The paper is organized as follows:
Section II deals with the nonlinear system rep-
resentation under a convex set through a multi-
model approach with taking into account error
modeling in the state space representation. So,
stability of the UIO is performed by use of Linear
Matrix Inequalities (LMI) for observer gain syn-
thesis. In the last section, the proposed technique
is illustrated through a nonlinear CSTR simula-
tion.

2. ROBUST POLYTOPIC UNKNOWN INPUT
OBSERVER SYNTHESIS

2.1 Problem statement

Let assume that a nonlinear system can be repre-
sented on N operating points (OP) by the follow-
ing state space representation:

xk+1 =
N∑

i=1

ρi
k

[
Aixk + Biuk + Eidk + Fifk + ∆xi

]

yk = Cxk (1)

where x ∈ R
n represents the state vector, u ∈ R

p

is the input vector and y ∈ R
m is the output

vector. dk ∈ R
q and fk ∈ R

f represent re-
spectively the magnitude of modeling errors and
faults. Ai ∈ R

n×n, Bi ∈ R
n×p and C ∈ R

m×n

are invariant matrices defined around the ith op-
erating point, and finally ∆xi represents the con-
sidered operating point. The modeling errors and
fault distribution matrices are respectively noted
as Ei ∈ R

n×q and Fi ∈ R
n×f , both supposed

to be full column rank for each operating point.
The matrice Fi represents both actuator faults as
sensor faults through an augmented state space
representation (Park et al., 1994).
As considered in (Murray-Smith and Johansen,
1997), a possible model that would be able to
catch the full range of operation is defined from N

weighting local models OPi by interpolation func-
tions ρi

k. These interpolation functions ρi
k(.)∀i ∈

[1, 2, .., N ] lie in a convex set Φ = {ρi
k ∈ R

N , ρk =

[ρ1
k ....ρN

k ]T , ρi
k ≥ 0 and

∑N
i=1

ρi
k = 1} and

could be generated according to a study presented
in (Adam-Medina et al., 2003) and (Theilliol et

al., 2003), which permit to generate insensitive
residual to faults and robust interpolation func-
tions against faults.

In the following and without any reduction, the
interpolation functions are supposed to be known
and insensitive to faults. Multi-model approach
could not provide good results due to the lack of
adequation between model and system represen-
tation. Indeed, one way to achieve good robust-
ness is to make disturbance de-coupling conditions
hold true (in an optimal sense) for all modeling
errors distribution matrices Ei. This can be done
by using a single optimal disturbance distribu-
tion matrix E∗ to approximate all of them as
in (Rodrigues et al., 2004) and (Chen and Pat-
ton, 1999). Consequently, we proposed to consider
the following state space representation:

xk+1 =
N∑

i=1

ρi
k

[
Aixk + Biuk + E∗dk + Fifk + ∆xi

]

yk = Cxk (2)

So, in order to make robust diagnosis of complex
systems represented by multiple operating points,
based on equation 2, a robust polytopic unknown
input observer against modeling errors is devel-
oped in the next section.

2.2 Polytopic UIO definition and robust residual

generation

In a general way, the UIO allows to vanish unde-
sirable information by decoupling unknown input.
In a FDI scheme, the UIO can avoid some pertur-
bation or modeling errors in the predictive state.

Definition 1. (Polytopic Unknown Input Observer)
A polytopic observer is defined as a polytopic
unknown input observer for the system described
by (2) without fault (fk = 0), if the estimation er-
ror tends asymptotically to zero despite unknown
disturbances on the system. ⋄

This polytopic unknown input observer is defined
such that:

zk+1 =

N∑

i=1

ρi
k

[
Sizk + TBiuk + Kiyk + ∆zi

]

x̂k+1 = zk+1 + H∗yk+1

where x̂ is the state space estimation of x. The
estimation error is equivalent to

ek+1 = xk+1 − x̂k+1 = xk+1 − (zk+1 + H∗yk+1)

= xk+1 − H∗(Cxk+1) − zk+1 = S(ρ)ek

−[S(ρ) − (I − H∗C)A(ρ) − K1(ρ)C]xk

+(I − H∗C)E∗dk − [Π(ρ) − S(ρ)H∗]yk

−[T − (I − H∗C)]B(ρ)uk + (I − H∗C)F (ρ)fk

where, with notation S(ρ) stands for
∑N

i=1
ρi

kSi,
K(ρ) = K1(ρ) + Π(ρ) and (I − H∗C)∆x(ρ) =
∆z(ρ). S(ρ), T,K(ρ) and H∗ should be designed
so as to ensure the stability and the convergence
of the estimation error ek = xk − x̂k without
fault on the system (fk = 0). To obtain an exact
decoupling, based on an optimal modeling error
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distribution matrix E∗, the following conditions
should be satisfied:

S(ρ) = TA(ρ) − K1(ρ)C Π(ρ) = S(ρ)H∗

E∗ = H∗CE∗ T = I − H∗C (3)

The robust polytopic UIO design is realized when
equations (3) hold true and S(ρ) is stable. So, es-
timation error without fault occurrence, denoted
ēk, tends asymptotically to zero if all these con-
ditions (3) are satisfied. The justification of the
gain design K1(ρ) is addressed in the next section.
The necessary and sufficient conditions for the
existence of a polytopic UIO are:
(i) Rank(CE∗) = Rang(E∗)
(ii) (TAi, C) are detectable pairs, ∀i ∈ [1, 2, .., N ].
These conditions are related in linear case (Chen
and Patton, 1999).

If condition (i) is true, the synthesis of matrix H∗,
which can permit to avoid unknown input effects,
is performed by:

H∗ = E∗(CE∗)+ (4)

It should be noted that the matrix E∗ is a con-
stant matrix ∀i ∈ [1, 2, .., N ]. If conditions (3) hold
true, the estimation error ek and the residual rk

are described as:

ek+1 = S(ρ)ek + (I − H∗C)F (ρ)fk

rk = Cek
(5)

Decoupling method allows to avoid disturbances
(like modeling errors) by cancelling the term (I −
H∗C)E∗ in equation (3), whereas faults are repre-
sented with the term (I − H∗C)F (ρ) in equation
(5). It is important to take into account that fault
distribution matrices Fi and modeling error distri-
bution matrix E∗ should have different directions.
In order to give a specific dynamic to the polytopic
observer in comparison with the system dynamic
but also to ensure stability on the full operating
range, next section is devoted to pole placement
with Linear Matrix Inequality (LMI).

3. GAIN SYNTHESIS BY LMI

3.1 Introduction on LMI region

Pole assignment by LMI is dedicated for convex
sets (Oliveira et al., 1999). The main objective
is to ensure, at first, polytopic observer stability
and in a second time to constraint its poles in
a specified region of the complex plane. The
observer dynamic is performed by decomposing
complex plane in LMI region.

Definition 2. LMI region (Chilali and Gahinet,
1996)
A subset D of the complex plane is called an LMI
region if there exists a symmetric matrix α =
[αkl] ∈ R

m×m and a matrix β = [βkl] ∈ R
m×m,

such that

D = z ∈ C : fD(z) < 0 (6)

with

fD(z) = α + zβ + z̄βT = [αkl + zβkl + βlkz̄]1≤k,l≤m

where fD(z) is called the characteristic function
of the LMI region and M = [µkl]1≤k,l≤m means
that M is an m × m matrix (respectively, bloc
matrix) with generic entry (respectively bloc) µkl.

⋄

Moreover, LMI are convex and symmetric with
respect to the real axis since for any z ∈ D

fD(z̄) = fD(z) < 0 (7)

Eigenvalues of a real matrix A lie in D if and only
if there exists a symmetric positive definite matrix
P ∈ R

n×n,

MD(A, P ) = αkl ⊗ P + βkl ⊗ (AP ) + βT
lk ⊗ (AP )T < 0

= [αklP + βklAP + βlkPAT ]1≤k,l≤m (8)

This inequality underlines the fact that D can be
expressed as LMI region with an unique matrix
P for the intersection of all admissible value of
A(ρ). Clustering region is difficult to express with
classical representations, but the use of function
fD(z) allows to consider a disk defined with a
center (−q, 0) and a radius r represented as:

fD(z) =

(
−r q + z̄

q + z −r

)
< 0 (9)

So, (3.1) is expressed as:
(

−rP qP + PAT

qP + AP −rP

)
< 0 (10)

with P > 0. The LMI (10) allows to define a
prescribed region of complex plane and ensures
a decay rate on the Lyapunov function (Chilali
and Gahinet, 1996). Therefore, this circle region
puts a lower bound on both decay rate and the
damping ratio of the closed-loop response, and
thus is very common in practical control design.
Then, it is both possible to constraint poles of
the observer to a prescribed region and ensure a
quadratic stability.

3.2 Poles placement of the robust polytopic UIO
under LMI constraints

According to (5), the estimation error ēk, without
fault, is expressed as

ēk+1 = S(ρ)ēk = (I − H∗C)A(ρ) − K1(ρ)Cēk

= Ā(ρ) − K1(ρ)Cēk

(11)

Proposition 1. Let D, a LMI region defining a
disk with a center (−q, 0), and a radius r with
(q + r) < 1 for defining pole assignment in the
unit circle. The estimation error (11) is called
quadratically D-stabilizable (all the complex poles
lie in LMI region D) for some observer gains K1

i

if and only if there exists a positive symmetric
matrix X > 0 such that ∀i ∈ [1, 2, ..N ] :

(
−rX qX + (Āi − K1

i C)T X

qX + X(Āi − K1
i C) −rX

)
< 0

(12)

2
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Proof: First, note that (3.1) can be multiplied both
on the left and on the right with P−1 = X > 0.
Secondly, by replacing the matrix A by (Āρ −
K1

ρC) in (3.1) and by writing it at each vertex

(Āi,K
1
i , C), we obtain:

αklX + βklX(Āi − K1
i C) + βT

lk(Āi − K1
i C)T X < 0

(13)

So, (13) could be expressed as the following LMI:
(

−rX qX + (Āi − K1
i C)T X

qX + X(Āi − K1
i C) −rX

)
< 0

(14)

2

Note that if specific parameters as q = 0, r = 1
then LMI in (14) expresses quadratic stability
and with a Schür Complement, we find:
(Āi − K1

i C)T X(Āi − K1
i C) − X < 0 and X > 0

that is the quadratic stability of estimation error.
However, inequality (12) is not a convex LMI
due to the fact that the inequality is not linear
with X and K1

i . A simple change XK1
i = Ri

(or K1
i = X−1Ri) generates ∀i ∈ [1, 2, ..N ] the

following LMI:
(

−rX qX + ĀT
i X − CT RT

i

qX + XĀi − RiC −rX

)
< 0 (15)

Remark : By weighting each LMI defined in
(12) by interpolation functions ρi defined in the
previous section and summing all of them with∑N

i=1
ρi = 1, (12) becomes ∀i ∈ [1, 2, ..N ] equiva-

lent to




−rX qX +

N∑

i=1

ρi(Āi − K1
i C)T X

qX + X

N∑

i=1

ρi(Āi − K1
i C) −rX




< 0

(16)

with K1
i = X−1Ri. We should note that using

LMI, observer gain synthesis is made through a
polytopic form and estimation error (11) satisfies
to the condition of quadratic D-stability with X >

0 for the Lyapunov matrix. This proposed solution
allows to ensure a quadratic D-stability for the
estimation error (without fault) and to fixe the
dynamic of the polytopic UIO for the considered
system. Poles constraints are specified with LMI
defining a prescribed region of the complex plan.

4. CSTR: CONTINUOUS STIRRED TANK
REACTION

4.1 System description
The performance of the robust polytopic UIO
is illustrated through a Continuous Stirred Tank
Reaction simulation (CSTR). A full description of
the CSTR could be found in (Chen et al., 1995).
This system is a nonlinear chemical reactor that
exhibits many interesting properties like input
multiplicity, a gain sign change, asymmetric re-
sponse and both minimum and non-minimum

phase behavior (Gatzke and Doyle, 1999). The
so called van der Vusse reaction, is summarized
by the following reaction scheme: A ⇛ B with
B ⇛ C and 2A ⇛ D.
The dynamic behaviour of the reactor is classically
described by the following nonlinear differential
equations :





ĊA = V̇
Vr

(CA0 − CA) − k1(v)CA − k3(v)C2
A

ĊB = V̇
Vr

CB + k1(v)CA − k2(v)CB

v̇ = V̇
Vr

(v0 − v) − 1

ρCp

(
k1(v)CA∆HRAB + k2(v)CB

× ∆HRBCk1(v) + k3(v)C2
A

∆HRAD

)
+ kwAr

ρCpVr
(v − vk)

v̇k = 1

mkCP K
× ((Q̇k − vk) + kwAr(v − vk))

(17)

with ki(v) = ki0e
Ei

v+273.15 .

The model has four states: concentration of A
(CA) with an initial concentration CA0, concen-
tration of B (CB), temperature v with a fixed
value for the feed temperature v0 and cooling
jacket temperature vk. It is assumed that states
are directly measurable except for vk. The input
variables are the flow rate normalized by the re-

actor volume V̇
Vr

and the heat removal Q̇k.

4.2 Operating conditions

A specific condition, reported in the benchmark
(Chen et al., 1995), underlines the fact that con-
centration of B should be taken into the range

[0.8; 1.09] mol.l−1 for manipulated variables V̇
Vr

lying in [3h−1; 35h−1] and [−9000kJ.h−1; 0] for
Q̇k. The feed temperature v0 is considered as
a fixed value at 105◦C as proposed in (Chen
et al., 1995). In the proposed study, the CSTR
is controlled in an open-loop way with multiple
desirable concentrations of product B, each of
them defining an operating point. Thus, CSTR
could produce different concentrations CB and
the system is described around predefined oper-
ating points. By taking into account the static
characteristic illustrated in figure (1) and in order
to exploit the nonlinear system in a wide range,
concentrations of B are CB1, CB2, CB3 with re-
spectively 0.85, 1.00, 1.09mol.L−1. It can be noted
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0.2

0.4
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C
on

ce
n
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n
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Flow rate V̇
Vr

CB1

CB2

CB3 CB2

Fig. 1. Steady state gains

that concentration CB2 = 1.00mol.L−1 could be
obtained for two different control values V̇

Vr
: two

operating points are associated to this concentra-
tion.

Figure (2) shows the dynamic evolution of the
measurable states with a flow rate presented in
figure (3) that permits to cover the wide range
of operating conditions. It could be noticed that
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Fig. 2. Dynamic evolution of the measurable
states
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Fig. 3. Flow rate h−1

there is non-minimum phase behaviour appearing
on concentrations of A and B during a transition.

4.3 Experiments and results

Based on the physical dynamic equation of the
system, linear state space models were obtained
around four OP using a first order linearization.
These four operating points developed are: CB1 =
0.85mol.L−1, CB3 = 1.09mol.L−1 and CB2 =

1.00mol.L−1 with V̇21

Vr
= 7.8570h−1 and CB2 =

1.00mol.L−1 with V̇22

Vr
= 27.90h−1. The nonlin-

ear model has been discretized through a Tustin
method in order to provide discrete linear models
represented in equation (2). Disturbance matrices
of modeling error Ei are directly obtained by a
second order linearization and an unique matrix
E∗ is computed through an optimization tech-
nique based on Singular value Decomposition as
proposed in (Chen and Patton, 1999). An unique

actuator fault on the manipulated variables V̇
Vr

is
considered, fault matrices Fi are related with the
column of Bi.

According to the four linear models and under
the assumptions that the interpolation functions
ρi are insensitive to faults, figure (4) shows the se-
quence of active models during all the experiment.
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ρ1 ρ2 ρ3 ρ4

Fig. 4. Weighting functions

Based on the unique disturbance matrice E∗ ∈
R

4×2, the polytopic observer gain synthesis is
performed by pole placement developed in the
previous paragraph (3) by a LMI region defined
with r = 0.15 and q = 0.2. The different matrices
are given in the appendix.

In a first experiment, the polytopic UIO is eval-
uated without fault with the control input il-

lustrated in figure (5). This residual norm is
presented in figure 6. It can be observed that
this norm is different from zero around operating
points because polytopic UIO is synthesized in or-
der to obtain an exact decoupling against E∗, but
this matrix is just an optimal approximation of
modeling errors. During transitions, uncertainties
are minimized and the norm is very closed to zero.
The magnitude of the residual norm is almost
constant through all operating points and repre-
sents the modeling errors due to approximations
of modeling error representation. We should un-
derline that an adaptive threshold could be taken
into account the specificities of the polytopic UIO
synthesis in order to generate an efficient residual
evaluation.

In a second experiment, an actuator fault is intro-
duced as presented in figure (5). The faulty control
input is sent to the system and the computed
control input is exploited by the polytopic UIO.
This experiment simulates an actuator fault that
would be stuck between OP1 and OP2, then, a
partial lost of an actuator fault is simulated during
transitions of OP2 and OP3. At the last change
of operating point OP3-OP4, the actuator fault
disappears.

0 10 20 30 40 50 60
0
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10

15

20

25

30

35

40

Time (min) 

Nominal control input

Faulty control input

Fig. 5. Faulty control input and nominal control
input

According to the synthesis of the robust polytopic
UIO, the residual norm is sensitive to the fault oc-
currence. As illustrated in figure (6), the residual
norm of the polytopic UIO is sensitive to actuator
fault and robust to modeling errors. The actuator
fault is detected easily due to the magnitude of
the residual norm.
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0.8
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Fig. 6. Residual norms evolution with and without
fault

5. CONCLUSION

In this paper, a new residual generator robust
against modeling errors was developed. This resid-
ual generation is dedicated to fault diagnosis on
nonlinear systems based on a multi-model ap-
proach. The modelling error approximation over
a set of OP allows an unique decoupling for all



Submitted version World IFAC 2005 Rodrigues et al.

the system range even during transitions. Our
contribution is underlined by a polytopic UIO
that generates decoupled residuals from modeling
errors. The observer gain synthesis is realized by
LMI so as to ensure both stability and pole
assignment of the polytopic UIO. Fault diagnosis
on nonlinear systems is made with both modeling
error and actuator fault.
The illustration is made through a CSTR sim-
ulation with multi operating conditions. Future
works will deal with analysis and adaptive thresh-
old over a wide range of operating points.

APPENDIX

E
∗

=

[
−0.8142 1.3831

−0.0032 −1.6090

11.7210 0.0956

0 0

]
H

∗

=

[
0.4289 −0.4933 −0.0398 0

−0.4933 0.5739 −0.0344 0

−0.0398 −0.0344 0.9972 0

0 0 0 0

]

K
1
1 =

[
0.4300 0.5161 0.0343 0

0.5439 0.2455 0.0296 0

0.0439 0.0359 −0.1976 0

3.7878 3.2781 0.7970 0

]
K

1
2 =

[
0.3878 0.4710 0.0292 0

0.5079 0.2070 0.0253 0

0.0414 0.0332 −0.1979 0

3.6401 3.2116 0.7846 0

]

K
1
3 =

[
0.4108 0.5010 0.0324 0

0.5271 0.2322 0.0279 0

0.0427 0.0351 −0.1977 0

3.8198 3.2521 0.7925 0

]
K

1
4 =




0.3033 0.4148 0.0252 0

0.4342 0.1577 0.0217 0

0.0346 0.0285 −0.1983 0

3.8482 3.1264 0.7560 0





X = 1000 ×




1.5003 0.2468 0.0199 −0.0601

0.2468 1.4257 0.0171 −0.0517

0.0199 0.0171 1.2148 −0.0042

−0.0601 −0.0517 −0.0042 0.0049





Matrices R1, R2, R3, R4 are not reported here be-
cause it could be done by the relation K1

i =
X−1Ri.
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