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Model refinements of magnetic circuits are performed via a subproblem finite element method based on a perturbation technique. An
approximate problem considering ideal flux tubes and simplified air-gap models is first solved. It gives the sources for a finite element
perturbation problem considering the actual air gaps and flux tubes geometries with the exterior regions. The procedure simplifies both
meshing and solving processes, and allows to quantify the gain given by each model refinement.

Index Terms—Finite-element method (FEM), magnetic circuits, perturbation method.

I. INTRODUCTION

T HE perturbation of finite element (FE) solutions provides
clear advantages in repetitive analyses [1] and helps im-

proving the solution accuracy [2]. It allows to benefit from pre-
vious computations instead of starting a new complete FE so-
lution for any variation of geometrical or physical data. It also
allows different problem-adapted meshes and computational ef-
ficiency due to the reduced size of each subproblem.

A perturbation FE method is herein developed for refining
the magnetic flux distribution in magnetic circuits starting from
simplified FE models, which are based on both ideal flux tubes
[3] and thin-shell air-gap models [4]. The developments are per-
formed for the magnetic vector potential FE magnetostatic for-
mulation, paying special attention to the proper discretization
of the constraints involved in each subproblems. The method is
validated on test problems.

II. A SERIES OF COUPLED SUBPROBLEMS

A. Canonical Magnetostatic Problem in a Strong Form

A canonical magnetostatic problem is defined in a domain
, with boundary (possibly at in-

finity), of the 2-D or 3-D Euclidean space. Subscript refers to
the associated problem .

The equations, material relations, boundary conditions (BCs)
and interface conditions (ICs) of problem are

(1a,b,c)

(1d,e)

(1f,g)

where is the magnetic field, is the magnetic flux density,
is limited to the source electric current density , is the

magnetic permeability and is the unit normal exterior to .
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The field is a possible volume source. It is usually used
for fixing a remnant induction.

The notation expresses the discontinuity of
a quantity through any interface (with sides and ) in ,
which is allowed to be non-zero. The associated surface fields

and are usually zero, defining classical essential or
natural ICs for the physical fields. Nonzero quantities define
possible surface sources.

A key element of the developed method is to define the
volume and surface sources of problem from parts of solu-
tions of other problems.

B. Each Subproblem Defines a Perturbation

The objective is solving successive problems, the addition of
which being the solution of a complete problem. For an ordered
set of problems, the complete solution is

(2)

At the discrete level, each problem is defined in its own do-
main and mesh, which decreases the problem complexity and
allows distinct mesh refinements.

Also, such a superposition of solutions allows each sub-
problem to satisfy some constraints and relations that are
not shared with the complete problem. Consequently, each
subproblem is generally perturbed by all the others and each
solution has to be then calculated as a series of corrections, i.e.,

(3)

The calculation of the correction in a problem is kept
on till convergence up to a desired accuracy. Each correction
must account for the influence of all the previous corrections

of the other subproblems, with the last iteration index
for which a correction is known. Initial solutions are set to
zero. The iterative process is justified by the fact that a correction
can become a significant source for any of its source problems,
which is proper to large perturbation problems. In addition to
the iterations between subproblems, classical inter-problem it-
erations are needed in nonlinear analyses. The global quantities
linearly related to each correction (fluxes and magnetomotive
forces [3]) are to be added to give their complete values.
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Fig. 1. Domains for the ideal (� � �, left) and real (� � �, right) flux tube
problems.

C. Volume and Surface Perturbations

A change of BCs or ICs from problem to is defined via
surface sources (or interface-type sources) fixing the possible
trace discontinuities of and in terms of the solution of
problem .

A change of a material property in a volume region defines a
volume source (or a region-type source) in the associated mate-
rial relation. For a change of permeability, from for problem

to for problem , the volume source in the relation
(1c) is of the form

(4)

This way, summing both relations (with e.g.
) and gives the relation that is valid for the

superposition of solutions and , i.e.
. In the same way, the relation

would be

(5a-b)

A generalization of (4) to any number of subproblems would
give

(6)

with the last solved problem.
Note that the differential (1a) and (1b) remain unchanged for

each subproblem, their addition directly giving the associated
equation governing the complete solution.

III. PERTURBATION PROBLEMS

A. From Ideal to Real Flux Tubes

In a first problem , the magnetic flux is forced to flow
only in a subregion with perfect flux walls, i.e. a set of flux tubes

of the whole domain (of the complete problem).
A second problem considers then the flux walls become
permeable. This allows leakage flux in the exterior region
and leads to a change of the flux distribution in . A solution
refinement is thus obtained.

In problem 1, the ideal flux tubes are considered with a BC of
zero normal magnetic flux density on their boundaries

. The trace of the magnetic field is unknown on . Once
it is determined from the solution in , it can be used as a
BC for calculating the solution in , with all the precise
characteristics of this exterior region (e.g., inductors and other

regions). This task is however let to problem 2. For that, problem
1 gathers all the active parts of the exterior region inside the
double layer defined by and , the inner and outer sides
of with regard to (Fig. 1, left). This allows the magnetic
field to be zero in . One thus has

(7a-b)

(8a-b)

or, for the discontinuities,

(9a-b)

Problem 2 must correct the solution 1 via particular ICs
(1f-g). On the one hand,

(10)

due to the continuity of in the complete solution (2) and the
zero value of via (9a). On the other hand,

(11)

due to the continuity of in the complete solution (2) and
relation (8a). Problem 2 has thus to extend the solution out of
the flux tubes and to correct it in the tubes. IC (11) can be seen
as a surface source acting on both sides of . Note that
is similar to . They only differ at the discrete level due to
their different meshes.

B. From Surface to Volume Gaps

The possible gaps in the flux tubes can be first approximated
by surface (thin shell) FEs [4] in problem , which sim-
plifies the mesh of the whole structure. Another problem
considers then the actual extension of the gaps with volume FEs.
The associated studied domain can be reduced to the neigh-
borhood of the gap for improving the accuracy of the local so-
lution, which allows the resulting fine mesh to be built only in
a small domain.

In problem 1, the gap of thickness is reduced to
an average surface situated halfway between its two main
surfaces, with reluctivity . In problem 2, the
surface gap is then suppressed, via a modified
reluctivity , and simultaneously replaced by a

volume gap, of reluctivity . The two region-
type sources to be considered are respectively

(12a-b)

IV. FINITE ELEMENT WEAK FORMULATIONS

A. -Conform Weak Formulation

The canonical problem (1a)–(g) is defined in with the
magnetic vector potential formulation [3], expressing the mag-
netic flux density in as the curl of a magnetic vector po-
tential . The related -formulation is obtained from the weak
form of the Ampère (1a), i.e. [3],
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(13)

where is a gauged curl-conform function space defined
on and containing the basis functions for as well as for
the test function (at the discrete level, this space is defined
by edge finite elements); and respectively denote
a volume integral in and a surface integral on of the
product of their vector field arguments. The surface integral
term on accounts for natural BCs of type (1d), usually
with . The term on the surface with
essential BCs on is usually omitted because it does not
locally contribute to (13). It will be shown to be the key for the
post-processing of a solution, a part of which being .

A major consequence of the -conform formulation used is
that ICs (1g) and (1f) are to be defined respectively in strong
and weak senses, i.e. in and in a surface integral term.

B. From Ideal to Real Flux Tubes

For the ideal flux tubes of problem 1, BC (7a) leads to an
essential BC on the primary unknown that can be expressed
in general (in 3-D) via the definition of a surface scalar potential

(multi-valued because a net magnetic flux flows in ) [3],
i.e.,

(14)

or via a floating in 2-D (a constant for the perpendicular com-
ponent of on each non-connected part of ).

Formulation is obtained from (13) with ,
, , and .

The surface integral term is non-zero only
for the function grad (from (14)), the value of which is then
the MMF associated with a flux tube (this can be demon-
strated from the general procedure developed in [3]). It is zero
for all the other local test functions (at the discrete level, for any
edge not belonging to ). This way, the magnetic circuit re-
lation can be expressed for each flux tube , to relate fluxes
and MMFs.

The correction formulation is then obtained from (13)
with , and . The source

is now defined in the inductor portions added to , in place
of the idealized inductors. IC (10) is strongly expressed via the
continuity of the vector potential through . IC (11) can
rather only act in a weak sense via the surface integral term
related to in (13). Indeed, the involved surface source

is not known in a strong sense on , but rather in a
weak sense. One has

(15)

This way, the surface integral term related to in (13) is cal-
culated from a volume integral coming from the first problem.
Its consideration via a volume integral, limited at the discrete
level to one single layer of FEs touching the boundary, is the
natural way to average it as a weak quantity.

At the discrete level, the source quantity in (15) has to be
expressed in the mesh of problem 2, while it is initially given in

Fig. 2. Meshes (half portions) of the whole studied domain (left) and the ideal
flux tube (middle); field lines of the complete solution (���, right).

Fig. 3. Field lines in the ideal flux tube (��� , left) and in the perturbation prob-
lems with the inner (��� , middle) and outer (��� , right) leakage fluxes.

the mesh of problem 1. This can be done via a projection method
[2] of its curl limited to the layer of FEs touching .

C. From Surface to Volume Gaps

For problem 1, the surface representation of the gap
amounts to express the first term of (13) in this region as

(16)

For problem 2, the surface gap is suppressed via the source
(12a) in

(17)

and simultaneously replaced by a volume gap via

(18)

with and source given by (12b).
These terms can be used as well for any variation of the per-

meability of a thin shell. A variation of the thickness of the gap
from to can be simply considered via the source

(19)

At the discrete level, the source quantity in (16)–(18) needs
to be projected from the mesh of problem 1 to the mesh of
problem 2, only in and .

V. APPLICATION EXAMPLE

An electromagnet is considered to test and illustrate the
method. It consists of a U-shape core surrounded by a stranded
inductor and separated from an I-shape core via two air gaps
(Fig. 2). An approximate solution is first calculated in
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Fig. 4. Field lines of the complete solution (���, left), of the initial problem with
surface gap (��� , middle) and its correction to a volume gap (��� , right).

Fig. 5. Magnetic flux density along the top surface of the I-core (entering the
air gap; top) and through the horizontal legs of the electromagnet (bottom) for
the ideal flux tube ���� � and the inner ���� � and outer ���� � leakage fluxes; their
addition gives the complete solution �����.

an idealized flux tube (Fig. 3, left), with a fixed magnetomotive
force as excitation and a coarse mesh of the tube (Fig. 2,
middle). This solution serves then as a source for a perturbation
problem allowing leakage flux in the inner region of
the core (Fig. 3, middle), followed by another problem
allowing leakage flux in the outer region (Fig. 3, right). Each
of these problems calculates the actual flux distribution in the
related inductor portion and in the vicinity of the gaps, with
its own adapted mesh. They also correct the flux density in the
cores. Another sequence of problems considers a solution 1 for
the surface gaps (thin shell model), followed by its correction
for the volume gaps (Fig. 4), in a locally refined mesh.

The magnetic flux density along one gap and through core
portions is shown for the two sequences of problems in Figs. 5
and 6. The thin shell model significantly overestimates the flux
density near the gap borders (mainly in a portion comparable to
the gap thickness; equal to 1 mm for a gap length of 20 mm),
which is perfectly corrected by problem 2. For both sequences,
the error is not only limited to the gap region but also to the flux
in the core, as shown in Figs. 5 and 6 (bottom). Each corrected
solution has been checked to be in perfect accordance with the
one-step complete FE solution.

Fig. 6. Magnetic flux density along the top surface of the I-core (entering the
air gap; top) and through the horizontal legs of the electromagnet (bottom) for
the surface gap ���� � and its correction to a volume gap ���� �.

VI. CONCLUSION

The developed perturbation FE method splits magnetic
circuit analyses into problems of lower complexity regarding
meshing operations and computational aspects. This allows
a natural progression from simple to elaborate models, while
quantifying the gain given by each model refinement to justify
its utility. Approximate problems with ideal flux tubes and/or
thin shell models for gaps are accurately corrected. Additional
refinements towards eddy current or 3-D effects are possible
extensions. All the constraints involved in the subproblems
have been carefully defined in the resulting FE formulations,
respecting their inherent strong and weak natures. As a result,
an efficient and accurate computation of local fields and global
quantities (e.g., flux, MMF, reluctance) is obtained.
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