
HAL Id: hal-00364758
https://hal.science/hal-00364758

Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward stochastic differential equations in infinite
dimensions with continuous driver and applications

Marco Fuhrman, Ying Hu

To cite this version:
Marco Fuhrman, Ying Hu. Backward stochastic differential equations in infinite dimensions with
continuous driver and applications. Applied Mathematics and Optimization, 2007, 56 (2), pp.265-302.
�10.1007/s00245-007-0897-2�. �hal-00364758�

https://hal.science/hal-00364758
https://hal.archives-ouvertes.fr


Backward Stochastic Differential Equations
in Infinite Dimensions with Continuous Driver
and Applications

Marco Fuhrman1 and Ying Hu2

1Dipartimento di Matematica, Politecnico di Milano,
piazza Leonardo da Vinci 32, 20133 Milano, Italy
marco.fuhrman@polimi.it

2IRMAR, Université Rennes 1,
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1. Introduction

In this paper we consider the following backward stochastic differential equation (BSDE),
in the sense of [19], on a finite time interval [0, T ], in an infinite-dimensional setting:

dYt = −BYt dt − ψ(t, Xt , Yt , Zt ) dt + Zt dWt , YT = ϕ(XT ). (1.1)

In the above, W is a cylindrical Wiener process in a Hilbert space �, B is the infinitesimal
generator of a strongly continuous dissipative compact semigroup (et B) in a Hilbert
space K , X is a Markov process with respect to the filtration generated by W , and ψ

and ϕ are deterministic functions with values in K . The solution (Y, Z) takes values in
K × L2(�, K ), where L2(�, K ) denotes the space of Hilbert–Schmidt operators from
� to K . The solution is understood in an appropriate sense, see below.
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BSDEs in infinite dimensions were first studied in [17]. In this paper the authors
proved the existence and uniqueness of the solution to BSDE (1.1) assuming that the
driver ψ is uniformly Lipschitz with respect to (y, z).

BSDEs in infinite dimensions were also studied in [1]–[3], [10], [14], [18] and
[20], in the more general case when the driver ψ can be random. In [9]–[12], (1.1) was
considered when the process X takes values in a Hilbert space H and is defined as the
solution to a stochastic evolution equation of the form

d Xt = AXt dt + F(t, Xt ) dt + G(t, Xt ) dWt , X0 = x ∈ H. (1.2)

Here A is the infinitesimal generator of a strongly continuous semigroup (et A) in H , and
F and G are appropriate functions with values in H and in the space of bounded linear
operators from � to H , respectively. Various problems were considered in these papers,
including applications to nonlinear partial differential equations for functions defined on
[0, T ] × H and optimal stochastic control. In [13] the fully coupled case is addressed,
i.e. when F and G may depend on the unknown processes Y and Z .

In this paper we prove the existence of a solution to BSDE (1.1) assuming that ψ is
only continuous with respect to (y, z).

Our starting point is the result in [15], where all the processes W, X, Y, Z take values
in finite-dimensional vector spaces. In that paper ψ is assumed to have linear growth
with respect to (y, z); this allows one to prove the existence result for the BSDE and to
prove the existence of a Nash equilibrium in an N -player stochastic differential game. A
crucial assumption in that paper is a condition on the densities of transition probabilities
of the process X with respect to the Lebesgue measure. This condition is fulfilled in the
case when G is uniformly nondegenerate. The result of [15] was generalized in [16] to
the case of discrete-functional-type drivers.

In our paper we also impose conditions on the transition probabilities of the pro-
cess X . However, due to the infinite-dimensional nature of the state space H , we need
completely different assumptions.

In Section 3 we consider the case when X is an Ornstein–Uhlenbeck process, i.e. it
solves (1.2) with F = 0 and G constant. In this case explicit conditions are known to
ensure equivalence of transition probabilities. We prove a formula for mutual densities,
generalizing a result in [4], and use it to prove the existence of a solution to (1.1)
assuming that ψ has linear growth with respect to (y, z). Generalizations of this result
to more general processes X seem to be possible, for instance using the formulae for
transition densities introduced in [22]–[24]. The present result is however sufficient for
the applications to stochastic games that we present.

In Section 6 we apply the existence result for the BSDE to prove the existence
of a Nash equilibrium in a stochastic game. The underlying controlled process has a
nonlinear drift and constant diffusion coefficient: see (6.1). This time, using the infinite-
dimensionality of the process Y , we are able to study a stochastic game with infinitely
many players. Stochastic games with an infinite number of players are a mathematical
model used to describe a variety of economical and financial markets, but so far a
dynamical setting with continuous time was not considered to our knowledge, perhaps
due to the complexity of the techniques involved.

In Sections 4 and 5 we only assume that X is a Markov process with values in
a metric space, and we prove the existence of a solution to the BSDE assuming that
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ψ is bounded. We impose two kinds of conditions. First, in Section 4, we require the
transition probabilities of X to be equivalent to each other (but no condition is im-
posed on the corresponding densities). An application is given in Section 4.1, again in
the case of a process solution of an evolution equation of the form (1.2). Second, in
Section 5, we address a case where transition probabilities can be even singular, and
we require a continuity condition with respect to the variation norm: see (5.2). This
kind of property is customary in the theory of stochastic evolution equations in infinite-
dimensional spaces: it has been deeply investigated in connection with the so-called
strong Feller property and several conditions are known which guarantee that it is verified:
see [6]. One example is given below, see Section 5.1, to show applicability of the general
result.

In Section 2 we introduce notation, we state a general approximation lemma and
recall some facts about the Ornstein–Uhlenbeck process in a Hilbert space.

Some results of this paper have been announced at the Fourth International Con-
ference on Backward Stochastic Differential Equations and Applications, Shanghai,
May 30th to June 1st, 2005. The first author thanks the Université de Rennes 1 for his
stay during which this article was begun.

2. Preliminaries

In this section we collect material that will be used in what follows. First we recall
some notation, then we define the Ornstein–Uhlenbeck semigroup that is used in Sec-
tions 3 and 6, finally we state and prove an approximation lemma that is frequently used
afterwards.

2.1. Notation

In this paper the letters H, K , � denote Hilbert spaces. All Hilbert spaces are assumed
to be real and separable. The norm is denoted | · | and the scalar product 〈·, ·〉, with
a subscript to indicate the space, if necessary. L(H, K ) denotes the space of linear
bounded operators from H to K , with its usual norm. We shorten L(H, H) to L(H).
L2(H, K ) denotes the space of Hilbert–Schmidt operators from H to K , with the
Hilbert–Schmidt norm. Operator norms are also denoted by | · |, with a subscript if
necessary.

Let (�,F, P) be a complete probability space. A cylindrical Wiener process
{Wt , t ≥ 0} in a Hilbert space � is a family of linear mappings ξ → W ξ

t , defined
for ξ ∈ � with values in L2(�,F, P), such that {W ξ

t , t ≥ 0} is a real Wiener process
and E [W ξ

t W η
s ] = (t ∧ s)〈ξ, η〉 for ξ, η ∈ � and t, s ≥ 0. By Ft we denote the σ -algebra

generated by the random variables {W ξ
s , s ∈ [0, t], ξ ∈ �} and by the P-null sets of F .

We call (Ft )t≥0 the Brownian filtration of W .
Stochastic integration theory can be defined with respect to W : we refer to [5] for

details. If {	t , t ∈ [0, T ]} is an (Ft )-predictable process with values in L2(�, H),
satisfying P-a.s.

∫ T
0 |	t |2L2(�,H) < ∞ then the stochastic integral {∫ t

0 	s dWs, t ∈
[0, T ]} is an (Ft )-local martingale with values in H admitting a continuous
version.
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2.2. The Ornstein–Uhlenbeck Process

Let H, � be Hilbert spaces. We are given two linear operators A: D(A) ⊂ H → H and
G ∈ L(�, H) such that

Hypothesis 1.

(i) The operator A: D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup {et A, t ≥ 0} of bounded linear operators in H .

(ii) G: � → H is a bounded linear operator.
(iii) The operators

Qt x =
∫ t

0
es AGG∗es A∗

x ds, x ∈ H,

are of trace class for all t ≥ 0.
(iv) et A(H) ⊂ Q1/2

t (H), for all t > 0.

We define the Ornstein–Uhlenbeck process as the solution of the following stochastic
equation:

d Xt = AXt dt + G dWt , X0 = x, (2.1)

where x ∈ H is given and W is a cylindrical Wiener process in �. Equation (2.1) is
understood in the so-called mild sense: the solution is by definition the process

Xt = et Ax +
∫ t

0
e(t−s)AG dWs, t ≥ 0. (2.2)

It is well known (see, e.g. [5]) that under assumptions (i)–(iii) in Hypothesis 1 the
Ito integral is well defined and Xt is a random variable with values in H with law
N (et Ax, Qt ), i.e. the Gaussian measure with mean et Ax and covariance operator Qt .
Moreover, condition (iv) ensures that the measures {N (et Ax, Qt ), t > 0, x ∈ H} are
all equivalent. In the following we fix 0 < t ≤ T , x ∈ H and we denote by ktT (x, ·) the
density of N (et Ax, Qt ) with respect to N (0, QT ).

Lemma 2. Assume that Hypothesis 1 holds, and let 0 < t ≤ T and x ∈ H be given.
Define


tT = Q−1/2
T et A QT −t (Q−1/2

T et A)∗. (2.3)

Then 1 − 
tT is a positive operator with bounded inverse and we have, for N (0, QT )-
almost every y ∈ H ,

ktT (x, y) = det(1 − 
tT )−1/2 exp{− 1
2 〈(1 − 
tT )−1 Q−1/2

T et Ax, Q−1/2
T et Ax〉

+ 〈(1 − 
tT )−1 Q−1/2
T et Ax, Q−1/2

T y〉
− 1

2 〈
tT (1 − 
tT )−1 Q−1/2
T y, Q−1/2

T y〉}. (2.4)
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We also have the following estimates:

|(1 − 
tT )−1| ≤ 1 + |QT −t ||Q−1/2
t et A|2 (2.5)

and

det(1 − 
tT )−1 ≤ exp{(1 + |QT −t ||Q−1/2
t et A|2) |Q−1/2

t et A|2 Trace QT −t }. (2.6)

By 1 we also denote the identity operator. These formulae need some explanations.
First we note that, as a consequence of Hypothesis 1, one can prove that the operators
Q−1/2

T et A and Q−1/2
t et A are everywhere defined and bounded and that 
tT is a symmetric

trace class operator satisfying 0 ≤ 
tT < 1. Next, the determinant occurring in (2.4)
and (2.6) is understood as the infinite product of eigenvalues. It is well defined, since

tT is trace class. Finally, for arbitrary b ∈ H and trace class symmetric operator M the
functions 〈b, Q−1/2

T y〉 and 〈M Q−1/2
T y, Q−1/2

T y〉, y ∈ H, are defined by the formulae

〈b, Q−1/2
T y〉 =

∞∑
j=1

λ
−1/2
j 〈b, ej 〉〈y, ej 〉 (2.7)

and

〈M Q−1/2
T y, Q−1/2

T y〉 =
∞∑

j,k=1

λ
−1/2
j λ

−1/2
k 〈Mek, ej 〉〈y, ej 〉〈y, ek〉,

where (ek), (λk) are the eigenvectors and eigenvalues of QT , the eigenvalues are strictly
positive. The series converge in L2(H,N (0, QT )) so that formula (2.4) defines a function
ktT (x, ·) up to a set of N (0, QT ) measure 0. In particular, the function y → 〈b, Q−1/2

T y〉
defined in (2.7) has centered gaussian law with covariance |b|2 on the probability space
(H,N (0, QT )) and it follows that∫

H
exp{〈b, Q−1/2

T y〉}N (0, QT )(dy) = exp{ 1
2 |b|2}. (2.8)

Lemma 2 is similar to Proposition 4.2 in [4], where densities with respect to the
invariant measure of the process X were considered instead of densities with respect
to N (0, QT ). Here we do not assume that X has an invariant measure. The proof of
Lemma 2 is postponed to the Appendix.

2.3. An Approximation Procedure

Lemma 3. Let M be a metric space, let H and K be Hilbert spaces and let ψ : M ×
H → K be a Borel measurable function satisfying

|ψ(m, h)| ≤ C(|h| + g(m)), m ∈ M, h ∈ H,

for some constant C > 0 and some function g: M → [0, ∞). Let ψ(m, ·): H → K be a
continuous function for every m ∈ M . Then there exists a sequence of Borel measurable
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functions ψn: M × H → K satisfying the following conditions:

(i) There exists a constant C ′ > 0 such that, for every n,

|ψn(m, h)| ≤ C ′(|h| + g(m) + 1), m ∈ M, h ∈ H.

(ii) For every m ∈ M , ψn(m, ·): H → K is infinitely Fréchet differentiable.
(iii) There exist constants Cn > 0 such that, for every n,

|ψn(m, h) − ψn(m, k)| ≤ Cn|h − k|, m ∈ M, h, k ∈ H.

(iv) If hn → h in H then ψn(m, hn) → ψ(m, h) in K , for every m ∈ M .

Proof. We use the construction in [21]. Let (ei ) denote a basis of H and define the
projection Pn: H → R

n setting Pnh = (〈ei , h〉)n
i=1, h ∈ H . Then for y = (yi )

n
i=1 ∈ R

n

we have P∗
n y = ∑n

i=1 yi ei . Let ρn: R
n → [0, ∞) be infinitely differentiable functions

such that
∫

Rn ρn(y) dy = 1 with support contained in {y ∈ R
n: |y|Rn ≤ 1/n}. Define

ψn(m, h) =
∫

Rn

ψ(m, P∗
n (Pnh + y))ρn(y) dy, h ∈ H, m ∈ M.

It is easy to show that ψn(m, ·): H → K is infinitely Fréchet differentiable, that
ψn(m, hn) → ψ(m, h) whenever hn → h in H , and to prove the estimate |ψn(m, h)| ≤
C ′(|h|+g(m)+1), for some constant C ′. Next we take ηn ∈ C∞(R) such that ηn(x) = 1
for x ≤ n, ηn(x) = 0 for x ≥ n + 1, and |ηn(x)| + |η′

n(x)| ≤ c for some constant c.
Then setting

ψn(m, h) = ηn(
√

1 + |h|2 − 1 + g(m)) ψn(m, h), h ∈ H, m ∈ M,

it is easy to show that the gradient of ψn is bounded by some constant (depending on n)
and that all the conclusions of the lemma are satisfied.

3. BSDE with a Linear Growth Continuous Driver

In this section we consider a BSDE of the form

dYt = −BYt dt − ψ(t, Xt , Yt , Zt ) dt + Zt dWt , YT = ϕ(XT ), (3.1)

for t varying on a bounded time interval [0, T ]. W is a cylindrical Wiener process in a
Hilbert space � and we denote by (Ft ) its Brownian filtration. The unknown processes Y
and Z take values in a Hilbert space K and in the Hilbert space L2(�, K ), respectively.
X is a given (Ft )-predictable process in another Hilbert space H . On the drivers B and
ψ and the final datum ϕ we assume the following.

Hypothesis 4.

(i) The operator B: D(B) ⊂ K → K is the infinitesimal generator of a strongly
continuous dissipative semigroup {et B, t ≥ 0} of linear bounded operators
on K .
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(ii) ϕ: H → K and ψ : [0, T ] × H × K × L2(�, K ) → K are Borel measurable
functions, and there exist two constants C > 0 and p ≥ 1 such that

|ϕ(x)| ≤ C(1 + |x |p), x ∈ H,

|ψ(t, x, y, z)| ≤ C(1 + |x |p + |y| + |z|),
t ∈ [0, T ], x ∈ H, y ∈ K , z ∈ L2(�, K ).

(iii) For every t ∈ [0, T ] and x ∈ H , the function ψ(t, x, ·, ·): K ×L2(�, K ) → K
is continuous.

Let us suppose that supt∈[0,T ] E|Xt |2p < ∞. We say that an (Ft )-predictable process
(Y, Z) with values in K × L2(�, K ) is a mild solution of (3.1) if

sup
t∈[0,T ]

E |Yt |2 + E

∫ T

0
|Zt |2 dt < ∞ (3.2)

and for every t ∈ [0, T ] the following equality holds:

Yt +
∫ T

t
e(s−t)B Zs dWs

= e(T −t)Bϕ(XT ) +
∫ T

t
e(s−t)Bψ(s, Xs, Ys, Zs) ds, P-a.s. (3.3)

The result of [17] states that there exists a unique mild solution if, in addition to the
previous assumptions, one supposes that the function ψ(t, x, ·, ·) is Lipschitz continuous.
In the following we drop the Lipschitz condition and prove some existence results. We
first need some preliminary estimates.

Lemma 5. Assume that Hypothesis 4 holds and let X be an (Ft )-predictable process
satisfying supt∈[0,T ] E|Xt |2p < ∞. Let (Y, Z) be a mild solution to (3.1). Then

sup
t∈[0,T ]

E |Yt |2 + E

∫ T

0
|Zt |2 dt ≤ C sup

t∈[0,T ]
E(1 + |Xt |2p). (3.4)

If ψ ′, ϕ′ are functions satisfying Hypothesis 4 and (Y ′, Z ′) is a corresponding mild
solution then

E

∫ T

0
|Zt − Z ′

t |2 dt ≤E|ϕ(XT ) − ϕ′(XT )|2

+ C

(
sup

t∈[0,T ]
E(1+|Xt |2p)

)1/2(
E

∫ T

0
|Yt −Y ′

t |2 dt

)1/2

. (3.5)

In (3.4) and (3.5) the constant C depends only on T and on the constants C, p in
Hypothesis 4.
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Proof. We introduce the operators Jk = k(k · 1 − B)−1, k > 0. A direct computation
shows that B Jk = k2(k · 1 − B)−1 − k · 1, so in particular the operators B Jk are bounded
(they are called the Yosida approximations of B). We set Y k

t = JkYt , Zk
t = Jk Zt . We

now verify that Y k admits the Itô differential

dY k
t = −BY k

t dt − Jkψ(t, Xt , Yt , Zt ) dt + Zk
t dWt . (3.6)

In fact applying Jk to both sides of (3.3) we have

Y k
t +

∫ T

t
e(s−t)B Zk

s dWs

= e(T −t)B Jkϕ(XT ) +
∫ T

t
e(s−t)B Jkψ(s, Xs, Ys, Zs) ds. (3.7)

Applying B to both sides and integrating we obtain, for every r ∈ [0, T ],∫ T

r
BY k

t dt +
∫ T

r

∫ T

t
e(s−t)B B Zk

s dWs dt

=
∫ T

r
e(T −t)B B Jkϕ(XT ) dt

+
∫ T

r

∫ T

t
e(s−t)B B Jkψ(s, Xs, Ys, Zs) ds dt. (3.8)

We have∫ T

r
e(T −t)B B Jkϕ(XT ) dt = e(T −r)B Jkϕ(XT ) − Jkϕ(XT )

and, applying the stochastic Fubini theorem (see, e.g. [5])∫ T

r

∫ T

t
e(s−t)B B Zk

s dWs dt =
∫ T

r

∫ s

r
e(s−t)B B Zk

s dt dWs

=
∫ T

r
(e(s−r)B Zk

s − Zk
s ) dWs .

Substituting in (3.8) and comparing with (3.7) gives∫ T

r
BY k

t dt = Y k
r +

∫ T

r
Zk

s dWs − Jkϕ(XT ) −
∫ T

r
Jkψ(s, Xs, Ys, Zs) ds,

which proves (3.6).
Applying the Itô formula to |Y k

t |2 we obtain

|Y k
t |2 +

∫ T

t
|Zk

s |2ds

= |Jkϕ(XT )|2 + 2
∫ T

t
(〈Y k

s , BY k
s 〉 + 〈Y k

s , Jkψ(s, Xs, Ys, Zs)〉) ds

− 2
∫ T

t
〈Y k

s , Zk
s dWs〉.
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We have

E

(∫ T

0
|(Zk

s )
∗Y k

s |2 ds

)1/2

≤ E

[
sup

s∈[0,T ]
|Y k

s |
(∫ T

0
|Zk

s |2 ds

)1/2
]

< ∞, (3.9)

since it follows from (3.6) and Burkholder’s inequality that E supt∈[0,T ] |Y k
t |2 < ∞.

Inequality (3.9) ensures that we can take expectation in the previous equality and obtain

E|Y k
t |2 + E

∫ T

t
|Zk

s |2 ds

= E|Jkϕ(XT )|2 + 2E

∫ T

t
(〈Y k

s , BY k
s 〉 + 〈Y k

s , Jkψ(s, Xs, Ys, Zs)〉) ds.

Now we use the dissipativity of B and we obtain

E|Y k
t |2 + E

∫ T

t
|Zk

s |2 ds ≤ E|Jkϕ(XT )|2 + 2E

∫ T

t
〈Y k

s , Jkψ(s, Xs, Ys, Zs)〉 ds.

It is well known that |Jk |L(K ) ≤ 1 and Jkh → h for every h ∈ K . By the growth
condition on ψ , the hypothesis supt∈[0,T ] E|Xt |2p < ∞ and by (3.2) we can apply the
dominated convergence theorem and we arrive at

E|Yt |2 + E

∫ T

t
|Zs |2 ds ≤ E|ϕ(XT )|2 + 2E

∫ T

t
〈Ys, ψ(s, Xs, Ys, Zs)〉 ds. (3.10)

Next we have, for every ε > 0 and for some constant Cε,

〈Ys, ψ(s, Xs, Ys, Zs)〉 ≤ C |Ys |(1 + |Xs |p + |Ys | + |Zs |)
≤ ε|Zs |2 + Cε(1 + |Xs |2p + |Ys |2).

Choosing ε sufficiently small we obtain, for some C, c > 0,

E|Yt |2 + cE

∫ T

t
|Zs |2ds ≤ E|ϕ(XT )|2 + 2E

∫ T

t
(1 + |Xs |2p + |Ys |2) ds

≤ C sup
t∈[0,T ]

(1 + E |Xt |2p) + CE

∫ T

t
|Ys |2 ds,

and (3.4) follows from Gronwall’s lemma.
In order to prove (3.5) we write the equation satisfied by (Y − Y ′, Z − Z ′) and,

introducing the operators Jk and proceeding as before, instead of (3.10) we arrive at

E|Yt − Y ′
t |2 + E

∫ T

t
|Zs − Z ′

s |2 ds

≤ E|ϕ(XT ) − ϕ′(XT )|2

+ 2E

∫ T

t
〈Ys − Y ′

s , ψ(s, Xs, Ys, Zs) − ψ ′(s, Xs, Y ′
s , Z ′

s)〉 ds.
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We set fs = ψ(s, Xs, Ys, Zs) − ψ ′(s, Xs, Y ′
s , Z ′

s) and note that

| fs | ≤ C(1 + |Xs |p + |Ys | + |Zs | + |Y ′
s | + |Z ′

s |).

From estimate (3.4) we deduce

E

∫ T

0
| fs |2 ds ≤ C sup

t∈[0,T ]
E (1 + |Xt |2p)

and we obtain

E|Yt − Y ′
t |2 + E

∫ T

t
|Zs − Z ′

s |2 ds

≤ E|ϕ(XT ) − ϕ′(XT )|2 + 2

(
E

∫ T

t
|Ys − Y ′

s |2 ds

)1/2 (
E

∫ T

t
| fs |2 ds

)1/2

≤ E|ϕ(XT ) − ϕ′(XT )|2 + C

(
sup

t∈[0,T ]
E (1 + |Xt |2p)

)1/2

(
E

∫ T

t
|Ys − Y ′

s |2 ds

)1/2

.

Inequality (3.5) follows immediately.

We are now able to state and prove the main result of this section, where for the
process X we take the Ornstein–Uhlenbeck process introduced in Section 2.2: given
x0 ∈ H we define

Xt = et Ax0 +
∫ t

0
e(t−s)AG dWs . (3.11)

Theorem 6. Assume that Hypotheses 1 and 4 hold and suppose that the operators et B

are compact for t > 0. Let X be the Ornstein–Uhlenbeck process defined by (3.11).
Then there exists a mild solution (Y, Z) to (3.1). Moreover there exist Borel measurable
functions u: [0, T ] × H → K , v: [0, T ] × H → L2(�, K ) such that, P-a.s.,

Yt = u(t, Xt ), for all t ∈ [0, T ];

Zt = v(t, Xt ), for almost all t ∈ [0, T ].

Proof. First Step. Approximation. We apply Lemma 3 to the metric space [0, T ]× H
and the Hilbert space K × L2(�, K ) and obtain a sequence of functions ψn: [0, T ] ×
H × K × L2(�, K ) → K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C(1 + |x |p + |y| + |z|), (3.12)

and for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x).

10



Let (Y n,t,x , Zn,t,x ) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds − ψn(s, Xt,x
s , Y n,t,x

s , Zn,t,x
s ) ds + Zn,t,x

s dWs,

Y n,t,x
T = ϕ(Xt,x

T ),
(3.13)

where Xt,x
s is the Ornstein–Uhlenbeck process starting from x at time t :

Xt,x
s = e(s−t)Ax +

∫ s

t
e(s−r)AG dWr , 0 ≤ t ≤ s ≤ T

(we define Xt,x
s = x for s < t). It is easy to prove that sups∈[0,T ] E|Xt,x

s |2p ≤ C(1+|x |2p)

and (3.4) implies

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,x

s |2 ds ≤ C(1 + |x |2p). (3.14)

Moreover, there exist Borel measurable functions un: [0, T ]× H → K and vn: [0, T ]×
H → L2(�, K ), such that

Y n,t,x
s = un(s, Xt,x

s ), Zn,t,x
s = vn(s, Xt,x

s ). (3.15)

The proof of (3.15) can be found in [8] (see also Proposition 3.2 of [9] for a direct proof
in the infinite-dimensional case).

Second Step. In this step we prove that there exists a subsequence of un(t, x) which
is convergent in K for every t, x . This is obvious for t = T , since un(T, x) = ϕ(x), so
we can assume t < T .

We denote by μt (x, dy) the gaussian measure N (et Ax, Qt )(dy) and by μT (dy) the
measure N (0, QT )(dy), and we note that the law of Xt,x

s is μs−t (x, dy), 0 ≤ t ≤ s ≤ T .
Noting that un(t, x) = Y n,t,x

t , taking expectation in the BSDE we have

un(t, x) = E e(T −t)Bϕ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds

= E e(T −t)Bϕ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s, Xt,x

s , un(s, Xt,x
s ), vn(s, Xt,x

s )) ds

= E e(T −t)Bϕ(Xt,x
T ) +

∫ T

t
e(s−t)B

∫
H

	n(s, y) μs−t (x, dy) ds, (3.16)

where 	n(s, y) = ψn(s, y, un(s, y), vn(s, y)). For t < T and δ > 0 so small that
t + δ ≤ T we decompose un(t, x) as follows:

un(t, x) = q(t, x) + an
δ (t, x) + bn

δ (t, x), (3.17)

where q(t, x) = E e(T −t)Bϕ(Xt,x
T ),

an
δ (t, x) =

∫ t+δ

t
e(s−t)B

∫
H

	n(s, y) μs−t (x, dy) ds,

bn
δ (t, x) =

∫ T

t+δ

e(s−t)B
∫

H
	n(s, y) μs−t (x, dy) ds.

11



We note that the inequality∣∣∣∣∫
H

	n(s, y) μs−t (x, dy)

∣∣∣∣ = ∣∣E ψn(s, Xt,x
s , Y n,t,x

s , Zn,t,x
s )

∣∣
≤ C E (1 + |Xt,x

s |p + |Y n,t,x
s | + |Zn,t,x

s |) (3.18)

implies

|an
δ (t, x)| ≤ C E

∫ t+δ

t
(1 + |Xt,x

s |p + |Y n,t,x
s | + |Zn,t,x

s |) ds

≤ C δ1/2

(
E

∫ t+δ

t
(1 + |Xt,x

s |2p + |Y n,t,x
s |2 + |Zn,t,x

s |2) ds

)1/2

≤ Cx δ1/2, (3.19)

by (3.14). Next we consider bn
δ (t, x) that we rewrite

bn
δ (t, x) =

∫ T

t+δ

e(s−t)B
∫

H
	n(s, y)ds,t (x, y) μs(0, dy) ds,

where we have denoted ds,t (x, y) the density of μs−t (x, ·) with respect to μs(0, ·). We
consider the Hilbert space of Borel measurable functions [0, T ] × H → K , square
summable with respect to the measure μs(0, dy) ds, equipped with the usual inner
product. It will be denoted L2([0, T ] × H ; μs(0, dy) ds; K ). Let us check that (	n)

is a bounded set in this space: Indeed, we have∫ T

0

∫
H

|	n(s, y)|2 μs(0, dy) ds

= E

∫ T

0
|ψn(s, X0,0

s , Y n,0,0
s , Zn,0,0

s )|2ds

≤ C E

∫ T

0
(1 + |X0,0

s |2p + |Y n,0,0
s |2 + |Zn,0,0

s |2) ds

≤ C,

by (3.14). The sequence (	n) is therefore weakly compact and there exists a subsequence
(still denoted (	n)) which is weakly convergent in L2([0, T ] × H ;μs(0, dy) ds; K ).

For fixed k ∈ K define

ϕ(s, y) = 1[t+δ,T ](s)d
s,t (x, y) e(s−t)B∗

k

and assume for a moment that ϕ (which of course depends also on t, x, δ, k) belongs to
L2([0, T ] × H ; μs(0, dy) ds; K ). The function ϕ is chosen so that

〈bn
δ (t, x), k〉 =

∫ T

t+δ

∫
H
〈e(s−t)B	n(s, y), k〉ds,t (x, y) μs(0, dy) ds

= 〈	n, ϕ〉L2([0,T ]×H ;μs (0,dy) ds;K ).

12



It follows that, for integers n, m ≥ 1,

〈un(t, x) − um(t, x), k〉
= 〈an

δ (t, x) − am
δ (t, x), k〉 + 〈bn

δ (t, x) − bm
δ (t, x), k〉

= 〈an
δ (t, x) − am

δ (t, x), k〉 + 〈	n − 	m, ϕ〉L2([0,T ]×H ;μs (0,dy) ds;K ).

From (3.19) it follows that

|〈un(t, x) − um(t, x), k〉| ≤ C δ1/2|k| + |〈	n − 	m, ϕ〉L2([0,T ]×H ;μs (0,dy) ds;K )|,

and since (	n) is weakly convergent we conclude that (〈un(t, x), k〉)n is a Cauchy
sequence for every k ∈ K , so that, for all t, x , (un(t, x))n is a weakly convergent
sequence in K .

It remains to check that ϕ ∈ L2([0, T ] × H ; μs(0, dy) ds; K ). From Lemma 2, the
density ds,t (x, y) has the form

ds,t (x, y)=det(1 − 
s,t )−1/2 exp{− 1
2 〈(1 − 
s,t )−1 Q−1/2

s e(s−t)Ax, Q−1/2
s e(s−t)Ax〉

+ 〈(1 − 
s,t )−1 Q−1/2
s e(s−t)Ax, Q−1/2

s y〉
− 1

2 〈
s,t (1 − 
s,t )−1 Q−1/2
s y, Q−1/2

s y〉},

where 
s,t = Q−1/2
s e(s−t)A Qt (Q−1/2

s e(s−t)A)∗. So setting

hs,t,x = (1 − 
s,t )−1 Q−1/2
s e(s−t)Ax,

we obtain 0 ≤ ds,t (x, y) ≤ det(1−
s,t )−1/2 exp(〈hs,t,x , Q−1/2
s y〉) and recalling formula

(2.8) we find∫ T

0

∫
H

|ϕ(s, y)|2μs(0, dy) ds ≤ C
∫ T

t+δ

∫
H

|ds,t (x, y)|2μs(0, dy) ds

≤ C
∫ T

t+δ

det(1 − 
s,t )−1 exp(2|hs,t,x |2) ds. (3.20)

By (2.6) we have

det(1 − 
s,t )−1 ≤ exp[(1 + |Qt ||Q−1/2
s−t e(s−t)A|2) |Q−1/2

s−t e(s−t)A|2 Trace Qt ]

and, taking into account (2.5),

|hs,t,x | ≤ |(1 − 
s,t )−1||Q−1/2
s Q1/2

s−t ||Q−1/2
s−t e(s−t)A||x |

≤ (1 + |Qt ||Q−1/2
s−t e(s−t)A|2)|Q−1/2

s Q1/2
s−t ||Q−1/2

s−t e(s−t)A||x |.

Since Qs ≥ Qs−t it follows that |Q−1/2
s Q1/2

s−t | ≤ 1. Using inequality (A.6) and noting
that s − t ≥ δ we obtain |Q−1/2

s−t e(s−t)A| ≤ |Q−1/2
δ eδA|. It follows that

det(1 − 
s,t )−1 ≤ exp[(1 + |Qt ||Q−1/2
δ eδA|2) |Q−1/2

δ eδA|2 Trace Qt ],

|hs,t,x | ≤ (1 + |Qt ||Q−1/2
δ eδA|2)|Q−1/2

δ eδA||x |.
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This shows that the right-hand side of (3.20) is finite and therefore ϕ belongs to
L2([0, T ] × H ; μs(0, dy) ds; K ).

So far in Step 2 we have proved that, for all t, x , the sequence (un(t, x))n is weakly
convergent in K . We will now prove that the convergence takes place in the norm of
K . To this purpose it is enough to show that, for fixed t, x , the sequence (un(t, x))n is
relatively compact in K or, equivalently, that it is totally bounded.

We fix (t, x) and let ε > 0 be arbitrary. We consider again the decomposition (3.17).
By (3.19) we can choose δ such that |an

δ (t, x)| < ε/2 for every n. Next note that

bn
δ (t, x) = eδB

∫ T

t+δ

e(s−t−δ)B
∫

H
	n(s, y) μs−t (x, dy) ds,

and from (3.18) it follows that∣∣∣∣∫ T

t+δ

e(s−t−δ)B
∫

H
	n(s, y) μs−t (x, dy) ds

∣∣∣∣
≤ C E

∫ T

0
(1 + |Xt,x

s |p + |Y n,t,x
s | + |Zn,t,x

s |) ds ≤ C(t, x, δ)

by (3.14). Since eδB is compact by our assumptions, the sequence (bn
δ (t, x))n is relatively

compact, hence totally bounded. So there exists a finite set A ⊂ K such that for any n
there exists a ∈ A satisfying |bn

δ (t, x) − a| < ε/2. So for every n there exists a ∈ A
such that |un(t, x) − q(t, x) − a| < ε. This proves that (un(t, x))n is totally bounded.
We have now proved that (un(t, x))n is a convergent sequence in K for every (t, x).

Third Step. Convergence of Y n and Zn .
We consider again the Ornstein–Uhlenbeck process Xs = X0,x0

s defined in (3.11)
and we denote Y n

s = Y n,0,x0
s , Zn

s = Zn,0,x0
s . Denoting by u(t, x) the limit of un(t, x) then

obviously Y n
s = un(s, Xs) converges to u(s, Xs), which we denote by Ys . Setting s = t

in (3.14) we have |un(t, x)| = E|Y n,t,x
t | ≤ C(1 + |x |p) and consequently

|Y n
s |2 = |un(s, Xs)|2 ≤ C(1 + |Xs |2p);

since E
∫ T

0 |Xt |2p dt < ∞ we conclude that Y n converges to Y in L2(� × [0, T ]; K ).
From inequality (3.5) of Lemma 5 it follows that

E

∫ T

0
|Zn

t − Zm
t |2 dt ≤ C

(
sup

t∈[0,T ]
E (1 + |Xt |2p)

)1/2 (
E

∫ T

0
|Y n

t − Y m
t |2 dt

)1/2

≤ Cx0

(
E

∫ T

0
|Y n

t − Y m
t |2 dt

)1/2

(3.21)

from which we conclude that (Zn) is a Cauchy sequence in L2(� × [0, T ]; L2(�, K )).
We denote by Z its limit. Passing to a subsequence, we can assume that |Zn

t − Zt | → 0,
P-a.s. for almost every t . We define a function v: [0, T ] × H → L2(�, K ) by setting
v(t, x) = limn→∞ vn(t, x) for all (t, x) for which the limit exists, v(t, x) = 0 elsewhere.
Then v is Borel measurable and we have Zt = v(t, Xt ), P-a.s. for almost every t .
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Fourth Step. Existence of the solution. For every t ∈ [0, T ], (Y n, Zn) satisfies
P-a.s.:

Y n
t +

∫ T

t
e(t−s)B Zn

s dWs = e(T −t)Bϕ(XT ) +
∫ T

t
e(t−s)Bψn(s, Xs, Y n

s , Zn
s ) ds.

To prove that (Y, Z) is a solution to (3.3) it remains to check that

E

∫ T

0
|ψn(s, Xs, Y n

s , Zn
s ) − ψ(s, Xs, Ys, Zs)| ds → 0.

From (iv) of Lemma 3 we obtain ψn(s, x, yn, zn) → ψ(s, x, y, z) in K , whenever
yn → y in K and zn → z in L2(�, K ), for every s ∈ [0, T ], x ∈ H . Taking into account
(3.12) and (3.14) we have

E

∫ T

0
|ψn(s, Xs, Y n

s , Zn
s )|2 ds ≤ CE

∫ T

0
(1 + |Xs |2p + |Y n

s |2 + |Zn
s |2) ds ≤ C

which shows that (ψn(s, Xs, Y n
s , Zn

s )) is uniformly integrable on � × [0, T ] and the
required convergence follows immediately.

4. BSDE with Bounded Continuous Generator

In this section and in the following one we adopt a more general approach and we consider
a process X with values in a metric space. We assume that X is a Markov process with
respect to a Brownian filtration. More precisely, in what follows we make the following
assumptions:

(1) (�,F, P) is a complete probability space and {Wt , t ∈ [0, T ]} is a cylindrical
Wiener process in a Hilbert space �. For an arbitrary interval [s, t] ⊂ [0, T ] we
denote byF[s,t] the σ -algebra generated by the random variables {W ξ

r −W ξ
s , r ∈

[s, t], ξ ∈ �} and by the P-null sets of F .
(2) X = {Xt,x

s (ω), ω ∈ �, 0 ≤ t ≤ s ≤ T, x ∈ M} is a stochastic process
with values in a complete separable metric space M , measurable with respect
to F × B(�) × B(M) and B(M), respectively (here by � we denote the set
{(t, s), 0 ≤ t ≤ s ≤ T } and by B(�) the Borel σ -algebra of any topological
space �).

(3) For every t ∈ [0, T ] and x ∈ M , the process {Xt,x
s , s ∈ [t, T ]} has continuous

paths and is adapted to the filtration {F[t,s], s ∈ [t, T ]}.
(4) For 0 ≤ t ≤ s ≤ T and x ∈ M we have, P-a.s.,

Xt,x
t = x, Xs,Xt,x

s
r = Xt,x

r , τ ∈ [s, T ]. (4.1)

We denote by

μt,x
s (A) = P(Xt,x

s ∈ A), 0 ≤ t ≤ s ≤ T, x ∈ M, A ∈ B(M),
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the transition probabilities. Standard arguments show that X is a Markov process, in the
sense that for every bounded Borel function ϕ on M and for 0 ≤ t ≤ s ≤ r ≤ T and
x ∈ M , we have

E
Fs ϕ(Xt,x

r ) =
∫

M
ϕ(y) μs,Xt,x

s
r (dy), P-a.s.

We need the following lemma, that has been proved in Proposition 3.2 of [9], in the
special case when M is a Hilbert space. Exactly the same arguments carry over to the
general case.

Lemma 7. Assume properties (1)–(4) above. Suppose that:

(i) z = {z(ω, s, t, x), ω ∈ �, 0 ≤ t ≤ s ≤ T, x ∈ M} is a stochastic process
with values in a Hilbert space V , measurable with respect toF×B(�)×B(M)

and B(V ), respectively.
(ii) For every t ∈ [0, T ] and x ∈ M , the process {z(s, t, x), s ∈ [t, T ]} is

predictable with respect to the filtration {F[t,s], s ∈ [t, T ]}.
(iii) For 0 ≤ t ≤ s ≤ T and x ∈ M we have, P-a.s.,

z(r, s, Xt,x
s ) = z(r, t, x), for almost all r ∈ [s, T ]. (4.2)

Then there exists a Borel measurable function v: [0, T ] × M → V such that, for
t ∈ [0, T ] and x ∈ H , we have P-a.s.

z(s, t, x) = v(s, Xt,x
s ), for almost all s ∈ [t, T ]. (4.3)

We fix arbitrary x ∈ M and consider the following BSDE:

dYt = −BYt dt − ψ(t, X0,x
t , Yt , Zt ) dt + Zt dWt , YT = ϕ(X0,x

T ), (4.4)

under the following assumptions.

Hypothesis 8.

(i) The process X satisfies properties (1)–(4) above.
(ii) The operator B: D(B) ⊂ K → K is the infinitesimal generator of a strongly

continuous dissipative semigroup {et B, t ≥ 0} of bounded linear operators
in K .

(iii) ϕ: M → K and ψ : [0, T ] × M × K × L2(�, K ) → K are Borel measurable
functions,

E |ϕ(Xt,x
T )|2 < ∞, t ∈ [0, T ], x ∈ M,

and there exists a constant C > 0 such that

|ψ(t, x, y, z)| ≤ C, t ∈ [0, T ], x ∈ M, y ∈ K , z ∈ L2(�, K ).

(iv) For every t ∈ [0, T ] and x ∈ M the function ψ(t, x, ·, ·): K × L2(�, K ) → K
is continuous.
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We say that an (Ft )-predictable process (Y, Z) with values in K × L2(�, K ) is a
mild solution of (4.4) if

sup
t∈[0,T ]

E |Yt |2 + E

∫ T

0
|Zt |2 dt < ∞ (4.5)

and for every t ∈ [0, T ] the following equality holds:

Yt +
∫ T

t
e(t−s)B Zs dWs

= e(T −t)Bϕ(X0,x
T ) +

∫ T

t
e(t−s)Bψ(s, X0,x

s , Ys, Zs) ds, P-a.s. (4.6)

Lemma 9. Assume that Hypothesis 8 holds and let (Y, Z) be a mild solution to (4.4).
Then

sup
t∈[0,T ]

E |Yt |2 + E

∫ T

0
|Zt |2 dt ≤ C (1 + E|ϕ(X0,x

T )|2). (4.7)

If ψ ′, ϕ′ are functions satisfying Hypothesis 8 and (Y ′, Z ′) is a corresponding mild
solution then

E

∫ T

0
|Zt − Z ′

t |2 dt ≤ E|ϕ(X0,x
T ) − ϕ′(X0,x

T )|2 + C E

∫ T

0
|Yt − Y ′

t | dt. (4.8)

In (4.7) and (4.8) the constant C depends only on T and on the constant C in Hypothesis 8.

Proof. Proceeding as in the proof of Lemma 5 we obtain (compare (3.10))

E|Yt |2 + E

∫ T

t
|Zs |2 ds ≤ E|ϕ(X0,x

T )|2 + 2E

∫ T

t
〈Ys, ψ(s, X0,x

s , Ys, Zs)〉 ds. (4.9)

Since ψ is bounded we have

E|Yt |2 + E

∫ T

t
|Zs |2 ds ≤ E|ϕ(X0,x

T )|2 + CE

∫ T

t
|Ys | ds

≤ E|ϕ(X0,x
T )|2 + CE

∫ T

t
(1 + |Ys |2) ds,

and (4.7) follows from Gronwall’s lemma.
In order to prove (4.8) we write the equation satisfied by (Y − Y ′, Z − Z ′) and

proceeding as before we arrive at

E|Yt − Y ′
t |2 + E

∫ T

t
|Zs − Z ′

s |2 ds

≤ E|ϕ(X0,x
T ) − ϕ′(X0,x

T )|2

+ 2E

∫ T

t
〈Ys − Y ′

s , ψ(s, X0,x
s , Ys, Zs) − ψ ′(s, X0,x

s , Y ′
s , Z ′

s)〉 ds.
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By the boundedness assumptions on ψ, ψ ′ we obtain

E|Yt − Y ′
t |2 + E

∫ T

t
|Zs − Z ′

s |2 ds

≤ E|ϕ(X0,x
T ) − ϕ′(X0,x

T )|2 + CE

∫ T

t
|Ys − Y ′

s | ds.

Inequality (4.8) follows immediately.

Theorem 10. Assume that Hypothesis 8 holds, that the operators et B are compact for
t > 0, and that the transition probabilities of the process X :

μt,x
s , 0 ≤ t < s ≤ T, x ∈ M,

are all equivalent measures on M . Then there exists a mild solution to (4.4). Moreover,
there exist Borel measurable functions u: [0, T ]× M → K , v: [0, T ]× M → L2(�, K )

such that, P-a.s.,

Yt = u(t, Xt ), for all t ∈ [0, T ];

Zt = v(t, Xt ), for almost all t ∈ [0, T ].

Proof. First Step. Approximation. We apply Lemma 3 to the metric space [0, T ]× M
and the Hilbert space K × L2(�, K ) and obtain a sequence of functions ψn: [0, T ] ×
M × K × L2(�, K ) → K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C, (4.10)

and, for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x).
Let (Y n,t,x , Zn,t,x ) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds − ψn(s, Xt,x
s , Y n,t,x

s , Zn,t,x
s ) ds + Zn,t,x

s dWs,

Y n,t,x
T = ϕ(Xt,x

T ),
(4.11)

where we use the convention Xt,x
s = x for s < t . By (4.7)

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,x

s |2 ds ≤ C(1 + E|ϕ(Xt,x
T )|2) < ∞. (4.12)

Moreover, from the uniqueness of the solution to (4.11) it is easy to deduce the following
identities: for 0 ≤ t ≤ s ≤ T and x ∈ M , we have, P-a.s.,

Y n,s,Xt,x
s

r = Y n,t,x
r , for all r ∈ [s, T ],

Zn,s,Xt,x
s

r = Zn,t,x
r , for almost all r ∈ [s, T ].

Setting un(t, x) = Y n,t,x
t it follows immediately that, for every t, x , P-a.s.,

Y n,t,x
s = un(s, Xt,x

s ), s ∈ [t, T ].
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Applying Lemma 7 to the process z(s, t, x) = Zn,t,x
s we conclude that there exist Borel

measurable functions vn: [0, T ] × M → L2(�, K ), such that, for every t, x , P-a.s.,

Zn,t,x
s = vn(s, Xt,x

s ), for almost all s ∈ [t, T ].

Second Step. In this step we prove that there exists a subsequence of un(t, x) which
is convergent in K for every t, x . This is obvious for t = T , since un(T, x) = ϕ(x), so
we can assume t < T .

Noting that un(t, x) = Y n,t,x
t , taking expectation in the BSDE we have

un(t, x) = E e(T −t)Bϕ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds

= E e(T −t)Bϕ(Xt,x
T )+E

∫ T

t
e(s−t)Bψn(s,Xt,x

s ,un(s,Xt,x
s ), vn(s, Xt,x

s )) ds

= E e(T −t)Bϕ(Xt,x
T ) +

∫ T

t
e(s−t)B

∫
M

	n(s, y) μt,x
s (dy) ds, (4.13)

where 	n(s, y) = ψn(s, y, un(s, y), vn(s, y)). We fix an arbitrary x0 ∈ M and note
that, from our assumptions, μt,x

s is absolutely continuous with respect to μ0,x0
s for s > t

and x ∈ M . We denote by ds,t (x, y) the corresponding density. Then

un(t, x) = E e(T −t)Bϕ(Xt,x
T ) +

∫ T

t

∫
M

e(s−t)B	n(s, y)ds,t (x, y) μ0,x0
s (dy) ds.

Since (	n) is uniformly bounded, this family is a bounded set in L∞([0, T ] × M;
μ0,x0

s (dy) ds; K ), whence relatively compact in the weak∗ topology. Since, in addition,
the space L1([0, T ] × M;μ0,x0

s (dy) ds; K ) is separable, there exists a sequence (still
denoted 	n) and a function 	0 ∈ L∞([0, T ] × M; μ0,x0

s (dy) ds; K ) such that for any
ϕ ∈ L1([0, T ] × M; μ0,x0

s (dy) ds; K ) we have

lim
n→∞

∫ T

0

∫
M

〈	n(s, y) − 	0(s, y), ϕ(s, y)〉K μ0,x0
s (dy) ds = 0.

For any fixed (t, x) and for every k ∈ K ,∫ T

0

∫
M

1s∈[t,T ]d
s,t (x, y) |e(s−t)B∗

k| μ0,x0
s (dy) ds

=
∫ T

t

∫
M

|e(s−t)B∗
k| μt,x

s (dy) ds

≤ C
∫ T

t

∫
M

μt,x
s (dy) ds = C · (T − t),

which shows that ϕ(s, y) = 1s∈[t,T ]ds,t (x, y)e(s−t)B∗
k belongs to L1([0, T ] × M;

19



μ0,x0
s (dy) ds; K ). We conclude that

lim
n→∞〈un(t, x), k〉 = E 〈e(s−t)Bϕ(Xt,x

T ), k〉

+ lim
n→∞

∫ T

0

∫
M

〈	n(s, y), ϕ(s, y)〉K μ0,x0
s (dy) ds

= E 〈e(s−t)Bϕ(Xt,x
T ), k〉

+
∫ T

t

∫
M

〈	0(s, y), e(s−t)B∗
k〉ds,t (x, y) μ0,x0

s (dy) ds.

and so that (un(t, x))n is weakly convergent in K for every t, x .
To prove that (un(t, x))n is convergent in the norm of K we will show that, for every

(t, x), the sequence (un(t, x))n is totally bounded.
For t < T and δ > 0 so small that t + δ ≤ T we decompose un(t, x) as follows

(compare (4.13)):

un(t, x) = q(t, x) + an
δ (t, x) + bn

δ (t, x), (4.14)

where q(t, x) = E e(T −t)Bϕ(Xt,x
T ),

an
δ (t, x) =

∫ t+δ

t
e(s−t)B

∫
M

	n(s, y) μt,x
s (dy) ds,

bn
δ (t, x) =

∫ T

t+δ

e(s−t)B
∫

M
	n(s, y) μt,x

s (dy) ds.

Let us fix (t, x) and let ε > 0 be arbitrary. Since (	n) is uniformly bounded, we
have

∣∣∫
M 	n(s, y) μt,x

s (dy) ds
∣∣ ≤ C , so it follows that |an

δ (t, x)| ≤ C δ, and we can
choose δ such that |an

δ (t, x)| < ε/2 for every n. Next note that

bn
δ (t, x) = eδB

∫ T

t+δ

e(s−t−δ)B
∫

M
	n(s, y) μt,x

s (dy) ds

and ∣∣∣∣∫ T

t+δ

e(s−t−δ)B
∫

M
	n(s, y) μt,x

s (dy) ds

∣∣∣∣ ≤ C.

Since eδB is compact by our assumptions, the sequence (bn
δ (t, x))n is relatively compact,

hence totally bounded. So there exists a finite set A ⊂ K such that for any n there exists
a ∈ A satisfying |bn

δ (t, x) − a| < ε/2. So for every n there exists a ∈ A such that
|un(t, x)−q(t, x)−a| < ε. This shows that (un(t, x))n is totally bounded and the claim
is proved.

Third Step. Convergence of Y n and Zn .
We denote Y n

s = Y n,0,x0
s , Zn

s = Zn,0,x0
s . Denoting by u0(t, x) the limit of un(t, x)

then obviously Y n
s = un(s, Xs) converges to u(s, Xs), which we denote by Ys . From
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(4.12) it follows that

sup
n

E

∫ T

0
|Y n

s |2 ds < ∞

and we deduce that Y n converges to Y in L1(� × [0, T ]; K ). From inequality (4.8) of
Lemma 9 it follows that

E

∫ T

0
|Zn

t − Zm
t |2 dt ≤ CE

∫ T

0
|Y n

t − Y m
t | dt,

from which we conclude that (Zn) is a Cauchy sequence in L2(� × [0, T ]; L2(�, K )).
We denote by Z its limit. Passing to a subsequence, we can assume that |Zn

t − Zt | → 0,
P-a.s. for almost every t . We define a function v: [0, T ] × H → L2(�, K ) setting
v(t, x) = limn→∞ vn(t, x) for all (t, x) for which the limit exists, v(t, x) = 0 elsewhere.
Then v is Borel measurable and we have Zt = v(t, Xt ), P-a.s. for almost every t .

Fourth Step. Existence of solution. For every t ∈ [0, T ], (Y n, Zn) satisfies P-a.s.

Y n
t +

∫ T

t
e(t−s)B Zn

s dWs = e(T −t)Bϕ(X0,x0
T ) +

∫ T

t
e(t−s)Bψn(s, X0,x0

s , Y n
s , Zn

s ) ds.

To prove that (Y, Z) is a solution to (3.3) it remains to check that

E

∫ T

0
|ψn(s, X0,x0

s , Y n
s , Zn

s ) − ψ(s, X0,x0
s , Ys, Zs)| ds → 0.

From (iv) of Lemma 3 we obtain ψn(s, x, yn, zn) → ψ(s, x, y, z) in K , whenever
yn → y in K and zn → z in L2(�, K ), for every s ∈ [0, T ], x ∈ H . Taking into account
(4.10) the required convergence follows from the dominated convergence theorem.

4.1. Example

Let W be a cylindrical Wiener process in a Hilbert space � with Brownian filtration (Ft ).
Consider the following equation on the time interval [0, T ] for an unknown process X
with values in a Hilbert space H :

d Xt = AXt dt + F(t, Xt ) dt + G dWt , X0 = x,

where x ∈ H , the operators A and G satisfy Hypothesis 1, F : [0, T ] × H → H is a
Borel measurable mapping such that, for some constant C ≥ 0,

|F(t, x) − F(t, x ′)| ≤ C |x − x ′|,
|F(t, x)| ≤ C (1 + |x |), t ∈ [0, T ], x, x ′ ∈ H,

and there exists α > 0 such that

Trace
∫ T

0
s−α es AGG∗es A∗

ds < ∞

(this is a stronger assumption than Hypothesis 1(iii)).
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It is well known (see, e.g. [5]) that under these conditions there exists a unique mild
solution, i.e. an (Ft )-adapted process X , with continuous paths in H , such that, P-a.s.,

Xt = et Ax +
∫ t

0
e(t−s)A F(s, Xs) ds +

∫ t

0
e(t−s)AG dWs, t ≥ 0.

X is unique up to indistinguishability. We denote by μ
0,x
t the law of Xt .

We assume further that the image of F is contained in the image of G and there
exists C ≥ 0 such that

|G−1 F(t, x)| ≤ C, t ∈ [0, T ], x ∈ H,

where G−1 denotes the pseudo-inverse of G. We consider the Ornstein–Uhlenbeck pro-
cess X ′ solution of

d X ′
t = AX ′

t dt + G dWt , X ′
0 = x .

By the Girsanov theorem, setting

ρ = exp

(∫ T

0
〈G−1 F(s, X ′

s), dWs〉 − 1

2

∫ T

0
|G−1 F(s, X ′

s)|2 ds

)
,

we have Eρ = 1 and the process W ′
t = Wt − ∫ t

0 G−1 F(s, X ′
s) ds, t ∈ [0, T ], is a

cylindrical Wiener process with respect to the probability P
′ admitting density ρ with

respect to P. Then we have

d X ′
t = AX ′

t dt + F(t, X ′
t ) dt + G dW ′

t , X0 = x,

and it follows that the law of X ′ under P
′ is the same as the law of X under P. Since

P and P
′ are equivalent measures, it follows in particular that the μ

0,x
t is equivalent to

N (et Ax, Qt ), and therefore that {μ0,x
t , t ∈ (0, T ], x ∈ H} is a family of equivalent

measures. In the same way one proves that the process Xt,x
s , a solution in the mild sense

to the equation

d Xt,x
s = AXt,x

s ds + F(s, Xt,x
s ) dt + G dWs, Xt = x,

on the interval [t, T ] ⊂ [0, T ], satisfies all the requirements of Theorem 10. So if B, ψ ,
ϕ satisfy the assumptions in Hypothesis 8 and the operators et B are compact for t > 0,
then there exists a mild solution to (4.4).

5. BSDE with Bounded Continuous Generator: Second Case

In this section we still consider a Markov process X = {Xt,x
s , 0 ≤ t ≤ s ≤ T, x ∈

M}, with values in a complete separable metric space M , satisfying properties (1)–
(4) of Section 4. We denote by μt,x

s the transition probabilities of X . We suppose that
Hypothesis 8 holds and, in addition, that the function ϕ is bounded. In particular, the
conclusions of Lemma 9 still hold.

We fix arbitrary x ∈ M and we consider the same BSDE as in formula (4.4):

dYt = −BYt dt − ψ(t, X0,x
t , Yt , Zt ) dt + Zt dWt , YT = ϕ(X0,x

T ). (5.1)
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As before an (Ft )-predictable process (Y, Z) with values in K × L2(�, K ) is called a
mild solution of (5.1) if it satisfies (4.5) and (4.6).

In this section we replace the requirement of mutual absolute continuity of the
transition probabilities of X with a continuity assumption of the map x → μt,x

s with
respect to the variation norm.

More precisely we assume that for every sequence xn converging to x in M and for
0 ≤ t < s ≤ T we have

Var(μt,x
s − μt,xn

s ) → 0, (5.2)

for n → ∞, where Var denotes the total variation.

Theorem 11. Assume that Hypothesis 8 holds, that the operators et B are compact for
t > 0, that the transition probabilities of the process X satisfy (5.2) and that |ϕ(x)| ≤ C
for some constant C > 0 and every x ∈ M . Then there exists a mild solution to (5.1).
Moreover, there exist Borel measurable functions u: [0, T ]× M → K , v: [0, T ]× M →
L2(�, K ) such that, P-a.s.,

Yt = u(t, Xt ), for all t ∈ [0, T ];

Zt = v(t, Xt ), for almost all t ∈ [0, T ].

Proof. First Step. Approximation. Applying Lemma 3 we construct a sequence of
functions ψn: [0, T ] × M × K × L2(�, K ) → K such that, for any n ≥ 1,

|ψn(t, x, y, z)| ≤ C (5.3)

and, for fixed n, ψn is Lipschitz with respect to (y, z) uniformly with respect to (t, x).
Let (Y n,t,x , Zn,t,x ) be the unique mild solution of

dY n,t,x
s = −BY n,t,x

s ds − ψn(s, Xt,x
s , Y n,t,x

s , Zn,t,x
s ) ds + Zn,t,x

s dWs,

Y n,t,x
T = ϕ(Xt,x

T ),
(5.4)

where we define Xt,x
s = x for s < t . By (4.7) and the boundedness of ϕ,

sup
s∈[t,T ]

E|Y n,t,x
s |2 + E

∫ T

0
|Zn,t,x

s |2 ds ≤ C(1 + E|ϕ(Xt,x
T )|2) ≤ C. (5.5)

Arguing as in the proof of Theorem 10 we deduce that there exist Borel measurable
functions un: [0, T ] × M → K , vn: [0, T ] × M → L2(�, K ), such that, for every t, x ,
P-a.s.,

Y n,t,x
s = un(s, Xt,x

s ), s ∈ [t, T ],

Zn,t,x
s = vn(s, Xt,x

s ), for almost all s ∈ [t, T ].

Second Step. In this step we prove that there exists a subsequence of un(t, x) which
is convergent in K for every t, x .
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We first claim that for fixed (t, x) there exists a subsequence (nk) (depending on
(t, x)) such that (unk (t, x))k is convergent in K . This is obvious for t = T , since
un(T, x) = ϕ(x), we can assume t < T . It is enough to show that, for fixed t, x , the
sequence (un(t, x))n is relatively compact in K or, equivalently, that it is totally bounded.

From the definition of the mild solution to (5.4) we obtain, taking expectation,

un(t, x) = Y n,t,x
t = E e(T −t)Bϕ(Xt,x

T ) + E

∫ T

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds

= E e(T −t)Bϕ(Xt,x
T ) +

∫ T

t
e(s−t)B gn,t,x (s) ds,

where gn,t,x (s) = Eψn(s, Xt,x
s , Y n,t,x

s , Zn,t,x
s ) satisfies |gn,t,x (s)| ≤ C . It follows that

|un(t, x)| ≤ C , i.e. the sequence (un(t, x))n is uniformly bounded. For δ > 0 so small
that t + δ ≤ T we decompose un(t, x) as follows:

un(t, x) = q(t, x) + an
δ (t, x) + bn

δ (t, x), (5.6)

where q(t, x) = E e(T −t)Bϕ(Xt,x
T ),

an
δ (t, x) =

∫ t+δ

t
e(s−t)B gn,t,x (s) ds, bn

δ (t, x) =
∫ T

t+δ

e(s−t)B gn,t,x (s) ds.

We fix (t, x) and let ε > 0 be arbitrary. We have |an
δ (t, x)| ≤ C δ, so that we can

choose δ such that |an
δ (t, x)| < ε/2 for every n. Next note that

bn
δ (t, x) = eδB

∫ T

t+δ

e(s−t−δ)B gn,t,x (s) ds

and ∣∣∣∣∫ T

t+δ

e(s−t−δ)B gn,t,x (s) ds

∣∣∣∣ ≤ C.

Since eδB is compact by our assumptions, the sequence (bn
δ (t, x))n is relatively compact,

hence totally bounded. So there exists a finite set A ⊂ K such that for any n there exists
a ∈ A satisfying |bn

δ (t, x) − a| < ε/2. So for every n there exists a ∈ A such that
|un(t, x)−q(t, x)−a| < ε. This shows that (un(t, x))n is totally bounded and the claim
is proved.

Next note that

un(t, x) = Ee(T −t)Bϕ(Xt,x
T ) + E

∫ T

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds

= Ee(T −t)Bϕ(Xt,x
T )+E

∫ T

t
e(s−t)Bψn(s,Xt,x

s ,un(s,Xt,x
s ),vn(s,Xt,x

s )) ds

=
∫

M
e(T −t)Bϕ(y) μ

t,x
T (dy) +

∫ T

t
e(s−t)B

∫
M

	n(s, y) μt,x
s (dy) ds,

where 	n(s, y) = ψn(s, y, un(s, y), vn(s, y)).
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Let us fix a dense sequence (tj ) in [0, T ] and a dense sequence (xi ) in M . By
the previous claim and a diagonal procedure we can find a subsequence (nk) such that
(unk (tj , xi ))k converges for every i, j . By a change of notation we can assume that the
original sequence (un(tj , xi ))n is convergent for every i, j .

Next we fix j and we prove that (un(tj , x))n is convergent for every x ∈ M . The
assertion is trivial if tj = T , so we assume tj < T . We start from the inequality

|un(tj , x) − um(tj , x)| ≤ |un(tj , x) − un(tj , xi )| + |um(tj , x) − um(tj , xi )|
+ |un(tj , xi ) − um(tj , xi )|. (5.7)

We have

un(tj , x) − un(tj , xi ) = e(T −t)B
∫

M
ϕ(y) [μ

tj ,x
T (dy) − μ

tj ,xi

T (dy)]

+
∫ T

tj

e(s−t)B
∫

M
	n(s, y) [μ

tj ,x
s (dy) − μ

tj ,xi
s (dy)] ds,

and since ϕ is bounded and 	n is uniformly bounded we obtain∣∣∣∣∣
∫ T

tj

e(s−t)B
∫

M
	n(s, y) [μ

tj ,x
s (dy)−μ

tj ,xi
s (dy)] ds

∣∣∣∣∣≤C
∫ T

tj

Var(μ
tj ,x
s −μ

tj ,xi
s ) ds,

and ∣∣∣∣e(T −t)B
∫

M
ϕ(y) [μ

tj ,x
T (dy) − μ

tj ,xi

T (dy)] ds

∣∣∣∣ ≤ C Var(μ
tj ,x
T − μ

tj ,xi

T ).

We note that by (5.2) for every sequence xn → x we have Var(μ
tj ,x
s − μ

tj ,xn
s ) → 0 for

s > tj . Since Var(μ
tj ,x
s − μ

tj ,xn
s ) ≤ 2, by the dominated convergence theorem we obtain∫ T

tj

Var(μ
tj ,x
s − μ

tj ,xn
s ) ds → 0.

Given ε > 0, from the previous inequalities it follows that we can choose xi so close to
x that

|un(tj , x) − un(tj , xi )| ≤ ε,

for every n. In a similar way one proves that xi can be chosen such that in addition
|um(tj , x)−um(tj , xi )| ≤ ε for every m, and since (un(tj , xi ))n is convergent we conclude
from (5.7) that (un(tj , x))n is a Cauchy sequence for every x ∈ M .

Next we prove that (un(t, x))n is convergent for every t ∈ [0, T ] and x ∈ M . We
can assume t < T , otherwise the assertion is trivial. We first claim that for t < r we
have ∣∣∣∣un(t, x) −

∫
M

un(r, y) μt,x
r (dy)

∣∣∣∣ ≤ C · (r − t). (5.8)
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From (5.4) we obtain

Y n,t,x
t − Y n,t,x

r =
∫ r

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds −
∫ r

t
e(s−t)B Zn,t,x

s dWs .

Taking expectation we obtain

E

∫ r

t
e(s−t)Bψn(s, Xt,x

s , Y n,t,x
s , Zn,t,x

s ) ds = E [Y n,t,x
t − Y n,t,x

r ]

= E[un(t, x) − un(r, Xt,x
r )]

= un(t, x) −
∫

M
un(r, y) μt,x

r (dy),

and since ψn is uniformly bounded, (5.8) follows immediately.
Then we have, for tj > t ,

|un(t, x) − um(t, x)| ≤
∣∣∣∣un(t, x) −

∫
M

un(tj , y) μt,x
tj

(dy)

∣∣∣∣
+

∣∣∣∣um(t, x) −
∫

M
um(tj , y) μt,x

tj
(dy)

∣∣∣∣
+

∣∣∣∣∫
M

un(tj , y) μt,x
tj

(dy) −
∫

M
um(tj , y) μt,x

tj
(dy)

∣∣∣∣ .
Given ε > 0, we choose j such that tj − t < ε. For n, m ≥ N we have

|un(t, x) − um(t, x)| ≤ C · ε +
∫

M
sup

n,m≥N
|un(tj , y) − um(tj , y)| μt,x

tj
(dy).

Since the sequence (un(tj , y))n is convergent for every y and it is uniformly bounded,
the last integral tends to 0 for N → ∞. The proof of step 2 is finished.

The third and fourth steps are the same as in Theorem 10 and this concludes the
proof.

5.1. Example

Let W be a cylindrical Wiener process in a Hilbert space � with Brownian filtration (Ft ).
We take H = � and consider the following equation on the time interval [t, T ] ⊂ [0, T ]
for an unknown process X with values in H :

d Xs = AXs ds + F(Xs) ds + G(Xs) dWs, Xt = x,

where x ∈ H , the operator A: D(A) ⊂ H → H is the infinitesimal generator of
a strongly continuous semigroup {et A, t ≥ 0} of bounded linear operators in H , and
F : H → H and G: H → L(H) are Borel measurable mappings such that, for some
constant C ≥ 0,

|F(x) − F(x ′)| ≤ C |x − x ′|,
|G(x) − G(x ′)|L(H) ≤ C |x − x ′|, x, x ′ ∈ H.
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We also assume that et A ∈ L2(H, H) for t > 0 and that
∫ T

0 e−αt |et A|2L2(H,H)dt < ∞ for
some α > 0. It is well known (see, e.g. [5]) that under these conditions there exists a
mild solution i.e. an (Ft )-adapted process, with continuous paths in H , such that, P-a.s.,

Xs = e(s−t)Ax +
∫ s

t
e(s−r)A F(Xr ) dr +

∫ s

t
e(s−r)AG(Xr ) dWr , s ∈ [t, T ].

X is unique up to indistinguishability. The solution will be denoted Xt,x
s , to stress the

dependence on x and t . The process X constructed in this way satisfies conditions (1)–(4)
of Section 4. We denote by μt,x

s the law of Xt,x
s .

Assume now in addition that G(x) is invertible for every x ∈ H and there exists
C ≥ 0 such that |G(x)−1|L(H) ≤ C for all x ∈ H . Then the following inequality has
been proved in [21] (see also Theorem 7.1.1 and Lemma 7.1.5 of [6]):

Var(μt,x
s − μt,x ′

s ) ≤ C√
s − t

|x − x ′|, 0 ≤ t < s ≤ T, x, x ′ ∈ H.

So under the previous assumptions, condition (5.2) clearly holds, and so if B, ψ , ϕ satisfy
the other requirements in Theorem 11 then there exists a mild solution to (5.1).

6. A Stochastic Game with Infinitely Many Players

Let W be a cylindrical Wiener process in a Hilbert space �, defined on a complete
probability space (�,F, P), and let (Ft ) be its Brownian filtration.

We consider the Ornstein–Uhlenbeck process in a Hilbert space H defined by the
equation d Xt = AXt dt + G dWt , more precisely

Xt = et Ax +
∫ t

0
e(t−s)AG dWs, t ∈ [0, T ],

with A and G satisfying Hypothesis 1, and x ∈ H .

Hypothesis 12.

(i) Let I be a finite or countable set.
(ii) For every i ∈ I , a metric space Ui is given. We denote U = ×i∈I Ui the product

space.
(iii) We assume that Borel measurable functions are given

R: [0, T ] × H × U → �, li : [0, T ] × H × U → R, ϕi : H → R,

for every i ∈ I . Moreover, there exist constants cR ≥ 0, ci ≥ 0 such that

|R(t, x, v)| ≤ cR, |li (t, x, v)| + |ϕi (x)| ≤ ci (1 + |x |p),

t ∈ [0, T ], x ∈ H, v ∈ U, i ∈ I.

Finally we assume that, for every t ∈ [0, T ], x ∈ H and i ∈ I , the functions

R(t, x, ·): U → �, li (t, x, ·): U → R

are continuous.
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(iv) For every i ∈ I , a number λi ≥ 0 is given. If I is infinite, identifying I with
the natural numbers, we assume that λi → +∞ as i → ∞.

Each element i ∈ I represents a player. Ui represents the set of actions that player
i can take at any time. Coordinates of an element v ∈ U are denoted vi and we use the
notation v = (vi )i .

λi is a discount factor in the cost of player i , as defined below.
An (Ft )-adapted process u = {ut , t ∈ [0, T ]}, with values in U , is called an

admissible decision process. Each component ui = {ui
t , t ∈ [0, T ]}, i ∈ I , is then a

process with values in Ui ; ui
t represents the action taken by player i at time t .

For every admissible decision process u, a cost J i (u) for the player i ∈ I is defined
as follows. By the Girsanov theorem the process

W u
t = Wt −

∫ t

0
R(s, Xs, us) ds, t ∈ [0, T ],

is a Wiener process under the probability measure P
u admitting the density ρu with

respect to P given by

ρu = exp

(∫ T

0
〈R(s, Xs, us), dWs〉 − 1

2

∫ T

0
|R(s, Xs, us)|2 ds

)
.

We define

J i (u) = E
u

[∫ T

0
e−λi t l i (t, Xt , ut ) dt + e−λi T ϕi (XT )

]
, i ∈ I.

Since R is bounded, the application of the Girsanov theorem is justified and we also
have E|ρu |p < ∞ for every p ∈ [1, ∞). We note that X satisfies

Xt = et Ax +
∫ t

0
e(t−s)AG R(s, Xs, us) ds

+
∫ t

0
e(t−s)AG dW u

s , t ∈ [0, T ]. (6.1)

Therefore, under P
u , X is the solution of a controlled stochastic equation with nonlinear

drift.
An admissible decision process û is called a Nash equilibrium if, for each i ∈ I , the

equality

J i (̂u) ≤ J i (u)

takes place for arbitrary decision process u satisfying, for all j �= i ,

u j
t = û j

t , P-a.s. for almost every t ∈ [0, T ].

The aim of this section is to show that a Nash equilibrium exists under appropri-
ate conditions. Our main assumption is Hypothesis 13 below. Before its statement we
introduce some notation.
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We fix numbers ρi > 0 such that
∑

i∈I c2
i ρi < ∞, where ci are the constants

introduced in Hypothesis 12. In what follows we consider backward equations for pro-
cesses with values in the Hilbert space �2

ρ(I ), the space of real sequences (yi )i satisfying∑
i∈I |yi |2ρi < ∞, endowed with the inner product

〈y, v〉�2
ρ(I ) =

∑
i∈I

yiviρi , y = (yi )i ∈ �2
ρ(I ), v = (vi )i ∈ �2

ρ(I ).

For i ∈ I we denote by gi the element of �2
ρ(I ) defined by g j

i = 0 if i �= j , gi
i = 1/ρi . We

note that 〈y, gi 〉�2
ρ(I ) = yi for every y = (yi )i ∈ �2

ρ(I ) and that the family {gi
√

ρi , i ∈ I }
is a complete orthonormal basis of �2

ρ(I ). For every z ∈ L2(�, �2
ρ(I )) we can define

elements zi ∈ �∗ by the formula

ziξ = 〈zξ, gi 〉�2
ρ(I ), ξ ∈ �, i ∈ I.

Since z is a Hilbert–Schmidt operator we have∑
i∈I

|zi |2�∗ ρi < ∞, (6.2)

so that the sequence (zi )i belongs to the Hilbert space �2
ρ(I, �∗) consisting of �∗-valued

sequences satisfying (6.2), endowed with the natural inner product. It is easy to check
that the mapping z → (zi )i is a Hilbert space isomorphism between L2(�, �2

ρ(I )) and
�2

ρ(I, �∗). In what follows we make the identification z = (zi )i .

Hypothesis 13. There exists a Borel measurable function u: [0, T ]×H ×L2(�, �2
ρ(I ))

→ U such that for every t ∈ [0, T ], x ∈ H, z = (zi )i ∈ L2(�, �2
ρ(I )), i ∈ I the

inequality

zi R(t, x, u(t, x, z)) + li (t, x, u(t, x, z)) ≤ zi R(t, x, v) + li (t, x, v)

holds for every v ∈ U satisfying v j = u j (t, x, z) for all j �= i . Moreover, for every
t ∈ [0, T ], x ∈ H and i ∈ I the function ui (t, x, ·): L2(�, �2

ρ(I )) → U is continuous.

Remark 14. Hypotheses 12 and 13 are easier to check in the special case

R(t, x, v) = ∑
j∈I Rj (t, x, v j ),

li (t, x, v) = ∑
j∈I li

j (t, x, v j ), t ∈ [0, T ], x ∈ H, v ∈ U,
(6.3)

i.e. when R and each li are sums of functions depending only on one coordinate v j ∈ Uj

of v ∈ U . More precisely suppose that I , Ui , ϕi satisfy the assumptions of Hypothesis 12
(in particular, |ϕi (x)| ≤ ĉi (1 + |x |p) for every x, i and for some constants ĉi ≥ 0) and
that for every i, j ∈ I there exist Borel measurable functions

Rj : [0, T ] × H × Uj → �, li
j : [0, T ] × H × Uj → R,
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and constants cR j , ci j such that

|Rj (t, x, a)| ≤ cR j ,

|li
j (t, x, a)| ≤ ci j (1 + |x |p), t ∈ [0, T ], x ∈ H, a ∈ Uj ,

and
∑

j cR j < ∞,
∑

j ci j < ∞ for every i ∈ I . We also assume that, for every t ∈ [0, T ],
x ∈ H and i, j ∈ I , the functions

Rj (t, x, ·): Uj → �, li
j (t, x, ·): Uj → R

are continuous. If R and li are defined by (6.3) then Hypothesis 12 is satisfied with
ci = ∑

j ci j + ĉi . Suppose now that there exist Borel measurable functions ui : [0, T ] ×
H × �∗ → Ui , i ∈ I , such that

ηRi (t, x, ui (t, x, η)) + li
i (t, x, ui (t, x, η)) ≤ ηRi (t, x, a) + li

i (t, x, a), (6.4)

for every i ∈ I , t ∈ [0, T ], x ∈ H , η ∈ �∗, a ∈ Ui . Moreover, assume that for every
t ∈ [0, T ], x ∈ H and i ∈ I the function ui (t, x, ·): �∗ → Ui is continuous. Then
setting

u(t, x, z) = (ui (t, x, zi ))i

it is easy to verify that Hypothesis 13 is satisfied.
Note that (6.4) can be expressed as

ui (t, x, η) ∈ argmin
a∈Ui

[ηRi (t, x, a) + li
i (t, x, a)].

The existence of a function ui satisfying (6.4) and such that ui (t, x, ·) is continuous
can be effectively checked in particular cases. For instance, in addition to the previous
assumptions, suppose that all the metric spaces Ui coincide with the ball B(0, r) of radius
r > 0 centered at the origin of another Hilbert space A. Furthermore, assume that Rj

are defined by

Rj (t, x, a) = Rj (t, x)a, t ∈ [0, T ], x ∈ H, a ∈ A,

where each Rj (t, x) is a linear bounded operator fromA to �, Rj (·, ·)a: [0, T ]×H → �

is Borel measurable for every a ∈ A, and |Rj (t, x)| ≤ cR j , t ∈ [0, T ], x ∈ H , for some
constants cR j ≥ 0 satisfying

∑
j cR j < ∞. Suppose finally that li

i have the special form
li
i (t, x, a) = |a|2, a ∈ B(0, r). Then a minimizer of a → ηRi (t, x, a) + li

i (t, x, a) =
ηRi (t, x)a + |a|2 over B(0, r) can be easily computed, and the required function ui can
be defined by

ui (t, x, η) =

⎧⎪⎨⎪⎩
− 1

2 (ηRi (t, x))∗ if |ηRi (t, x)| ≤ 2r,

−r
(ηRi (t, x))∗

|ηRi (t, x)| if |ηRi (t, x)| > 2r,
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for t ∈ [0, T ], x ∈ H , η ∈ �∗, where by (ηRi (t, x))∗ ∈ A we denote the image of
ηRi (t, x) ∈ A∗ under the Riesz isometry A∗ → A.

Theorem 15. Under Hypotheses 1, 12 and 13 there exists a Nash equilibrium û. More-
over, there exists a Borel measurable function v: [0, T ] × H → L2(�, �2

ρ(I )) such that

ût = u(t, Xt , v(t, Xt )), P-a.s. for almost every t ∈ [0, T ]. (6.5)

Remark 16. By equality (6.5), û is called a closed-loop Nash equilibrium.

Proof. We define an operator B in �2
ρ(I ) setting (By)i = −λi yi for y ∈ D(B) =

{(yi )i :
∑

i∈I λ2
i |yi |2ρi < ∞}. B is a self-adjoint operator with eigenvectors gi and

eigenvalues −λi . It is the infinitesimal generator of the dissipative semigroup given by
the formula (et B y)i = e−λi t yi . The condition λi → ∞ ensures that et B is compact for
every t > 0.

We define ϕ(x) = (ϕi (x))i and f (t, x, z) = ( f i (t, x, z))i , where

f i (t, x, z) = zi R(t, x, u(t, x, z)) + li (t, x, u(t, x, z)),

t ∈ [0, T ], x ∈ H, z ∈ L2(�, �2
ρ(I )),

(6.6)

and we consider the backward equation

dYt = −BYt dt − f (t, Xt , Zt ) dt + Zt dWt , YT = ϕ(XT ), (6.7)

where the unknown processes Y and Z take values in �2
ρ(I ) and L2(�, �2

ρ(I )), respec-
tively.

Next we verify that the functions

f : [0, T ] × H × L2(�, �2
ρ(I )) → �2

ρ(I ), ϕ: H → �2
ρ(I )

satisfy the assumptions of Theorem 6. By Hypothesis 12,

| f (t, x, z)|�2
ρ (I ) ≤

(∑
i

|zi R(t, x, u(t, x, z))|2ρi

)1/2

+
(∑

i

|li (t, x, u(t, x, z))|2ρi

)1/2

≤ cR

(∑
i

|zi |2�∗ρi

)1/2

+
(∑

i

c2
i ρi

)1/2

(1 + |x |p)

= cR|z|L2(�,�2
ρ(I )) +

(∑
i

c2
i ρi

)1/2

(1 + |x |p),

|ϕ(x)|�2
ρ(I ) =

(∑
i

|ϕi (x)|2ρi

)1/2

≤
(∑

i

c2
i ρi

)1/2

(1 + |x |p).
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The functions f i (t, x, ·) are continuous since they are defined in terms of the con-
tinuous mappings R(t, x, ·), li (t, x, ·) and u(t, x, ·). To check continuity of f (t, x, ·),
we consider a sequence zn converging to z in L2(�, �2

ρ(I )) and note that

| f i (t, x, zn) − f i (t, x, z)|
≤ |zi

n R(t, x, u(t, x, zn)) − zi R(t, x, u(t, x, z))|
+ |li (t, x, u(t, x, zn)) − li (t, x, u(t, x, z))|

≤ cR|zi
n − zi | + |zi | |R(t, x, u(t, x, zn)) − R(t, x, u(t, x, z))|

+ |li (t, x, u(t, x, zn)) − li (t, x, u(t, x, z))|.

It follows that

| f (t, x, zn) − f (t, x, z)|�2
ρ(I )

=
(∑

i

| f i (t, x, zn) − f i (t, x, z)|2ρi

)1/2

≤ cR|zn − z|L2(�,�2
ρ (I ))

+
(∑

i

|zi |2 |R(t, x, u(t, x, zn)) − R(t, x, u(t, x, z))|2ρi

)1/2

+
(∑

i

|li (t, x, u(t, x, zn)) − li (t, x, u(t, x, z))|2ρi

)1/2

.

Since R is bounded,
∑

i |zi |2ρi < ∞, |li (t, x, u(t, x, zn))| ≤ ci (1+|x |p) and
∑

i c2
i ρi <

∞ we conclude that | f (t, x, zn) − f (t, x, z)|�2
ρ(I ) → 0.

Theorem 6 shows that (6.7) has a solution satisfying, in particular, E
∫ T

0 |Zi
s |2 ds <

∞. Moreover, there exists a Borel measurable function v: [0, T ] × H → L2(�, �2
ρ(I ))

such that Zt = v(t, Xt ), P-a.s. for almost every t ∈ [0, T ].
We will show that the process ût = u(t, Xt , Zt ) = u(t, Xt , v(t, Xt )), t ∈ [0, T ],

is a Nash equilibrium. Writing (6.7) in the form specified by definition (3.3) and taking
the scalar product with gi we obtain, for every i ∈ I ,

Y i
t +

∫ T

t
e−λi (s−t) Zi

s dWs = e−λi (T −t)ϕi (XT ) +
∫ T

t
e−λi (s−t) f i (s, Xs, Zs) ds.

For every admissible decision process u, by the definition of W u we obtain

Y i
0 − e−λi T ϕi (XT ) = −

∫ T

0
e−λi s Z i

s dW u
s

−
∫ T

0
e−λi s Z i

s Rs(s, Xs, us) ds +
∫ T

0
e−λi s f i (s, Xs, Zs) ds.
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We recall that W u is a Wiener process under P
u and we note that

E
u

(∫ T

0
|Zi

s |2 ds

)1/2

= E

[
ρu

(∫ T

0
|Zi

s |2 ds

)1/2
]

≤ (
E|ρu |2)1/2

(
E

∫ T

0
|Zi

s |2 ds

)1/2

< ∞.

It follows that
∫ t

0 Zi
s dW u

s , t ∈ [0, T ], is a P
u-martingale. Taking expectation we obtain

Y i
0 = e−λi T

E
uϕi (XT ) + E

u
∫ T

0
e−λi s[ f i (s, Xs, Zs) − Zi

s R(s, Xs, us)] ds

= J i (u)+E
u
∫ T

0
e−λi s[ f i (s,Xs,Zs)−Zi

s R(s,Xs,us)−li (s,Xs,us)] ds. (6.8)

By the definition of f i and Hypothesis 13, for every i ∈ I ,

f i (t, x, z) ≤ zi R(t, x, v) + li (t, x, v),

t ∈ [0, T ], x ∈ H, z ∈ L2(�, �2
ρ(I )),

for every v ∈ U satisfying v j = u j (t, x, z) for all j �= i . It follows that

f i (t, Xt , Zt ) ≤ Zi
t R(t, Xt , ut ) + li (t, Xt , ut ), (6.9)

for every decision process such that u j
t = û j

t = u j (t, Xt , Zt ) for all j �= i .
On the other hand from (6.6) we obtain

f i (t, Xt , Zt ) = Zi
t R(t, Xt , ût ) + li (t, Xt , ût ). (6.10)

From (6.8) and (6.9) it follows that Y i
0 ≤ J i (u); from (6.8) and (6.10) it follows that

Y i
0 = J i (̂u); we conclude that J i (̂u) ≤ J i (u), which shows that û is a Nash equili-

brium.
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Appendix

This appendix is devoted to the proof of Lemma 2. We follow closely the proof of
Proposition 4.2 of [4]. We keep the notation of Section 2.2; by Im we denote the image
of an operator. We first state a lemma on gaussian measures.
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Lemma 17. Suppose that Q, R are nonnegative, injective, trace class linear operators
on H satisfying

Im Q1/2 = Im R1/2; (A.1)

suppose, moreover, that the operator

G = (R−1/2 Q1/2)∗ R−1/2 Q1/2 − 1 (A.2)

is trace class. Then N (0, R) is equivalent to N (0, Q) and, for N (0, Q)-a.e. x ∈ H ,

dN (0, R)

dN (0, Q)
(x) = det(1 + G)1/2 exp(− 1

2 〈G Q−1/2x, Q−1/2x〉). (A.3)

The determinant is understood as the infinite product of eigenvalues. It is well
defined, since G is trace class. Equivalence of measures follows from the Feldman–Hajek
Theorem, while the formula for the density can be found in Section II.4.3, Remark 4.4
and formula (4.16) of [7]. A simple direct proof can be found in [4].

In the rest of this appendix we assume that Hypothesis 1 holds. We state two well-
known properties of the operators Qt , whose short proofs are reported for the reader’s
convenience.

(i) The operators Qt , t > 0, are injective.
Indeed, by a duality argument (see for instance Appendix B of [5]), Hypothe-
sis 1(iv) implies that for every t > 0 there exists Ct > 0 such that

|et A∗
y| ≤ Ct |Q1/2

t y|, y ∈ H.

So if Qt x = 0 for some t > 0, then Qs x = 0, s ≤ t, and consequently
es A∗

x = 0, s ≤ t ; letting s → 0, we obtain x = 0.
(ii) For every t > 0, Im Q1/2

T = Im Q1/2
t . In particular, Q−1/2

T et A is a linear
bounded operator on H .
We notice the equality QT = Qt + et A QT −t et A∗

, which is a consequence of
the definition of Qt and QT . We obtain

QT = Qt + et A QT −t e
t A∗ = Q1/2

t [1 + (Q−1/2
t et A)QT −t (Q−1/2

t et A)∗]Q1/2
t ,

which yields, for some constant CtT > 0,

|Q1/2
T x |2 = |[1 + (Q−1/2

t et A)QT −t (Q−1/2
t et A)∗]1/2 Q1/2

t x |2

≤ CtT |Q1/2
t x |2, x ∈ H. (A.4)

On the other hand,

|Q1/2
t x |2 = 〈Qt x, x〉 ≤ 〈QT x, x〉 = |Q1/2

T x |2, x ∈ H. (A.5)

By a duality argument (see, e.g. Appendix B of [5]) we conclude that Im Q1/2
T =

Im Q1/2
t .
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(iii) For 0 < s ≤ t we have

|Q−1/2
t et A| ≤ |Q−1/2

s es A|. (A.6)

We start from the easily verified identity Qt = Qt−s +e(t−s)A Qse(t−s)A∗
, which

implies Qt ≥ e(t−s)A Qse(t−s)A∗
and therefore |Q1/2

t x |2 ≥ |Q1/2
s e(t−s)A∗

x |2,
x ∈ H . By a duality argument it follows that |Q−1/2

t e(t−s)A Q1/2
s | ≤ 1 and

consequently |Q−1/2
t et Ax | = |Q−1/2

t e(t−s)A Q1/2
s Q−1/2

s es Ax | ≤ |Q−1/2
s es Ax |,

which proves the claim.

Proof of Lemma 2. The kernel k is the Radon–Nikodym density

kt (x, ·) = dN (et Ax, Qt )

dN (0, QT )
.

We first prove the special case corresponding to x = 0, namely that

kt (0, ·) = det(1 − 
tT )−1/2 exp{− 1
2 〈
tT (1 − 
tT )−1 Q−1/2

T y, Q−1/2
T y〉}. (A.7)

Since QT −t is a trace class operator and Q−1/2
T et A is linear bounded, the operator 
tT is

trace class. Moreover, since

Qt = QT − et A QT −t e
t A∗ = Q1/2

T [1 − (Q−1/2
T et A)QT −t (Q−1/2

T et A)∗]Q1/2
T

= Q1/2
T (1 − 
tT )Q1/2

T

we have

(1 − 
tT )x = Q−1/2
T Qt Q−1/2

T x, x ∈ Im Q1/2
T . (A.8)

Therefore, 〈(1 − 
tT )x, x〉 ≥ 0 for x ∈ Im Q1/2
T , a dense subset of H ; it follows

that (1 − 
tT ) is nonnegative. Equality (A.8) also implies, by standard arguments, that
(1 − 
tT ) is invertible and

(1 − 
tT )−1 = (Q−1/2
t Q1/2

T )∗ Q−1/2
t Q1/2

T . (A.9)

Define G = (Q−1/2
t Q1/2

T )∗ Q−1/2
t Q1/2

T − 1. Then

G = (1 − 
tT )−1 − 1 = 
tT (1 − 
tT )−1, (A.10)

so G is trace class and formula (A.7) follows from Lemma 17.
To prove the general case, we use the equality

kt (x, ·) = dN (et Ax, Qt )

dN (0, Qt )

dN (0, Qt )

dN (0, QT )
= dN (et Ax, Qt )

dN (0, Qt )
kt (0, ·), (A.11)

and we notice that, by the Cameron–Martin Theorem (see, e.g. [5]),

dN (et Ax, Qt )

dN (0, Qt )
(y) = exp(〈Q−1/2

t et Ax, Q−1/2
t y〉 − 1

2 |Q−1/2
t et Ax |2),
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for N (0, Qt )-a.e. y ∈ H . If m ∈ Im Qt , then (A.9) implies (1 − 
tT )−1 Q−1/2
T m =

Q1/2
T Q−1

t m and we have, for y ∈ H , a.e. with respect to N (0, QT ) and N (0, Qt ),

〈Q−1/2
t m, Q−1/2

t y〉 = 〈Q−1
t m, y〉 = 〈Q1/2

T Q−1
t m, Q−1/2

T y〉
= 〈(1 − 
tT )−1 Q−1/2

T m, Q−1/2
T y〉. (A.12)

Equation (A.9) also implies

|Q−1/2
t m|2 = |(1 − 
tT )−1/2 Q−1/2

T m|2. (A.13)

The equalities (A.12) and (A.13) extend by continuity to every m ∈ Im Q1/2
t . So we can

set m = et Ax , and substituting into (A.11) and using (A.7), we prove the formula for k.
It remains to prove the inequalities (2.5) and (2.6).
The equality (A.9) shows that |(1 − 
tT )−1| = |Q−1/2

t Q1/2
T |2. The first equality in

(A.4) implies that

|Q−1/2
t Q1/2

T |2 ≤ |1 + (Q−1/2
t et A)QT −t (Q−1/2

t et A)∗|,

and since (Q−1/2
t et A)QT −t (Q−1/2

t et A)∗ ≥ 0, we conclude that

|(1 − 
tT )−1| ≤ 1 + |(Q−1/2
t et A)QT −t (Q−1/2

t et A)∗|
≤ 1 + |QT −t ||Q−1/2

t et A|2, (A.14)

which proves (2.5).
In what follows we denote for simplicity

a = |QT −t ||Q−1/2
t et A|2.

To prove (2.6) we first recall that 
tT is a trace class nonnegative operator and we
denote by λ0, λ1, . . . its eigenvalues, arranged in decreasing order. Since 0 ≤ 
tT < 1
we have 0 ≤ · · · ≤ λ1 ≤ λ0 = |
tT | < 1. It follows that (1 − λ0)

−1 = |(1 − 
tT )−1|
and by (A.14) we have (1 − λ0)

−1 ≤ 1 + a and we first conclude that λ0 ≤ a/(1 + a).
Next we compute

det(1 − 
tT )−1 =
∞∏

k=0

(1 − λk)
−1 = exp

[
−

∞∑
k=0

log(1 − λk)

]
.

Since the function x → (− log(1 − x))/x is increasing in the interval (0, 1) we have, in
particular,

− log(1 − λk)

λk
≤ − log(1 − λ0)

λ0
≤ − log(1 − a/(1 + a))

a/(1 + a)

= log(1 + a)

a
(1 + a) ≤ 1 + a,
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and we obtain

det(1 − 
tT )−1 ≤ exp

[
(1 + a)

∞∑
k=0

λk

]
= exp [(1 + a) Trace 
tT ] .

Then we have

Trace 
tT = Trace((Q−1/2
T et A)QT −t (Q−1/2

T et A)∗) ≤ (Trace QT −t )|Q−1/2
T et A|2

and since inequality (A.5) implies that |Q−1/2
T Q1/2

t | ≤ 1, we deduce that

|Q−1/2
T et A| ≤ |Q−1/2

T Q−1/2
t ||Q−1/2

t et A| ≤ |Q−1/2
t et A|.

Substituting, we obtain det(1 − 
tT )−1 ≤ exp[(1 + a)(Trace QT −t )|Q−1/2
t et A|2] and

(2.6) is proved.
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