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This paper deals with the observability analysis and the observer synthesis of a class of nonlinear systems. The observer that we consider has a constant gain and concerns a class of uniformly observable systems. A sufficient condition permitting to design such a constant gain observer is given. The calculation of this gain is based on LMI technics.

INTRODUCTION

In this paper, we propose sufficient conditions under which a controlled nonlinear system admits an exponential observer. The need to study the observer design problem for nonlinear dynamical systems is, from a control point of view, well understood by now.

The existence of an observer relies on observability properties which are a bit more involved than in the linear case. Many techniques have been developed for designing an observer for nonlinear systems. Among these techniques, a rather natural approach consists in considering systems which can be steered by a change of coordinates into state affine systems up to output injection. From observability point of view, these systems possess similar properties as linear systems and an extended Luenberger observer can be designed. Several authors [START_REF] Krener | Linearization by output injection and nonlinear observers[END_REF], [START_REF] Krener | Nonlinear observers with linealizable error dynamics[END_REF] [START_REF] Xia | Nonlinear observer design by observer canonical forms[END_REF], have characterized such nonlinear systems. An extension of these results consists to ask how one can design a constant gain observer of nonlinear systems (so-called an extended Luenberger observer). The idea consists to develop normal forms characterizing the class of nonlinear systems which are observable independently on the inputs (called uniformly observable systems). Based on these normal forms and the high gain technics, the authors in [START_REF] Hammouri | Sur la théorie de l'observation et des observateurs des systèmes non linéaires[END_REF], [START_REF] Bornard | A high gain observer for a class of uniformly observable systems[END_REF], [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF], [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF] gave an extended Luenberger. Many extensions of these results to multi-output uniformly observable systems have been proposed (see for instance H. [START_REF] Armanet | High gain observer based on a triangular structure[END_REF], [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF]).

Under a geometric condition (called uniform observability structure), the authors in [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF] gave a normal form which extend those proposed in [START_REF] Hammouri | Sur la théorie de l'observation et des observateurs des systèmes non linéaires[END_REF], [START_REF] Gauthier | A simple observer for nonlinear systems -application to bioreactors[END_REF], [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF].

Based on this normal form, the authors in [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF] propose a constant gain observer. The algorithm permitting to calculate the gain of the observer is based on the existence of some cone of matrices. The computation of this cone is very difficult to check in practical cases. Based on the LMI technics, our aim here consists to replace the above condition by a more simpler. Indeed, using LMI approach in this new observer gain design, gives a sufficient condition which is more easy to be verified and implemented.

The paper is organized as follows. The next section resumes some previous necessary results and gives the problem statement. In Section 2, a high gain observer is designed through LMI technics under a new condition. We end this paper by an illustrative example before concluding.

OBSERVER SYNTHESIS

The system that we consider [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF]) has the following normal form:

ż = F (u, z) y = Cz (1)
where

F (u, z) =    F 1 (u, z) . . . F q (u, z)   , z =    z 1 . . . z q    ∈ R n ; u ∈ U a compact subset of R m ; z i ∈ R ni ; n 1 ≥ n 2 ≥ . . . ≥ n q ; n 1 + . . . + n q = n.
Each function F i (u, z), i = 1, . . . , q -1 satisfies the following triangular structure:

F i (u, z) = F i (u, z 1 , . . . , z i+1 ), z i ∈ R ni (2)
with the following rank condition:

Rank( ∂F i ∂z i+1 (u, z)) = n i+1 ∀z ∈ R n ; ∀u ∈ U (3)
Nonlinear systems that can be steered by a change of coordinates to the form (1), ( 2), ( 3) are those satisfying some geometrical condition (called a U -uniform observability structure [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF]).

Definition 2.1. A constant gain exponential observer for system (1) is a dynamical system of the form:

ż = F (u, ẑ) + G(C ẑ -y) (4)
where G is a constant matrix such that: ẑ(t)z(t) ≤ λe -µt ẑ(0)z(0) where λ > 0 and µ > 0 are constants which do not depend on the input u ∈ L ∞ (R + , U ) nor on ẑ(0), z(0).

The existing results

In [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF], the authors gave some sufficient conditions under which a constant gain observer was designed for system (1). These conditions may be formulated as follows:

H1) Global Lipschitz condition:

∃c > 0; ∀u ∈ U ; ∀z, z ′ ∈ R n , F (u, z) -F (u, z ′ ) ≤ c z -z ′ .
H2) The Cone condition:

∀k, 1 ≤ k ≤ q -1, there exists n k × n k+1 constant matrix S k,k+1 such that ∂F k ∂z k+1 (u, z) ∈ C(n k , n k+1 ; -1; S k,k+1 ); ∀(u, z) ∈ U × R n where C(n k , n k+1 ; -1) is the cone defined by {M ∈ M(n k , n k+1 ; R); s.t. M T S + S T M < αI k+1 }. M(n k , n k+1 ; R)
is the space of n k ×n k+1 real matrices and I k+1 is the (k + 1)× (k + 1) identity matrix.

Set Z = (Z 1 , . . . , Z q-1 ) ∈ R n × . . . × R n . Under the above hypotheses, the authors in [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF],

show that there exists a symmetric positive definite matrix P and constants ρ > 0 and η > 0 such that for every (u, Z 1 , . . . , Z q-1 ) ∈ U × R n × . . . × R n , we have: 

P A(u, Z) + A T (u, Z)P -ρC T C ≤ -ηI, where A(u, Z)=             0 A 1 (u, Z 1 ) 0 . . . 0 . . . 0 A 2 (u,
. . . A q-1 (u, Z q-1 ) 0 . . . . . . . . . . . . 0             with A k (u, Z k ) = ∂F k ∂Z k+1 k (u, Z k ).
Using this construction, the authors show that an exponential observer for system (1) takes the form:

ż = F (u, ẑ) + ∆ θ P -1 C T (C ẑ -y) (5) 
where

∆ θ =      θI n1 0 . . . 0 0 θ 2 I n2 0 . . . . . . . . . 0 0 . . . 0 θ q I nq      , I n k is the n k × n k
identity matrix, k = 1, . . . , q and θ .

The drawback of the above observer's gain construction lies into the fact that the observer's gain depends on the matrices S k,k+1 and that their construction is a very difficult task.

In what follows, we will give a more simpler construction based on the LMI technics. As in the control problems, this new construction by LMI opens a new field of investigation where the observer gain may take into account of the parameter uncertainty for example. We present this new observer gain design in the following section.

HIGH GAIN OBSERVER BASED LMI TECHNICS

As in [START_REF] Hammouri | Nonlinear observer for locally uniformly observable systems[END_REF], the assumption H1) is maintained. However, assumption H2) will be reformulated as follows:

A(u, Z) is the matrix defined above, from H1), the set of matrices

E = {A(u, Z); (u, z) ∈ U × R n } is a bounded sub- set of M(n, n; R).

H3) Polytopic condition:

E is contained in a polytopic convex set P=Co{M 1 , . . . , M l } of M(n, n; R), where the M i 's are the vertices of P for which there exist a n×n symmetric positive definite matrix P and a n × p matrix W such that:

for 1 ≤ i ≤ l, (M i + KC) T P + P (M i + KC) < 0 (6) This inequality (6) can be linearized as follows for 1 ≤ i ≤ l, M T i P + P M i + C T W T + W C < 0 (7) where W = P K.

Remark 3.1. Since the polytopic set P is a compact convex set, it follows that there exists α > 0 such that:

for 1 ≤ i ≤ l, M T i P + P M i + C T W T + W C ≤ -αI (8) for every M ∈ P.

Theorem 3.1. Under hypotheses H1) and H3), an exponential observer for system (1) takes the form: ż = F (u, ẑ) + ∆ θ P -1 W (C ẑy) (9) where ∆ θ is the diagonal matrix defined above. The gain of the observer is K = P -1 W .

Proof 3.1. We will show that there exists θ 0 , such that ∀θ ≥ θ 0 , the error e(t) = ẑ(t)z(t) exponentially converges to 0,where z(t) is the unknown state and ẑ(t) is the its estimate given by ( 9).

Set F i (u, z, ẑ) = F i (u, ẑ1 , . . . , ẑi , z i+1 ) for 1 ≤ i ≤ q -1; F q (u, z, ẑ) = F q (u, ẑ) and, F (u, z, ẑ) =    F 1 (u, z, ẑ) . . . F q (u, z, ẑ)   ,
we obtain:

ė = (F (u, ẑ) -F (u, z, ẑ)) + ( F (u, z, ẑ) -F (u, z)) +∆ θ P -1 W (C ẑ -y) (10) 
To show that e(t) exponentially converges to 0, it suffices to show that ǫ(t) = ∆ -1 θ e(t) exponentially converges to 0.

From (10), we deduce:

ǫ = ∆ -1 θ (F (u, ẑ) -F (u, z, ẑ)) + ∆ -1 θ ( F (u, z, ẑ) -F (u, z)) +P -1 W (C ẑ -y) (11)
Using the expression of F (u, z, ẑ) and the fact that F (u, z) has a triangular structure, the main value theorem yields to:

F (u, ẑ) -F (u, z, ẑ) = A(u, Z)e,
where Z = (Z 1 , . . . , Z q-1 ) and A(u, Z) is the upper diagonal matrix given above. Moreover the k th bloc of A(u, Z)

takes of the form A k (u, Z k ) = ∂F k ∂z k+1 (u, Z 1 k , . . . , Z k+1 k ),
where Z i k (t) = z i (t)+Λ i (t)e i (t) and Λ is a diagonal matrix hose coefficients are in [0, 1].

Using the structure of A(u, Z) and the fact that C = (I n1 , 0, . . . , 0), a simple calculation yields to:

∆ -1 θ (F (u, ẑ)-F (u, z, ẑ)) = ∆ -1 θ A(u, Z)e = θA(u, Z)ǫ and W C∆ θ = θW C. Hence (11) becomes: ǫ = θ(A(u, Z) + P -1 W C)ǫ + ∆ -1 θ ( F (u, z, ẑ) -F (u, z)) (12) 
To end the proof of the theorem, it suffices to show that V (t) = ǫ T (t)P ǫ(t) exponentially converges to 0. A simple calculation yields to:

V (t) = θǫ T (t)((A(u, Z) + P -1 W C) T P + P (A(u, Z) +P -1 W C))ǫ(t) +2ǫ T (t)P ∆ -1 θ ( F (u, z, ẑ) -F (u, z)) (13) 
From hypothesis H3) and remark 3.1, we deduce:

V (t) ≤ -αθ ǫ(t) 2 + 2ǫ T (t)P ∆ -1 θ ( F (u, z, ẑ) -F (u, z)) (14) 
Using the triangular structure of F (u, z) and ∆ theta , we get:

∆ -1 θ ( F (u, z, ẑ) -F (u, z)) =         θ -1 (F 1 (u, z 1 , z 2 ) -F 1 (u, z 1 , z 2 )) . . . θ -k (F k (u, z 1 , . . . , z k , z k+1 ) -F 1 (u, z 1 , . . . , z k , z k+1 )) . . . θ -q (F q (u, z 1 , . . . , z q-1 , z q ) -F 1 (u, z 1 , . . . , z q-1 , z q ))        
From assumption H1):

F k (u, z 1 , . . . , z k , z k+1 ) -F 1 (u, z 1 , . . . , z k , z k+1 ) ≤ c
e 1 2 + . . . + e k 2 . Thus, for θ ≥ 1, we have θ -k F k (u, z 1 , . . . , z k , z k+1 ) -F 1 (u, z 1 , . . . , z k , z k+1 ) ≤λ e 1 2 + . . . + e k 2 , for some constant λ which doesn't depend on θ.

Combining this last fact with (15), we obtain:

V (t) ≤ -αθ ǫ(t) 2 + β ǫ(t) 2 ( 
15) where β is a constant which doesn't depend on θ.

To end the proof, it suffices to take θ > β α .

COMMENTS AND EXAMPLES

In this section, we will give some remarks and examples concerning the existence of a constant gain observer.

Remark 4.1. Assumption H1) and conditions (2), (3) are not generally sufficient for the existence of a constant gain observer for system (1).

Indeed, consider the following example:

           ż1 = u 1 z 3 ż2 = u 2 z 3 ż3 = 0 y = Cz = z 1 z 2 (16) 
where u = (u 1 , u 2 ) belongs to the unit circle U = {u s.t. u = 1}.

Clearly system (16) takes the form (1) and satisfying (2), (3) and assumption H1). Let us show that system (16) doesn't admit a constant gain observer.

Assuming that there exists a constant gain observer of the form:

ż = A(u)ẑ + K(C ẑ -y) (17) 
where,

A(u) = 0 0 u 1 0 0 u 2 0 0 0 , K = k 11 k 12 k 21 k 22 k 31 k 32
is a constant matrix and C = 1 0 0 0 1 0 .

Thus, for every u ∈ L ∞ (R + , U ), the error equation:

ė = (A(u) + KC)e (18) 
is exponentially stable at the origin.

In particular, the error equations associated to inputs u(t) = (1, 0) and u(t) = (-1, 0) are exponentially stable. This implies that: In what follows, we will give an example which illustrate our LMI method. Let consider the following system with u(t) ∈ [0, 1]:

k 11 k
       ż1 = A 1 (u)z 2 ż2 = A 2 (u)z 3 ż3 = 0 y = Cz = z 1 (19) 
with the following matrices

ż = A(u)z y = Cz = z 1 (20)
where,

A(u) =      0 0 1 u 0 0 0 -u 1 0 0 0 0 0 1 -u 0 0 0 0 u 0 0 0 0 0      , C = 1 0 0 0 0 0 1 0 0 0 (21)
The vertices of the polytope are A(0) and A(1).

We solve LMI from equation ( 7), with K = P -1 W , and we obtain: 33.54 2.71 -12.74 -4.78 -19.24 2.71 28.51 4.40 -13.68 -8.13 -12.74 4.40 27.78 6.01 -14.95 -4.78 -13.68 6.01 35.32 -16.14 -19.24 -8.13 -14.95 -16.14 

P =     

CONCLUSION

In this paper, an observer synthesis of a class of nonlinear systems is presented. The paper focusses on the design of a high gain observer by LMI technics which allow more easier solutions to be verified. A short example illustrates the developed technic by the design of a constant gain.

In future works and as in the control problems, this new observer gain design may take into account of the parameter uncertainty which should be more easy by the use of LMI.
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