
HAL Id: hal-00364757
https://hal.science/hal-00364757

Submitted on 27 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single Machine Scheduling with Small
Operator-Non-Availability Periods

Christophe Rapine, Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque

To cite this version:
Christophe Rapine, Nadia Brauner, Gerd Finke, Vassilissa Lehoux-Lebacque. Single Machine Schedul-
ing with Small Operator-Non-Availability Periods. Journal of Scheduling, 2012, 15, pp.127 - 139.
�hal-00364757�

https://hal.science/hal-00364757
https://hal.archives-ouvertes.fr

Single Machine Scheduling with Small Operator-Non-Availability

Periods

C. Rapine, N. Brauner, G. Finke, V. Lebacque

Laboratoire G-SCOP, Grenoble University, France

Abstract

Through an industrial application, we were confronted
with the planning of experiments where human inter-
vention of a chemists is required to handle the start-
ing and termination. This gives rise to a new type
of scheduling problems, namely problems of finding
schedules with time periods when the tasks can nei-
ther start nor finish. We consider in this paper the
natural case of small periods where the duration of
the periods is smaller than any processing time. This
assumption corresponds to experiments lasting several
days whereas the operator unavailability periods are
the week-ends. These problems are analyzed on a sin-
gle machine with the makespan as criterion.

We first prove that, contrary to the case of ma-
chine unavailability, the problem with one small opera-
tor non-availability period can be solved in polynomial
time. We then derive approximation and inapproxima-
bility results for the general case of k small unavail-
ability periods. We finally focus on the practical case
of periodic and equal small unavailability periods. We
prove that this problem is not in FPTAS for more than
3 periods and we derive an FPTAS for the two-period
case.

keywords: One machine scheduling, unavailability
constraints, forbidden start and end, approximation

1 Introduction

Machine unavailability periods is a well known notion
in scheduling theory. During such a period the machine
is not available to process jobs, typically due to preven-
tive maintenance. Depending on the model (resumable
or non-resumable), the processing of a job may or may
not be interrupted during an unavailability period, and
resumed partially afterwards. We consider in this pa-

per a new availability constraint defining a new type
of period : in contrast with machine unavailability pe-
riod, a job can be processed, but can neither start nor
complete during the period. We were confronted with
such special unavailability periods through an indus-
trial collaboration with the Institut Français du Pétrole
(IFP), a large research center in fields of energy and
transport. Their problem consists in the planning of
a large set of chemical experiments. Each experiment
is performed by an automatic device (a robot), dur-
ing a specified amount of time, but the intervention of
a chemist is required to handle its start and termina-
tion. At the beginning, the chemist basically prepares
the chemical, fills up the device and launches the pro-
cess. The termination phase corresponds to an analysis
of the experimental results, which is to be carried out
in a no-wait fashion to stop chemical reactions (see
[14] for a detailed description). While the automatic
device is operational and available seven days a week,
the chemists may be absent from the laboratory due to
weekends, vacations or other planned activities. This
creates time intervals when experiments can be per-
formed by the device, but none can start nor complete.
It leads us to define the following notion in scheduling
theory:

Definition 1 An operator non-availability (Ona) pe-
riod corresponds to an open time interval in which no
task can start nor end.

Although we named it operator non-availability in
contrast to machine non-availability, such periods of
forbidden start and completion may be encountered
each time an additional resource (for instance a special
tool for handling) is required to start and to complete
a task. If this additional resource is not continuously
available and its time of use is negligible compared to
the processing time of a task, it then results into an

1

Ona scheduling problem. We discuss in this paper the
complexity and approximability of scheduling problems
where Ona periods occur. We focus on a one machine
environment with the makespan as criterion. Problem
Onas is formally defined in the following way:

Problem Operator Non-Availability Schedul-
ing (Onas)
Instance: A set of n tasks, of durations p1, . . . , pn,
together with a list of k intervals (sj , sj + Lj)
Solution: A schedule π, such that no task ends nor
starts in any open time interval (sj , sj + Lj).
Measure: The makespan of π.

We call k−Onas the version of the problem where k
is not part of the instance and thus is a constant.

To our best knowledge, the scheduling model with
Ona periods was first introduced in [14] and studied
in [2]. The authors analyze the complexity of the gen-
eral problem and establish that any list scheduling al-
gorithm has a performance ratio of 2(k − 1) for k ≥ 4,
this bound being tight. Other works have yet con-
sidered an additional resource for task set-up: in the
single server model [9, 3], a server has to do some set-
up before the processing of a job starts on a machine.
Compared to a server problem, we neglect the set-up
time of the operator while no article have considered
unavailability periods for the server. The most rele-
vant work to our problem is certainly [1] where a set
of time slots is forbidden for starting the processing of
a job on the machine. They prove that the problem is
polynomially solvable if the number of forbidden start
times is a constant, and NP-hard in the strong sense if
this number of instants is part of the input. For a gen-
eral introduction to classical machine non-availability
periods, we refer the reader to Lee [15].

The paper is organized as follows. We show in
Section 3 that minimizing the makespan is already
NP-hard for one Ona period, but becomes polynomi-
ally solvable if we restrict to one unavailability period
whose duration is smaller than any processing time.
This assumption is quite natural, and at least is ver-
ified in our industrial context where experiments last
several days and Ona periods generally correspond to
weekends of two days. The remaining of the article fo-
cuses on small Onas where all unavailability periods
are smaller than any processing time. Then Section 4
presents complexity and inapproximability results for
the general small Onas problem. In section 5 we ana-
lyze the performances of list scheduling algorithms and
derive a PTAS for k−Onas. Section 6 is devoted to the

special case of periodic unavailability periods, which is
quite relevant in practice if one thinks of Ona periods
as weekends. Finally section 7 proposes a FPTAS for
the 2-Onas periodic case.

2 Notations and basic proper-
ties

Throughout this paper we consider a set of n indepen-
dent tasks to schedule on a single resource in presence
of k Ona periods. The following notations will be used:

• pi: duration of task i

• k: number of Ona periods.

• sj : beginning of the jth Ona period

• Lj : duration of the jth Ona period

• L ≡ maxj Lj : the maximum duration

• δi = pi − L: margin of task i

• δ ≡ maxi δi: maximum margin

We denote by N the set {1, . . . , n} of task indices,
and for a subset X ⊆ N , we note for short p(X) =∑

i∈X pi. For convenience we define s0 = L0 = 0 and
sk+1 = +∞. To avoid trivial cases, we assume that
n ≥ 2 and p(N) > s1, i.e. we have at least 2 tasks to
schedule, and not all the tasks can fit before the first
Ona period.

For a schedule π, we denote by Cmax(π) its
makespan, defined as the largest completion time of
a task. The quantity OPT(x) refers to the minimum
value of Cmax(π) over all feasible schedules for a given
instance x. Recall that a schedule π is feasible if no task
starts nor ends in any time interval (sj , sj + Lj). Pre-
emption is not allowed and tasks are non-resumable.
A task that starts before time sj for some j and com-
pletes after time sj + Lj is said to cover the jth Ona
period. Notice that an Ona period is covered by at
most one task, while a task may cover several periods.
In our notations δi represents the margin left to task i
if it covers a period of duration L to be moved ”back-
ward” or ”forward” in the schedule. Figure 1 presents
an example of a feasible schedule for an instance of
3-Onas.

Our aim in this article is to determine the approx-
imability status of the Onas problem. In our context,
an algorithm is said to have a performance guarantee

2

1 2 3s s0 s

Figure 1: An example of a Gantt chart for 3-Onas.
Each Ona period is represented on the time axis by
a dashed rectangle. In the schedule depicted, all the
Ona periods are covered. Two idle times occur, before
the second and the third Ona periods

of ρ (or to be a ρ-approximation) if, for any instance
x, it delivers a schedule whose makespan is not larger
than ρOPT(x).

We now give some basic dominance properties. First,
it can easily be noticed that semi-active schedules are
dominant for Onas. Such a schedule is entirely de-
fined as a permutation of N . Moreover the order of ex-
ecution in the time interval between 2 successive Ona
periods is meaningless. We denote by Sj the set of
tasks that start after (or exactly at) time sj−1 + Lj−1

and complete before (or exactly at) time sj in a given
schedule π. We call OA-packing of a schedule the par-
tition S1 ∪ . . .∪Sk+1 of the tasks not covering an Ona
period.

For a schedule π, we call last Ona index the largest
integer K such that sK +LK ≤ Cmax(π). We can make
the following remark:

Remark 1 Let K be the last Ona index of a semi-
active schedule π. If LK ≤ max{px | x ∈ SK+1} then
period K is covered in π.

As a consequence if L ≤ min pi, the last period of
a semi-active schedule is always covered. Finally the
following property states that it is dominant for a task
covering an Ona period to be locally the largest one:

Property 1 There exists an optimal schedule such
that, for j = 1, . . . , k, if the jth Ona period is cov-
ered by a task y, then py ≥ max{px | x ∈ Sj ∪ Sj+1}.

Proof. We use a simple interchange argument. Con-
sider an optimal schedule π, and let j be the first Ona
period not verifying the property. It means that j is
covered by a task y whose duration is smaller than the
duration of the largest task, say z, of Sj ∪ Sj+1. Con-
sider for instance that z ∈ Sj . Without loss of gener-
ality we can assume that z is the task of Sj scheduled
last in π. Let Cy and Cz be the completion time of y
and z, respectively. We then interchange tasks y and

z to create a new (semi-active) schedule π′. Notice
that y finishes in π′ before time Cz ≤ sj while task z
completes at time max{Cz + py, sj + Lj}, which is at
most the completion time of y in π. Hence π′ is feasible
and also optimal. The case where z ∈ Sj+1 is similar.
Repeating step by step this interchange to all other
Ona periods we get an optimal schedule verifying the
property. �

3 Single Ona period (1−Onas)

In this section, we consider a single operator non-
availability period of length L, located at (s, s + L).
Clearly if L > maxi{pi}, no task can overlap the
Ona period in any feasible schedule. Hence we have a
classical non-resumable machine unavailability period
scheduling problem, known to be NP-hard. One may
wonder if the problem remains hard if some processing
times may be smaller than the duration of the period.
For completeness we give the complexity proof of the-
orem 1 from [2]. In this paper the authors also derive
a FPTAS for 1-Onas.

Theorem 1 If L is greater than some processing time,
then problem 1−Onas is NP-hard.

Proof. The reduction uses the Subset Sum decision
problem:
Instance: n + 1 integers a1, . . . , an and B.
Question: Does there exist a subset S ⊆ {1, . . . , n}
such that

∑
i∈S ai = B ?

We encode an instance of Subset Sum into an in-
stance of the 1−Onas associated decision problem as
follows: we consider n + 1 tasks, with pi = ai for i =
1, . . . , n, and pn+1 =

∑
i ai +1. The Ona period starts

at time B and its duration L is equal to pn+1. We are
thus in the situation where mini{pi} < L ≤ maxi{pi}.
We ask whether there exists a schedule with makespan
at most C =

∑n+1
i=1 pi. Clearly if such a schedule ex-

ists, its makespan must be exactly C and the machine
is continuously occupied till the end of the schedule. It
implies that task n + 1 covers exactly the Ona period.
Hence such a schedule exists if and only if the subset S
of the tasks scheduled before the Ona period verifies∑

i∈S pi = B. �

In our industrial application, experiments are to be
processed during several days (typically between 3 and

3

21) while the Ona periods are usually 2 days (week-
ends) or a single day (day off). We will show that
in the case where the processing times are all greater
than the length of the Ona period, minimizing the
makespan can be done in time O(n log n). This con-
trasts with the case of non-resumable machine unavail-
ability periods which is NP-hard even with only one
period of arbitrarily small length. In the remaining of
this section, we index the tasks in non-decreasing order
of their processing times. We then have the following
simple dominance property:

Property 2 If L is smaller than any processing time,
then there exists an optimal schedule where task n cov-
ers the Ona period.

Proof. Consequence of Remark 1 and Property 1. �

We now introduce the following decision problem,
which we call Subset Sum with Tolerance. It is
a variant of Subset Sum where we are asked if there
exists a subset summing up to a target B, with a tol-
erance from below of ∆:

Problem Subset Sum with Tolerance
Instance: m + 2 integers a1, . . . , am, B and ∆.
Question: Does there exist S ⊆ {1, . . . ,m} such that∑

i∈S ai ∈ [B −∆, B]?

Its optimization version, MaxSSwT, corresponds to
finding a subset S whose sum of the elements, a(S), is
lower than a given bound B. The criterion to maximize
is min{a(S), B −∆}. It means that we are looking for
the largest subset S not exceeding B, except that all
subsets larger than B−∆ are optimal for our criterion.
If tolerance ∆ is set to 0, we have a classical Subset
Sum problem, known to be NP-hard. Clearly for large
values of ∆ the problem becomes polynomial. We have
the following result:

Proposition 1 If ∆ ≥ maxi,j |ai − aj |, problem
MaxSSwTcan be solved in time O(m log m).

Proof. Consider Algorithm 1. It is simply a 2−Opt
procedure that repeatedly exchanges an element of S
with a larger element not in S. The clever point is
to start with an initial feasible set S of maximal car-
dinality. For short, for a subset X, we denote by
a(X) ≡

∑
i∈X ai. We claim that Algorithm 1 solves

optimally the problem.
Let S0 = {1, . . . , χ}, S1, . . . , Sq be the successive sets

considered by the algorithm. By construction the a(Sl)

Algorithm 1 Algorithm 2−Opt MaxSSwT

Inputs: m + 2 integers ai, B and ∆
Output: a subset S, if it exists, such that a(S) ∈ [B−

∆, B], otherwise a subset S with largest a(S) smaller
than B −∆.

Sort the a′is in non-decreasing order.
Let χ be the largest index verifying a1+. . .+aχ ≤ B.
Initialize S := {1, . . . , χ}
while a(S) < B − ∆ and min{ai|i ∈ S} <
max{aj |j /∈ S} do

Chose arbitrarily i ∈ S and j /∈ S such that ai <
aj

S := S\{i} ∪ {j}
end while
return S

form an increasing sequence. In addition notice that
between two steps, the sets Sl can not increase by more
than ∆, since a(Sl+1) = a(Sl) + aj − ai ≤ a(Sl) + ∆
for any pair of indices i and j. Hence a(Sl) ≤ B −∆
implies that a(Sl+1) ≤ B.

Now assume that the algorithm fails to find a subset
in [B − ∆, B]. Since a(S0) < B − ∆, it implies from
what precedes that a(Sq) is also smaller than B−∆. By
construction, set Sq contains in this case the χ largest
tasks when the algorithm terminates. But the choice
of χ ensures that there is no subset with χ + 1 tasks
of size less than B. Hence Sq is precisely the largest
subset smaller than B.

A possible implementation of the algorithm is to in-
terchange at each step the smallest element of S with
the largest element outside S, bounding by χ ≤ m the
number of steps. Pointers to these elements can be
maintained in O(1) times since the ai’s are initially
sorted. Thus the overall complexity of the algorithm is
dominated by the sorting step, in O(m log m). �

Theorem 2 The scheduling problem with one Ona pe-
riod can be solved in O(n log n) time if all tasks are
greater than (or equal to) the unavailability period.

Proof. Property 2 ensures that an optimal schedule
π∗ exists with the largest task n covering the Ona
period. We have 2 cases to distinguish:

1. No idle time occurs in the optimal schedule.

2. An idle time occurs before the Ona period.

4

Let (S∗
1 , S∗

2) be the OA-packing of π∗. Recall that
δ = pn − L represents the difference between the du-
ration of the largest task and the duration of the Ona
period. The makespan of the optimal schedule is then
given by Cmax(π∗) = p(N) + max{0, s − δ − p(S∗

1)}.
Clearly in the second case, S∗

1 must be the largest sub-
set of tasks smaller than s − δ. In the first case, the
makespan is obviously equal to p(N), and hence we
have p(S∗

1) ∈ [s − δ, s]. Notice that any subset S of
{1, . . . , n − 1} such that p(S) belongs to the interval
defines an optimal schedule by sequencing the tasks of
S in any order, followed by n, and then the remaining
tasks, once again in any order. Thus solving a 1−Onas
instance corresponds to a MaxSSwT problem on en-
try (p1, p2, . . . , pn−1, s, δ). Since maxi,j |pi − pj | ≤
pn − L = δ, Algorithm 1 is solving the instance in
time O(n log n). �

4 Complexity and inapproxima-
bility results

The previous section motivates to introduce the follow-
ing definition:

Definition 2 A period is said to be small if it is
smaller than (or equal to) any processing time. We
refer to problem small Onas to mean that all periods
are small.

In this section we prove that small k−Onas is NP-
hard in the ordinary sense for any constant number
k ≥ 2 of periods, and becomes strongly NP-hard when
k is part of the instance. In addition we provide inap-
proximability results, establishing that small k−Onas
does not belong to FPTAS, while small Onas does not
belong to APX, unless P = NP. Notice that complex-
ity and inapproximability results for small Onas are
also obviously valid for the general Onas problem, i.e.
without the small assumption.

4.1 Constant number of Ona periods

One natural question, considering Theorem 2, is to de-
termine if the problem remains polynomial if we have
2, 3, . . . , k periods, all small. The answer is negative:

Theorem 3 Problem 2-Onas is NP-hard even if both
periods are equal and small.

Proof. Consider the Equal Partition problem:
Instance: m integers a1 . . . am.
Question: Does there exist a partition
A ∪ B of {1, . . . ,m} such that |A| = |B| and∑

i∈A ai =
∑

i∈B ai?

This problem is known to be NP-complete [7]. To
avoid trivial cases we assume that both m and

∑
i ai

are even, and at least 2 tasks are not of zero duration.
We associate to an instance I the following instance
f(I) (see Figure 2) of 2-Onas:

• the duration of both periods is set to L =
∑

i ai

• we consider m tasks to schedule, with processing
time pi = ai + L

• the starting time s2 of the second Ona period is∑
i pi/2

• the starting time s1 of the first Ona period is
s2 − L. Hence the second Ona period occurs im-
mediately after the first one.

s2

L

2

L

s2

Figure 2: Ona periods in instance f(I)

This transformation f is clearly polynomial. No-
tice that the periods are small, since 2L > pi ≥ L by
construction. We now establish that an instance I of
Equal Partition is positive if and only if there exists
a schedule for the instance f(I) of makespan at most∑

i pi = (m + 1)L.
Assume first that there exists a partition A∪B such

that
∑

i∈A ai =
∑

i∈B ai and |A| = |B|. We have
p(A) =

∑
i∈A ai + |A|L = (

∑
i ai + mL)/2 = s2. Since

L is small, we can schedule set A of tasks in any or-
der before the first Ona period, completing exactly at
time s2, and then schedule the tasks of B. The result-
ing schedule has a makespan of

∑
i pi.

Conversely assume that such a schedule exists. Since
all processing times are smaller than 2L, both Ona
periods must be covered by a different task. Since
no idle time can occur, it implies that there exists
a partition A ∪ B such that p(A) = s2. We have
p(A) =

∑
i∈A ai + |A|L and by construction s2 =∑

i pi/2 ≡ (m + 1)L/2. As m is even, it implies that

5

∑
i∈A ai = L/2 mod L. But

∑
i∈A ai ≤ L by defini-

tion of L, thus we get
∑

i∈A ai = L/2 and |A| = m/2.
Which proves that I is positive. �

Recall that a problem belongs to FPTAS if and only
if for any ε > 0 there exists an approximation algorithm
Aε with guarantee (1 + ε) running in time polynomial
in the instance size and 1/ε. It implies in particular
that problems of FPTAS can be approximated in poly-
nomial time in |x| with guarantee 1 + 1/P (|x|) for any
instance x and any given polynomial P . As a conse-
quence of Theorem 3, we have the following corollary
on the inapproximability of k−Onas:

Corollary 1 Problem small k−Onas does not belong
to FPTAS for k ≥ 3, unless P = NP.

Proof. We prove in fact a slightly stronger result. It
states that if problem k−Onas is NP-hard for some
constant k, then problem (k+1)-Onas does not belong
to FPTAS, under the usual hypothesis that P 6= NP.
Consider an NP-complete language L over an alpha-
bet Σ. Assume that there exists a real function C to-
gether with a polynomial transformation g that maps
words of Σ∗ onto instances of k−Onas, for some con-
stant k, such that a word x belongs to L if and only
if OPT(g(x)) ≤ C(|x|)L. We claim that if C(|x|) is
polynomially bounded in |x|, then (k + 1)-Onas does
not belong to FPTAS. Indeed consider the transforma-
tion g′ that simply adds to instance g(x) a (k + 1)-th
unavailability period of duration L, occurring at time
sk+1 = C(|x|)L. We have immediately that:

x ∈ L ⇒ OPT (g′(x)) ≤ sk+1

x /∈ L ⇒ OPT (g′(x)) ≥ sk+1 + L

This gap reduction implies that no better approxima-
tion ratio than 1 + 1/C(|x|) can be guaranteed by a
polynomial time algorithm unless P = NP. Since
C(|x|) ≤ P (|x|) for some polynomial P , it proves that
(k + 1)-Onas can not belong to FPTAS.

To establish Corollary 1, simply consider the trans-
formation f used to prove Theorem 3. We have estab-
lished that I is a positive instance of Equal Parti-
tion if and only if f(I) admits a schedule of makespan∑

i pi. Since
∑

i pi = (n+1)L, 3-Onas can not belong
to FPTAS, unless P = NP. �

We show later that simple algorithms can be very
efficient in practice, especially for large instances. First
we establish, in the next section, complexity results if
the number of periods is part of the instance.

4.2 Problem small Onas

Recall that problem Onas refers to the scheduling
problem where the number of periods is not a constant
but is part of the instance. This problem is of course
at least as difficult as k-Onas and thus NP-hard. The
next theorem shows that Onas is hard in the strong
sense.

Proposition 2 Problem Onas is NP-hard in the
strong sense, even if all periods are equal and small.

Proof. Consider the classical 3-Partition Problem.
Instance: 3m+1 integers a1, . . . , a3m and B verifying∑

i ai = mB and B/4 < ai < B/2 ∀i = 1, . . . , 3m.
Question: Does there exist a partition A1 ∪ . . . ∪Am

of {1, . . . , 3m} such that
∑

i∈Aj
ai = B ∀j = 1, . . . ,m?

Without loss of generality we can assume that B =
0 mod 4 (otherwise multiply every integers by 4). We
encode an instance I of 3-Partition into an instance
f(I) of the Onas associated decision problem as fol-
lows:

• We have k = 2m periods of duration L = B/4.
They reproduce the following pattern every 4L
time units:

L L

L4

• We have n = 3m tasks, of duration pi = ai. Notice
that L < pi < 2L for all tasks.

• Question: Does there exist a schedule of
makespan at most C =

∑
i pi ?

The transformation is a reduction. Consider I in
language 3-Partition. To prove that f(I) is a pos-
itive instance, it is sufficient to show that the tasks
associated with one partition set Aj can be scheduled
exactly in a pattern. Indeed since the periods are small,
any sequencing of the 3 tasks is valid.

Conversely assume that f(I) is positive. A schedule
of makespan C has clearly no idle time. In addition,
each task is scheduled inside a pattern (starts and ends
in the same pattern) since at the frontier of the pat-
terns, we have two adjacent periods of total duration
2L. It implies that the tasks scheduled inside each
pattern have a sum of durations exactly 4L = B. The
schedule defines a valid partition for I.

6

The reduction is polynomial. In fact it is pseudo-
polynomial, as |I| ≤ |f(I)| and Max(f(I)) = C =
mB ≤ |I|Max(I). Since 3-Partition is NP-hard in
the strong sense, it implies that Onas is also NP-hard
in the strong sense. �

The previous reduction can be used in a straightfor-
ward way to establish non-approximability results for
Onas, as in Corollary 1.

Proposition 3 If P 6= NP, problem Onas is not in
Apx even if all periods are equal and small. Moreover
approximating Onas within a factor k1−ε is NP-hard
for any constant ε > 0.

Proof. Let ε > 0 be a constant and set α = d1/ε−1e.
The gap reduction is quite immediate using the idea of
Corollary 1. Consider again the 3-Partition problem
and modify reduction f by appending (4m)α+1 − 4m
Ona periods of length L after the last pattern (this is
the gadget, see Figure 3). The resulting instance g(I)
of Onas has a total of k = (4m)α+1 − 2m periods.

Pattern Gadget

Figure 3: Ona periods in reduction g of Proposition 3

The transformation g is polynomial in |I|, greater
than max{m, log L}. Since f was a reduction, we
clearly have:

I ∈ 3-Partition ⇒ OPT (g(I)) = 4mL
I /∈ 3-Partition ⇒ OPT (g(I)) ≥ (4m)α+1L

Indeed if I is a negative instance, a valid schedule for
g(I) must finish after time 4mL. Hence at this time
at least one task is not completed. Since only unavail-
ability periods occur then, and tasks have duration in
(L, 2L), this task can not be scheduled before the last
period. This gap reduction implies that approximating
Onas within (4m)α > kα/(α+1) ≥ k1−ε is NP-hard. �

We summarize the complexity results of this section
in Table 1. As one can notice, the remaining open
question is to determine if small 2-Onas belongs to
FPTAS or not.

Complexity Inapproximability
1-Onas polynomial (n log n)
2-Onas NP-hard ?
k−Onas, k ≥ 3 NP-hard not in FPTAS
Onas strongly NP-hard not in APX

Table 1: Complexity results for small Onas

5 Approximation algorithms for
small Onas

The previous section has established that problems
small k−Onas and small Onas are both NP-hard.
It is then natural to explore heuristic approaches.
In scheduling theory, the most famous ones are list
scheduling algorithms, introduced by Graham [8]. We
establish in this section the performances we may hope
from list scheduling algorithms and how they can be
improved.

5.1 List scheduling algorithms

A list scheduling algorithm is based on the principle
to forbid the resource from being idle if a task is ready
for processing. Hence a list scheduling algorithm uses
basically a greedy allocation of tasks to resources
to prevent (locally) idleness. A list, defining a total
ordering of the tasks, is used to break the ties between
tasks concurrently available. The property implied by
the greedy allocation is that, if the resource is idle at
a time t in the schedule, then no task is available at
this date.

This section is devoted to the analysis of the perfor-
mances of list scheduling algorithms. Since an efficient
polynomial algorithm exists for 1-Onas, we consider
that k ≥ 2 throughout this section. We establish that
any list scheduling algorithm is essentially a (k + 1)/2
approximation. We start by giving some upper bounds
on the idle time in a schedule built by a greedy alloca-
tion.

Bounding the idle time

We consider a schedule π of makespan Cmax(π) ob-
tained by a list scheduling algorithm. We denote by
Ĩj the idle time occurring between the (j − 1)-th and
the j-th Ona period, and by Ij the total time of in-

7

activity in interval [sj−1 + Lj−1, sj + Lj]. Notice that
Ij = Ĩj if the j-th Ona period is covered, Ij = Ĩj + Lj

otherwise. We will focus on the last task scheduled
by the algorithm, say l. We denote by K the last pe-
riod of the schedule, i.e. the largest integer such that
sK + LK ≤ Cmax(π). Due to Remark 1, period K is
necessarily covered in π since it is a semi-active sched-
ule. Our first remark bounds the idle time occurring
between two Ona periods. This upper bound is valid
even if the periods are not small. Recall that L denotes
the largest duration of an Ona period.

Remark 2 In schedule π, for all j ≤ K, we have Ĩj ≤
L.

Proof. Consider a non-zero idle interval Ĩj , starting
at some instant t. At this time the algorithm fails to
schedule any remaining task, which implies in particu-
lar that we must have t + pl ∈ (sm, sm + Lm) for some
index m ≥ j. This clearly holds for any instant t′ in
the idle interval. Hence Ĩj ≤ Lm ≤ L. �

Remark 2 implies that Ij ≤ 2L for all j. If the j-
th Ona period is not covered we have another upper
bound for small Onas, considering two consecutive pe-
riods.

Remark 3 If the j-th Ona period is not covered in π,
then Ij + Ĩj+1 ≤ pl.

Proof. As previously, consider the first instant t of
the idle interval Ij . Interval Ĩj is then [t, sj]. Notice
that Ĩj may be reduced eventually to a singleton {sj}
but is not empty. Due to the greedy allocation, we
necessarily have t + pl ∈ (sm, sm + Lm) for some index
m ≥ j. It suffices to show that m ≥ j +1. For the sake
of contradiction assume that m = j. Then consider
instant e = sj + Lj − pl. The fact that Lj is small
implies that e ≤ sj . But since we assume that t + pl <
sj + Lj , we have e ≥ t. It implies that pl can be
scheduled at time e ∈ Ĩj , which contradicts the fact
that the list scheduling algorithm fails to start any task
in Ĩj . �

Using the two previous remarks and the fact that
the periods are small, we can notice that the idle time
Ij of any period j is smaller than pl, whenever the
period is covered or not. As another consequence of
Remark 3, for any two consecutive periods, we have
Ij +Ij+1 ≤ pl +L. Indeed if period j is uncovered, this
is a direct consequence of the remark, since Lj+1 ≤ L.

Otherwise Ij ≤ L due to Remark 2, while, as we have
noticed, Ij+1 ≤ pl. For the last two periods, the next
remark gives a stronger upper bound:

Remark 4 For the last two periods of the schedule we
have IK−1 + IK ≤ L + LK .

Proof. Let I = IK−1 + IK be the idle time on the
two intervals. Since period K is covered, using the
argument of Remark 2, we have IK ≤ LK . If period
K−1 is also covered, we get directly the required upper
bound. Otherwise consider the first inactivity instant
t of IK−1. As K − 1 is not covered and small, we must
have t + pl ∈ (sK , sK + LK). Let e be the instant
sK + LK − pl. By definition we have e− t ≤ LK , and
since K − 1 is not covered, e > sK−1. Now consider
the instant t′ = max{e, sK−1 + LK−1}. Clearly task
pl can be scheduled at any time after t′. Thus the
greedy allocation implies that no idle time occurs after
t′, and hence I ≤ t′− t. Now simply write that t′− t =
max{−LK−1, sK−1− e}+LK−1 + e− t. The first term
is negative, while the last difference is smaller than LK ,
which provides the upper bound. �

As Ij ≤ 2L for all j = 1, . . . ,K − 2, the previous
remark gives a first upper bound of the total idle time
of the schedule:

Corollary 2 The total idle time of a list schedule is
bounded by 2(K − 1)L for K ≥ 2.

Combining Remarks 2 and 3, we can derive another
upper bound of the total idle time of a list schedule.
The next lemma, quite simple, is the keystone of the
analysis.

Lemma 1 For any index m ≤ K,

Im + . . . + IK ≤ (K −m + 1)
pl + L

2
− pl − L

2

Proof. Let q = K −m + 1 be the number of periods
considered in Lemma 1 and I = Im + . . . + IK be the
total idle time. The idea is to group periods 2 by 2
to use the upper bound of Remark 3, to isolate the
last or last two periods of the schedule, and apply to
them the upper bound of Remark 2 or 4. Recall that
for any two consecutive periods j and j + 1 we have
Ij + Ij+1 ≤ pl + L. If q is even, it results that I ≤
(q− 2)(pl +L)/2+ IK−1 + IK ≤ q(pl +L)/2− (pl−L).
Hence we have a stronger upper bound than the one of
the lemma. If q is odd, we group the periods 2 by 2 till

8

period K − 1. We then get I ≤ (q− 1)(pl + L)/2 + IK .
As period K is covered, Remark 2 implies than IK ≤ L.
Thus I ≤ q(pl+L)/2−(pl−L)/2, which is the required
upper bound. �

Performance guarantee

Now consider an optimal schedule, with makespan
OPT. If the instance contains a unique task, any list
schedule is clearly optimal. Hence we assume that
n ≥ 2, and thus OPT ≥

∑
i pi ≥ 2L. We can also

assume w.l.o.g. that the first task of the list schedule
starts at time 0, since no task can start earlier in any
feasible schedule due to the greedy allocation. We state
a first result which corresponds in fact to a particular
case of the proof of Proposition 5. We emphasize it
in Proposition 4 since it shows that any list scheduling
algorithm has a guarantee 2− 1/k when OPT is suffi-
ciently large. In particular the condition is fulfilled if∑

i pi > sk.

Proposition 4 For problem small Onas with k ≥ 2,
if π is a list schedule such that its last Ona period
K verifies OPT ≥ sK + LK , then Cmax(π) ≤ (2 −
1/k)OPT.

Proof. Let I be the idle time occurring in the list
schedule π, and let Q be the amount of work processed
in π before time OPT. From Corollary 2, the idle time
I satisfies I ≤ 2(K − 1)L. Since K is the last Ona
period of the schedule, the idle time can only occur
before time OPT. Thus we also have I = OPT−Q.

If 2L ≤ Q, combining those inequalities, we get di-
rectly I ≤ (1− 1/k)OPT . Using Cmax(π) =

∑
i pi + I

implies the required result.
Thus assume that Q < 2L. Let x be the task sched-

uled at time 0, and y the one covering period K. Notice
that x = y implies I = 0 and Cmax(π) = OPT . Thus,
we assume that x 6= y. Let a be the amount of work
of y finished by time OPT . Q < 2L implies that no
other task can be processed in time interval [0, OPT],
and hence we have Q = px + a ≥ L + a. It also implies
that task y can not be completed by time OPT.

Let Z be the set of tasks finishing after time OPT .
From what precedes we have simply Z = N\{x}. On
one hand, since no idle time occurs after time OPT,
we can write that Cmax(π) = OPT − a+ p(Z). On the
other hand, work conservation implies OPT ≥ p(Z) +
px. Thus

Cmax(π)
OPT

≤ 1 +
p(Z)− a

p(Z) + px

The right term is an increasing function of p(Z). To
upper bound this quantity, first observe that, due to
the greedy allocation, no task of Z can start in time
interval [px, OPT − a). Since a < L, in fact all tasks
of Z must start in time interval [0, px) in any optimal
schedule. Hence we have p(Z) ≤ px+max{p(z)|z ∈ Z}.

Because y finishes strictly after time sK + LK , cer-
tainly y waits to start its execution for either the end
of an Ona period or the completion of x. This latter
case would result in an optimal schedule, thus we can
assume that y starts exactly at the end of an uncovered
Ona period. Once again the greedy allocation asserts
that at the beginning of this Ona period no task of Z
can be scheduled. It directly implies that pz < a + L
for all z ∈ Z. Thus p(Z) < px + a + L. Putting all
together, we have :

Cmax(π)
OPT

< 1 +
px + L

2px + a + L

Similarly, this term is a decreasing function of a and
px. Hence the ratio is maximum for a = 0 and px = L
which leads to Cmax(π) ≤ (1 + 2

3)OPT.
This inequality proves Proposition 4 for k ≥ 3. It re-

mains the case k = 2 to consider. Notice that our pre-
vious analysis remains valid, in particular we have the
inequality py < a+L < 2L. If N = {x, y}, we have, by
definition of a, Cmax(π) = OPT+py−a ≤ OPT+L. As
OPT ≥ px + py ≥ 2L, we obtain Cmax(π) ≤ 1.5OPT.
Otherwise p(N) ≥ py + 2L. As interval [px,OPT − a]
contains at most one Ona period, the greedy allocation
ensures that I ≤ py (see Remark 3). We get

Cmax(π)
OPT

≤ 1 +
I

OPT
≤ 1 +

py

py + 2L
≤ 3

2

Indeed, the fraction is an increasing function of py,
smaller than 2L. �

We finally give the general guarantee of any list
scheduling for Onas:

Proposition 5 For problem small Onas with k ≥ 2,
any list scheduling algorithm has a performance guar-
antee of (k + 1)/2.

Proof. Consider a schedule π obtained by a list
scheduling algorithm. If OPT ≥ sK + LK , Proposi-
tion 4 establishes the ratio, since 2− 1/k ≤ (k + 1)/2.
Otherwise, let m be the smallest index such that
OPT ≤ sm. We have m ≤ K ≤ k. We then write down
the equation of work conservation at time OPT for

9

schedule π. If Q denotes the amount of work achieved
at this time in π, we have:

Cmax(π) ≤ OPT +
K∑

j=m

Ij +
n∑

i=1

pi −Q

Using Lemma 1 for periods m,m + 1, . . . ,K, we get
the bound:

Cmax(π) ≤ 2OPT+
K −m + 1

2
(pl +L)− 1

2
(pl−L)−Q

We will consider 2 cases, depending on the optimal
value. First assume that m ≥ 3, i.e. the optimal sched-
ule finishes after the second Ona period. Notice that
at time OPT, schedule π has completed at least its
first task. It implies in particular that Q ≥ L. Since
we assume that n ≥ 2, we also have the inequality
OPT ≥ pl + L. Finally we get from the work conser-
vation:

Cmax(π) ≤ 2OPT + K−2
2 (pl + L)− 1

2 (pl − L)− L
≤ 2OPT + K−3

2 (pl + L)
≤ K+1

2 OPT

Now assume that the optimum schedule completes
before the second Ona period. An optimal schedule
can then be computed in polynomial time, see Theo-
rem 2, but for completeness we analyze what happens
to list scheduling algorithms. In this situation, we get a
looser upper bound on the idle time of π, as one more
term (pl + L)/2 is added. Thus we need to improve
our lower bounding of Q. More precisely we claim that
at least L + pl quantity of work is completed in π by
time OPT. Let tI be the first instant of inactivity in π.
Now observe the tasks that remain to schedule in π at
this point in time. Since the machine is continuously
occupied on [0, tI [, for any such task h, we certainly
have tI + ph ≤

∑
i pi ≤ OPT ≤ s2. And since task

h is not scheduled at time tI , it implies in fact that
tI + ph ∈ (s1, s1 + L1), i.e. an idle time occurs be-
fore the first Ona period (unless π is optimal). Hence
any remaining task h has an earliest date s1 + L1 − ph

when it can be scheduled, overlapping the first Ona
period. Due to the greedy allocation, the algorithm
schedules the largest remaining task, say b, to over-
lap the first Ona period, completing exactly at time
s1 + L1. Thus at time OPT at least the first task (say
a, starting at time 0) and b have been completed in π.
We get Q ≥ pa + pb ≥ L + pl. The equation of work
conservation at time OPT gives:

Cmax(π) ≤ 2OPT + K−1
2 (pl + L)− (pl + L)

≤ K+1
2 OPT

which concludes the proof. �

The guarantee of list scheduling algorithms given in
Proposition 5 is not so bad, knowing the inapproxima-
bility result on Onas. In particular we have a guar-
antee of 3/2 for k = 2 and 2 for k = 3, which can be
achieve in linear time O(n) using an arbitrary priority
list. But the guarantee (k + 1)/2 becomes quickly not
satisfactory for larger k. However, surprisingly, any list
scheduling has roughly speaking the same performance
guarantee:

Proposition 6 Even if all periods are equal and small,
no list scheduling algorithm can have a better perfor-
mance guarantee for k−Onas than k/2+1/6 for k odd,
and k/2 + 1/3 for k even.

Proof. Consider the following instance of k−Onas
for k even:

• Ona periods are grouped by 2. Each one has du-
ration L

• time between 2 Ona blocks is L − 2ε, except for
the first block that starts at time L. Hence the
last Ona period ends at time 3Lk/2 +O(ε)

• we have 2 tasks to schedule, p1 = L and p2 =
2L− ε, that is 2L− 2ε < p2 < 2L.

If task 1 is scheduled first, at time 0, it is not possible
to schedule task 2 before the last Ona period, see Fig-
ure 4. Hence the makespan is equal to 3Lk/2+L+O(ε).
But an optimal schedule can first schedule task 2, start-
ing at time ε, and then task 1 which overlaps exactly
the second Ona period. The makespan is 3L.

ε ε−2 −2L L

L 2 3LL

Figure 4: The schedule produced by any list scheduling
algorithm

The ratio between the two makespans tends to
k/2 + 1/3 for ε small. Notice that any list schedul-
ing algorithm starts by scheduling task 1 to avoid the
ε idle time at the beginning. This proves the result
for k even. If k is odd, we use the same construction,
except that the last block is replaced by a single Ona
period. The makespan of any list scheduling algorithm

10

is then 3L(k−1)/2+2L+O(ε) = 3Lk/2+L/2+O(ε).
�

It shows that for Onas any list scheduling algorithm
has a guarantee that lies between k/2 + 1/6 and k/2 +
1/2. Hence it is of little use to search for a clever list
on this problem. We show in the next section how it is
possible to take advantage of list scheduling algorithms
to obtain better performances.

5.2 Better approximations

The previous proof of Proposition 6 incites to think
that list scheduling algorithms perform the worst when
only a few tasks are to be scheduled. Proposition 4
already states that Onas can be approximated within
the ratio 2−1/k when

∑
i pi is larger that sk. Here we

go a step further. Notice that, using Corollary 2, we
can write for any list schedule π:

Cmax(π) =
∑

i

pi +
∑

j

Ij ≤ OPT + 2(k − 1)L

Thus we have the following property:

Proposition 7 List scheduling algorithms are asymp-
totically optimal for small k−Onas when n → +∞.

Proof. As
∑

i pi ≥ nL, we have Cmax(π) ≤ (1 +
2(k − 1)/n)OPT. �

Hence large instances are in fact the easy ones, for
which any list scheduling algorithm will perform opti-
mally. It may appear as a paradox, but for example
BinPacking is well known to act the same (when its
optimal value becomes large). If Proposition 7 is of
practical importance, it also permits to derive the fol-
lowing theoretical result:

Proposition 8 Problem small k−Onas belongs to
PTAS.

Proof. Let ε > 0 be a constant. Consider the algo-
rithm Aε described in Algorithm 2.

First notice that algorithm Aε is polynomial for any
fixed constant ε. Indeed, since semi-active schedules
are dominant, it is sufficient to enumerate all task se-
quences to solve the problem optimally. For n < Nε

we have only a constant number of tasks, and thus a
constant number of sequences to evaluate.

Secondly, we claim that algorithm Aε has a guar-
antee 1 + ε. Clearly if n < Nε, the algorithm

Algorithm 2 PTAS for k−Onas

set Nε = d2(k − 1)/εe
if n < Nε then

solve the instance optimally
else

apply any list scheduling algorithm
end if

is optimal. Otherwise its makespan is bounded by
(1 + 2(k − 1)/n)OPT ≤ (1 + ε)OPT. �

As small k−Onas does not belongs to FPTAS un-
less P = NP, for k ≥ 3, we have determined exactly
its approximability class. To approximate small Onas
problem, we can use the same technique, leading to the
following result:

Proposition 9 Problem small Onas can be approxi-
mated with a guarantee O(k ln ln k/ ln k).

Proof. Simply set N = 2 ln k/ ln ln k, and as be-
fore either solve the problem optimally if n ≤ N ,
or apply any list scheduling algorithm. The guaran-
tee of a list scheduling algorithm is then bounded by
(1 + 2k/n)OPT, smaller than (1 + k ln ln k/ ln k)OPT.
Hence we only have to prove that instances of at most
N tasks can be solved in polynomial time. We can use
Stirling’s formula, or simply write ln(N !) ≤ ln 1+ln 2+
. . . + ln N < N lnN . But lnN ≤ 1 + ln ln k− ln ln ln k.
Hence N lnN ≤ N + 2 ln k. For k sufficiently large
(k ≥ ee2

), N is smaller than ln k. Thus the num-
ber of possible permutations of the tasks is at most
exp (3 ln k) = k3, which is polynomially bounded in the
instance size. Since each sequence can be evaluated in
time O(n + k), an exhaustive search can be done in
polynomial time. �

Since problem small Onas can not be approximated
within k1−ε for any constant ε > 0, Proposition 9 gives
slightly the best approximation guarantee we may hope
to obtain in polynomial time. Table 2 synthesizes our
approximation results.

Approximation Inapproximability
k−Onas, k ≥ 3 PTAS not in FPTAS
Onas O(k ln ln k/ ln k) k1−ε

Table 2: Approximability results for small Onas

11

While PTAS 2 has a good theoretical complexity of
O(max (2k/ε)!, n), i.e. linear in n, clearly it is very
inefficient in practice. To improve the resolution of
the problem with a constant number of tasks n ≤ Nε,
notice that solving the problem optimally can be done
in time kn by deciding the partition of the tasks that
start in the OA-periods. Since the order of the tasks
inside an OA-period does not have any impact, one just
has to end in each period with the largest task. This
can be further improved grouping the periods two by
two and applying each time Algorithm 1, just being
careful of the tasks to be put on the ONA periods.

6 Periodic Onas

We consider in this section periodic unavailability pe-
riods, i.e. we assume that unavailability periods occur
every s time units. In addition we restrict to instances
with equal and small periods. In this setting we have
s1 = s and sj = sj−1 + L + s for j = 2, 3, . . . , k, see
Figure 5. The periodic case is clearly of practical inter-
est, since week-ends typically induce 2 days of unavail-
ability every 5 days in many industries. In addition
one may hope better approximation algorithms due to
the regular structure of the problem. In the following
a subset S of tasks is said to fit before a period j if
p(S) ≤ s. If Ona period j is covered by task i then S
matches the period if s− δi ≤ p(S) ≤ s.

1 s s2 3

s s s

0 s

Figure 5: An instance of periodic 3-Onas

For the periodic problem with machine unavailability
periods and non-resumable jobs, Ji, He and Cheng [11]
show that minimizing the makespan can not be ap-
proximated within a factor 2. In addition they estab-
lish that LPT list schedule has precisely a performance
guarantee of 2. As noticed in their analysis, the prob-
lem is related to bin packing (even if the objective func-
tions differ) where each interval of machine availability
can be seen as a bin of capacity s and each task as an
item of size pi. When considering Ona periods, this
analogy to packing does not hold any more since the
subsets of tasks scheduled during an availability period
can be larger than the duration of the time interval, if
one of the tasks covers the following Ona period. This

can be related to the so called open-end bin packing
introduced by Leung, Dror and Young [16]: in this
problem the last item of a bin is allowed to go beyond
the bin capacity. They prove open-end bin packing
to be strongly NP-hard and give an (asymptotic) FP-
TAS. However periodic Onas is intuitively an harder
problem due to the interdependence between succes-
sive available intervals. It this sense Onas is a ”real”
scheduling problem with temporal dependences, and
not a variation on packing.

Another closely related problem is the Multiple
Subset-Sum problems (MSS), for which PTAS has
been recently developed [4, 6, 10]. For classical ma-
chine unavailability periods, a (2 + ε)-approximation
can be easily derived in a straightforward way from
previous PTAS’s for MSS even if the instance is not
periodic but verifies that each availability periods is
sufficiently large. On the opposite, using a PTAS
for Multiple Subset-Sum or Multiple Knapsack
problems to solve periodic Onas is nothing but obvi-
ous. Due to the fact that some tasks will cover some
periods, the size of the knapsacks are not known in ad-
vance. Notice that Caprara, Kellerer and Pferschy [4]
proved that Multiple Subset-Sum does not admit
a FPTAS even for only 2 knapsacks. In contrast we
will show that, under the small assumption, problem
periodic 2−Onas admits a FPTAS.

Notice that the proof of NP-completeness for 2-
Onas considers 2 adjacent unavailability periods in the
reduction. Hence one may hope the periodic version of
the problem to be polynomial. It happens that even
under these strong restrictions, the problem remains
NP-hard even for 2 periods:

Theorem 4 Problem periodic k−Onas with all peri-
ods equal and small is NP-hard for k ≥ 2.

Proof. Again we consider the Equal Partition
problem:
Instance: n integers a1, . . . , an.
Question: Does there exists a partition A ∪ B of
{1, . . . , n} such that |A| = |B| and

∑
i∈A ai =∑

i∈B ai?
To avoid trivial instances, we assume that both n and∑
i ai are even, and no task is greater than

∑
i ai/2.

For short we denote by m = n/2 and α =
∑

i ai/2. The
idea of the reduction is to construct an instance of 2-
Onas such that any subset of m−1 tasks is significantly
smaller than s, and thus fits before an Ona period. On
the contrary, a subset of m tasks smaller than s, has

12

to contain only ”small” tasks, associated with the ai’s
of Equal Partition. The transformation from an
instance I of Equal Partition into an instance f(I)
of 2-Onas is the following:

• we consider 2 periods, with L = mα and s = mL+
α,

• we have n tasks with processing time pi = ai + L,
i = 1, . . . , n,

• In addition we have m + 1 tasks with processing
time pn+i = L + α, i = 1, . . . ,m + 1.

By construction, the instance f(I) is small and peri-
odic, and f is clearly polynomial. We will prove that I
is positive if and only if it exists a schedule for f(I) of
makespan

∑
i pi, i.e. a schedule without idle time. Be-

fore, we make some preliminary remarks on the struc-
ture of the instance f(I). Let us denote by N the
set {1, . . . , n} of tasks associated with the ai’s and by
M = {n + 1, . . . , n + m + 1} the set of ”large” tasks
of processing time L + α. Recall that δi represents the
difference pi−L. Notice that we have 0 < δi ≤ α, with
δi = α if and only if i ∈ M . Consider now a subset S
of tasks. Computing its duration we get:

|S|L < p(S) = |S|L +
∑
i∈S

δi ≤ |S|(L + α)

It implies the following properties:

(1) if |S| > m then p(S) > s

(2) if |S| < m then p(S) ≤ s− 2α

(3) if |S| = m then p(S) ≤ s implies S ⊆ N

The first 2 properties are direct consequences of
the previous inequalities. Indeed simply notice that
(m + 1)L > s and (m − 1)(L + α) = s − 2α, since
L = mα. Consider now a subset S of m tasks. Then
p(S) = s − α + δ(S). As we assume that m > 1, if
S contains a task of M , then δ(S) > α, implying
p(S) > s. This establishes the third property. Notice
that for any task i ∈ N , we simply have δi = ai. Thus
the time duration of a subset S ⊆ N of m tasks is
equal to p(S) = s− α + a(S).

We now prove that I is positive if and only if f(I)
admits a schedule of makespan

∑
i pi. First assume

that I is a positive instance, and consider a valid
partition A ∪ B of N . We construct for f(I) the

1 s 2

x S x

s0

1 1 2 2S

Figure 6: Structure of the schedule π for f(I)

following sequence πA: schedule first the tasks of A
in any order, then all the tasks of M , then the tasks
of B in any order. We claim that this schedule is
valid for f(I) and without idleness. Indeed the time
duration of A is equal to p(A) = s − α + a(A) = s.
Thus set A can be entirely scheduled before the
first Ona period, completing exactly at time
s. If we compute the duration of M , we get
p(M) = (m+1)(L+α) = (mL+α)+L+mα = s+2L,
which corresponds exactly to the duration between the
beginning of the first Ona period and the end of the
second Ona period. Since the instance is small, tasks
of M can be scheduled without idleness to complete
at time 2s + 2L, the first and last tasks overlapping
the Ona periods.

Conversely consider that f(I) admits a schedule π
of makespan

∑
i pi. Let (S1, S2, S3) be the OA-packing

of π. Since π is without idleness, two additional tasks,
say x1 and x2, cover the two Ona periods, see Figure 6.
It also implies that S1 must fit its interval, i.e. that
s − α ≤ p(S1) ≤ s. Our properties show that S1 is a
subset of N of cardinality m. Hence it only remains to
prove that a(S1) = α. For this, consider the subset S2

of tasks starting at time s1 +L or later and completing
in π before time s2.

By definition we have p(S2) ≤ s, which implies that
|S2| ≤ m due to property (1). Now suppose that |S2| =
m. It implies from property (3) that S2 ⊆ N . Thus
S1 ∪ S2 if in fact a partition of N , and x1 may only
belong to set M . If we consider all the tasks completing
before time s2, their processing time is then exactly
p(N) + (L + α) = 2s + L + α > s2. This contradicts
the definition of S2. Hence S2 contains at most m− 1
tasks. Let S = S1 ∪ {x1} ∪ S2 ∪ {x2}, representing all
the tasks starting before time s2 in π. We then have
p(S) ≤ p(S1) + 2(L + α) + p(S2). Since no idle time
occurs, we certainly have p(S) ≥ s2 + L = 2s + 2L. It
implies that

p(S2) ≥ 2s− 2α− (s− α + a(S1)) = s− α− a(S1)

As |S2| < m, property (2) proves that p(S2) ≤ s− 2α.

13

It results that a(S1) ≥ α. In addition p(S1) = s −
α + a(S1) must be smaller than s, which implies that
a(S1) = α. We can conclude that set S1 defines a valid
partition of N . �

Using the argument of Corollary 1, this complexity
result implies immediately the following inapproxima-
bility corollary:

Corollary 3 Problem periodic k−Onas does not be-
long to FPTAS for k ≥ 3, unless P = NP

Proof. The reduction establishes that it is NP-
complete to decide the existence of a schedule of
makespan

∑
i pi = (3m+2)L+3α = (3m2 +2m+3)α.

Hence the gap reduction technique we use asserts
that Onas can not be approximated within factor
1+m/(3m2 +2m+3) ≤ 1+1/3m in polynomial time.
�

Even if the problem remains hard, list scheduling
algorithms perform substantially better on periodic
Onas. The next theorem shows in particular that pe-
riodic Onas belongs to APX:

Proposition 10 For periodic Onas with all periods
equal and small, any list scheduling has a performance
guarantee of 2.

Proof. Consider a periodic instance I with k
unavailability periods. We call unschedulable a task
that can not be scheduled in the infinite periodic
version of the instance. Clearly in I an unschedulable
task can not complete before time sk + L + s in
any feasible schedule. Since the makespan of any
list schedule is at most sk +L+

∑
i pi, the ratio 2 holds.

Hence assume that there is no unschedulable task in
the instance. It implies that for each task it exists a
point in time interval [0, s] (and in all other intervals
by translation of s+L) when it can be scheduled. Now
consider a list schedule with an inactivity interval I
starting at time t. We denote by j the index such
that t ∈ (sj−1, sj]. Let i be the first task scheduled
after time t. We will show that the duration of I is
necessarily smaller that pi. First, notice that since i is
not scheduled at time t, we must have t+pi ∈]sl, sl+L[
for some index l ≥ j. This implies that sl − t ≤ pi.
Consider the two following cases to conclude:

1. If l = j, then task i can be scheduled at time sj +
L−pi due to the small assumption. And certainly

the list scheduling algorithm does so. Hence we
have |I| ≤ sj − t ≤ pi.

2. Otherwise l ≥ j + 1. But since i is not unschedu-
lable, we know that there is a time in [sj +L, sj+1]
when the algorithm can schedule it. Hence |I| ≤
sj+1 − t ≤ pi.

We proved that the duration of any idle interval is
smaller than the duration of the task scheduled im-
mediately after it. It results that the sum of the total
idle time of the schedule is bounded by the sum of the
processing times, proving the ratio 2. �

7 An FPTAS for periodic
2−Onas

We consider the periodic 2−Onas problem with small
periods. For sake of simplicity we denote by s the start-
ing time of the first period and L its duration. The sec-
ond period starts then at time 2s+L. Before presenting
our analysis, let us rephrase the result on SubsetSum
with Tolerance in a more general setting.

Proposition 11 Let a1 . . . an be a list of integers in-
dexed by increasing value, and let ∆ = maxi,j |ai−aj |.
For an integer B, if there exists 2 subsets X and Y of
{1, . . . , n} such that :

a(X) ≤ B ≤ a(Y) and |Y | ≤ |X|

then a subset Z ⊆ X ∪ Y can be found in linear time
such that a(Z) ∈ [B −∆, B].

Proof. Apply Algorithm 1 on instance X ∪ Y with
X as initial set. Since the |X| largest tasks do not fit
in [0, B], necessarily the algorithm stops on a subset Z
such that a(Z) ∈ [B −∆, B]. �

In the next section we assume that an optimal solu-
tion exists with the first period covered by task a and
the second period covered by task b. We show how to
build a near optimal schedule with makespan at most
at a factor (1 + ε) for any ε > 0 in time polynomial
both in n and 1/ε.

Since SubsetSum is in FPTAS, one may think in
solving 2 subset sum problems (at a precision ε) to
find subsets S1 and S2 to schedule in interval [0, s] and
[s + L, 2s + L], respectively. However these 2 prob-
lems are clearly not independent and can not be solved

14

sequentially, as selecting one task x for S1 may be an
optimal local decision for S1, but leading to a poor sub-
set S2. In fact it is well-known [5] that such iterative
filling for Bin Packing has a quite poor asymptotic
worst-case ratio of ' 1.6. On the opposite, guessing
the set S∗ = S∗

1 ∪ S∗
2 of tasks scheduled in an optimal

solution before the second Ona period, we can build
an optimal solution simply by applying Algorithm 1 on
S∗ to get subset S∗

1 .
To get some clue about set S∗, very classically we

solve a relaxation of the problem considering only the
second Ona period. From an optimal solution S of the
relaxation, we then apply the polynomial algorithm for
1−Onas to find a subset S1 ⊆ S to be scheduled before
the first Ona period. Clearly the subset S2 = S\S1

may not fit before the second Ona period, resulting in
an infeasible solution. We show then that a feasible
(near optimal) solution can be rebuild by eventually
solving a SubsetSum problem.

7.1 Relaxation

Consider an instance I of the 2−Onas problem to-
gether with an optimal schedule π∗ verifying Prop-
erty 1. We denote by OPT the makespan Cmax(π∗).
We first restrict our attention to the case where the
two Ona periods are covered by two different tasks.
The remaining cases will be detailed in Section 7.4. We
denote by a and b the tasks covering in π∗ the first and
the second Ona period, respectively. Let S∗

1 ∪ S∗
2 ∪ S∗

3

be the OA-packing defined by π∗, see Figure 7. We
denote by Nx the set {i 6= x | pi ≤ px} of tasks whose
processing time is smaller or equal to x, x excluded.
Property 1 involves that S∗

1 ⊆ Na, S∗
2 ⊆ Na ∩Nb and

S∗
3 ⊆ Nb. We can make the following immediate re-

mark:

Remark 5 Let M = {i 6= a | pb < pi ≤ pa}. We have
M ⊆ S∗

1 .

Due to our choice of an optimal dominant schedule
π∗, we can assume that M fits before the first Ona
period. Notice that Property 1 also involves that either
a or b is the largest task of N , that we index by n. If
b = n, then set Nb = N\{n} and set M = ∅. Otherwise
if a = n then we have the partition Na = Nb∪{b}∪M .
In any case we have by definition M ⊆ Na.

We denote by S∗ = S∗
1∪S∗

2 the set of tasks scheduled
before the second Ona period. Notice that from what
precedes we have M ⊆ S∗ ⊆ Na, and by definition

2s+L

S Sa b

s0

2
*

3
*

1S *

���������� ����������

Figure 7: Structure of an optimal solution for I

s’

���������
���������
���������
���������

b

0
M

S

����������

Figure 8: Structure of the relaxation for I. Subset M
is represented with dashed line and is reduced to one
single task on the example.

of M , S∗\M ⊆ Nb. Before presenting the relaxation,
we first derive a trivial upper bound on the cardinal-
ity of set S∗. We denote by χ the maximum number
of tasks that can fit in time interval [0, s]. Indexing
tasks by non-decreasing value of their processing time,
quantity χ can be easily computed in linear time as
χ = max{i | p([1, i]) ≤ s}, see the first step of Algo-
rithm 1. By definition both |S∗

1 | and |S∗
2 | are smaller

than χ. It results that |S∗| ≤ 2χ.
We relax the problem by considering only the second

Ona period. However, we do not disregard totally the
first Ona period : as task a is to cover it, we discard its
processing time from interval [0, 2s+L]. It corresponds
to solve an instance of 1-Onas problem with the Ona
period starting at time s′ = 2s − δa considering only
the tasks of Na\{b}, see Figure 8. Equivalently we can
formulate this problem as a MaxSSwT problem on
instance Na\{b}, with a bound s′ and a tolerance δb.
We impose two additional constraints on the subset
S we are looking for : we require that M ⊆ S and
|S| ≤ 2χ. Hence we have the following optimization
problem I to solve:

maxZ min{p(Z), s′ − δb}
s.t. p(Z) ≤ s′

|Z| ≤ 2χ
M ⊆ Z ⊆ Na\{b}

Problem I has been constructed such that S∗ is a
feasible solution for it. Indeed from what precedes we
have M ⊆ S∗ and |S∗| ≤ 2χ, and by definition p(S∗) ≤
2s+L−pa = s′. We now establish that I can be solved
easily, providing an upper bound on the cardinality of
S∗:

15

Proposition 12 An optimal set S for I can be found
in linear time. In addition |S| is an upper bound of
|S∗|.

Proof. Algorithm 1 can be easily adapted to solve
I in linear time, assuming that tasks are indexed by
non-decreasing order of their processing times. To ful-
fill the two additional conditions, it suffices to choose
an appropriate initial set S0 to initialize the algorithm.
We construct set S0 including all the tasks of M , that
we complete with the smallest tasks of Na\{b}, up to
bound s′ or up to obtain 2χ tasks. Let S be the solu-
tion returned by the algorithm on initial set S0. No-
tice that by construction |S0| ≤ 2χ and |S0| is an up-
per bound of any feasible solution of I and thus of
|S∗|. As the number of tasks in the solution does not
change through iterations, so is |S|. In addition set
M , if not empty, contains the largest tasks of Na and
thus none of its tasks will be exchanged by the algo-
rithm, which asserts that M ⊆ S. Finally to assert
that S is optimal, we have to check that the difference
|pi − pj | between two tasks swapped by the algorithm
is bounded by tolerance δb. This is immediate, writing
that Na\{b}\M ⊆ Nb. �

Relaxation I also provides a lower bound of the op-
timal makespan for I:

Proposition 13 Let S be the optimal solution of I
found in proposition 12. Then ω ≡ p(N) + (s′ − δb −
p(S))+ is a lower bound of OPT, where (x)+ stands
for max(0, x).

Proof. For any subset Z, let ω(Z) = p(N) + (s′ −
δb − p(Z))+. Quantity ω(Z) represents the makespan
of a solution packing set Z before the Ona period in
the relaxation. The makespan of π∗ is equal to the
total work plus the total idleness in the schedule, i.e.
OPT = p(N) + I1 + I2, with I1 and I2 the idleness
occurring before the first Ona and the second Ona
period, respectively. Before the second Ona period,
schedule π∗ completes at time p(S∗)+pa+I1. We have
I2 = (2s+L−δb−(p(S∗)+pa+I1))+ = (s′−δb−p(S∗)−
I1)+. Hence OPT = max{ω(S∗), p(N) + I1} ≥ ω(S∗).
Since S∗ is a feasible solution for I, optimality of S
implies that ω(S) ≤ ω(S∗), which permits to conclude.
�

Set S is our guess for S∗. To derive a parti-
tion (S1, S2) of S analogue to (S∗

1 , S∗
2), we solve the

1−Onas problem restricted to set S and with only the
first Ona period (covered by task a), see Figure 9.

2s+L

S

���������
���������
���������
���������

ba

s0

1S 2

���������� ����������

Figure 9: Structure of the relaxation (S1, S2) con-
structed from Figure 8

Definition 3 We denote by S1 the optimal solution of
MaxSSwT on set S, with bound s and tolerance δa.

Since S ⊆ Na, this MaxSSwT problem can be
solved in linear time by Algorithm 1. We choose for
S1 the solution returned by the algorithm, and we let
S2 = S\S1. By definition set S1 fits before the first
Ona period. We denote for clarity (S1, S2) the (even-
tually infeasible) schedule for I sequencing tasks of S1

in the first interval [0, s] and tasks of S2 in time inter-
val [s + L, 2s + L], with task a covering the first Ona
period. We prove in the next section that relaxation
(S1, S2) can lead to an optimal solution for I in some
cases.

7.2 Polynomial optimal cases

In this section we exhibit the cases were the relaxed so-
lution (S1, S2) can be transformed in polynomial time
into a feasible and optimal solution for instance I.
We start with the following immediate remark, which
states that if S1 matches its interval, then the relax-
ation gives an optimal schedule. This is the situation
represented in Figure 9:

Property 3 If p(S1) ≥ s − δa, then schedule (S1, S2)
is optimal for I.

Proof. Since p(S1) ≤ s by definition, it means that
S1 matches the first Ona period. As p(S) ≤ 2s − δa,
we can schedule without idle time S1, a, S2 before the
second Ona period, i.e. (S1, S2) is feasible. The
makespan clearly equals the lower bound ω of the re-
laxation, which establishes the optimality. �

Hence we assume from now that p(S1) < s − δa. It
implies that S1 contains the largest tasks of S, and by
consequence S2 the smallest tasks of S. Also notice
that tasks of S2 starts at time s+L. A second polyno-
mial case corresponds to the antisymmetric situation
for S2, i.e. if it does not match its interval.

Property 4 If p(S2) ≤ s − δb, then schedule (S1, S2)
is optimal for I.

16

Proof. Schedule (S1, S2) is clearly feasible. In this
schedule task a completes at the end of the first Ona
period, and task b at the end of the second period.
Thus the makespan clearly equals the lower bound ω.
�

Thus we assume both p(S1) < s − δa and p(S2) >
s − δb. The last polynomial case is less obvious, and
some transformations are needed to obtain an optimal
schedule from relaxation (S1, S2). It corresponds to
the case where set S1 has at least as many tasks as set
S2:

Property 5 If |S1| ≥ |S2|, then an optimal schedule
for I can be found in linear time.

Proof. Since S1 contains the largest tasks of S,
it involves that p(S2) ≤ p(S1) ≤ s − δa. We will
distinguish two cases: |S1| = χ and |S1| < χ.

case |S1| = χ. Let S′
1 be the subset of tasks deliv-

ered by Algorithm 1 on the MaxSSwT instance com-
posed of set S1 union the set of the |S1| largest tasks
of Na\{b}, with a bound s and a tolerance δa. By
construction we have S′

1 ∩ S2 = ∅. Thus (S′
1, S2) is a

feasible schedule for I, since p(S2) ≤ s− δa. We claim
that it is optimal:

• If no idle appears, this is certainly true,

• otherwise an idle time can only appear before the
first Ona period, since p(S2) ≥ s − δb. This idle
time is hence equal to s − p(S′

1). Algorithm 1
asserts that S′

1 then contains the χ largest tasks of
Na. In addition it is not possible to schedule more
than |S1| = χ tasks before the first Ona period, by
definition of χ. It results that any feasible schedule
contains an idle time greater or equal to s−p(S′

1).

case |S1| < χ. Algorithm 1 asserts that any sub-
set of S of |S1| + 1 tasks does not fit before s. On
the contrary the set of the χ smallest tasks of N fits,
by definition of χ. Applying Proposition 11, we can
find in linear time a subset S′

1 ⊆ Na\{b} of cardinality
|S1|+ 1 matching time interval [s− δa, s]. Notice that
S′

1 contains at most |S1| tasks of S. We choose arbi-
trarily a subset S′

2 of |S2| tasks among S\S′
1. Since

S2 is composed of the smallest tasks of S, certainly
we have p(S′

2) ≥ p(S2) > s − δb. Similarly we have
p(S′

2) ≤ p(S1) < s− δa. Thus (S′
1, S

′
2) is a valid sched-

ule, without idle time. �

7.3 The NP-hard case

As periodic 2−Onas is NP-hard, it must happen that
S can not be polynomially transformed into an opti-
mal schedule. Considering results of the previous sec-
tion, we are in the situation where p(S1) < s− δa and
p(S2) > s−δb and |S1| < |S2|. Actually the next prop-
erty establishes that S2 contains exactly one more task
than S1, and does not fit into its time interval.

Remark 6 Under the previous assumptions, we have
χ ≥ |S2| = |S1|+ 1 and p(S2) > s.

Proof. Algorithm 1 ensures that any subset of S of
cardinality |S1| + 1 does not fit in time interval [0, s].
As p(S) ≤ 2s, it involves that |S| ≤ 2|S1|+ 1. Writing
that 2χ ≥ |S| = |S1| + |S2| and |S2| ≥ |S1| + 1, we
get the first inequality. For the second one, notice that
p(S2) ≤ s would contradict that any subset of |S1|+ 1
tasks of S does not fit. �

In light of the previous remark, we clearly need to
modify set S to get a feasible solution, since no subset
of S with |S1|+ 1 tasks can fit in [0, s] and S contains
2|S1| + 1 tasks. In fact we will swap set S1 and S2

in the schedule, and replace set S2, too large, by the
optimum solution of a SubsetSum problem. First we
make the following helpful remark:

Remark 7 We can assert that set S1 contains the
largest tasks of Na\{b}.

Proof. Since S1 contains the largest tasks of S, we
need to prove that when solving relaxation I, set S
contains the largest tasks of N\{a, b}. Recall that set
M is already composed of the largest tasks of N\{a, b}.
To ensure that S contains the |S1|−|M | largest follow-
ing tasks, we impose at each step of Algorithm 1 to
exchange the largest task y /∈ S with the largest task
x ∈ S with a processing time smaller than y. Notice
that this version of Algorithm 1 remains linear using
a merge procedure, as a task may enter at most once
in set S. After l steps, as M belongs to the initial
set, solution S contains the |M | + l largest tasks of
N\{a, b}. For the sake of contradiction assume that
l + |M | < |S1|. It implies that set S2 contains only
tasks of the initial set, M excluded, that is the small-
est tasks of N . Remark 6 implies that set S2 should
then fit in time interval [0, s], since its cardinality is at
most χ. But the same remark states that p(S2) > s,
which is a contradiction. �

Now consider the following optimization problem:

17

max{ p(Z) | p(Z) ≤ s, Z ⊆ Na\S1 } (Q)

Let Z∗ be an optimal subset for Q. Clearly (Z∗, S1)
is a feasible schedule for I, since Z∗ fits in [0, s] by
construction, and p(S1) ≤ s − δa. We claim that it is
an optimal schedule:

Proposition 14 Let Z∗ be an optimal solution of Q.
Then schedule (Z∗, S1) is optimal.

Proof. If no idle time occurs, this is obviously true.
Thus assume that some idle periods are present. We
first establish that an idle time can occur only before
the second Ona period. To see this consider set S2

constituted of the |S2| smallest tasks of the instance.
Due to Remark 7 none of these tasks belongs to S1. On
one hand, since |S2| ≤ χ, set S2 certainly fits in time
interval [0, s]. On the other hand subset S2 does not fit
due to Remark 6. Applying Proposition 11 there exists
a set Z ⊂ S2∪S2 ⊆ Na\S1 that matches the first Ona
period. By definition p(Z∗) ≥ p(Z) ≥ s − δa, i.e. set
Z∗ also matches the first Ona period.

As a consequence task b completes at time 2s + 2L
in (Z∗, S1). For the sake of contradiction assume that
(Z∗, S1) is not optimal. Since b can not complete earlier
than 2s + 2L in π∗, we must have p(S∗

1 ∪S∗
2) > p(Z∗ ∪

S1). Let u = min{|S∗
1 |, |S∗

2 |} and v = max{|S∗
1 |, |S∗

2 |}.
By definition we have v ≤ χ. In addition, since |S| is an
upper bound of |S∗|, Remark 6 implies that u ≤ |S1|.
Now consider the partition of S∗ into (X, Y) such that
X contains the |S1| largest tasks of S∗. Since S∗ ⊆ Na,
Remark 7 tells us that p(X) ≤ p(S1). It also implies
that Y ∩S1 = ∅. As u ≤ |S1|, we certainly have |Y | ≤ v.
By construction of our partition it results that p(Y) ≤
max{p(S∗

1), p(S∗
2)}, i.e. Y is a feasible solution of Q.

The optimality of Z∗ asserts that p(Z∗) ≥ p(Y). In
conclusion we have p(S∗) = p(X) + p(Y) ≤ p(S1) +
p(Z∗), which is a contradiction. �

Problem Q is a SubsetSum problem, and thus may
require an expensive computational effort to solve to
optimality. However requesting only for a near optimal
solution Z instead of Z∗, we obtain a feasible sched-
ule of makespan bounded by [p(Z∗)/p(Z)]OPT. Since
SubsetSum belongs to FPTAS, it results that ∀ε > 0,
a schedule of makespan at most (1 + ε)OPT can be
found in polynomial time in n and 1/ε.

7.4 The overall algorithm

In the previous section we have investigated the case
where a dominant optimal schedule covers the two Ona
periods. The remaining cases are fortunately more im-
mediate. First, the second Ona period is necessarily
covered, except if OPT ≤ 2s + L. This latter situa-
tion reduces immediately to a 1−Onas problem, drop-
ping the second Ona period, and thus can be solved
optimally in linear time by Algorithm 1. Similarly if
the first Ona period is not covered, we can assume
that no task is scheduled before s (otherwise it can be
shifted to complete at time s + L). Thus the problem
reduces once again to a 1−Onas problem, starting at
time s + L. Finally consider the case of a single task
a covering the two Ona periods. Without loss of gen-
erality we can assume that a is the largest task of the
instance. Notice that task a may have very little free-
dom in the schedule ; for instance if its processing time
is s+2L, we can not shift neither forward nor backward
the beginning of the task. Hence we can not use Algo-
rithm 1 to solve the MaxSSwTproblem constituted of
the n− 1 other tasks, with a bound s and a tolerance
∆ = pa − (s + 2L). But we can ignore the tolerance
and solve the corresponding SubsetSum problem at a
precision ε. We have the following theorem:

Theorem 5 If I is an instance of small periodic
2−Onas, for any ε > 0, a feasible schedule of
makespan at most (1 + ε)OPT can be found in time
O(n2 + n/ε2 log 1/ε).

Proof. Algorithm 1 is linear if tasks are sorted in non-
decreasing order of their processing times, which can be
done in an initial step in time O(n log n). For a given
couple of tasks a and b, determining a near optimal
schedule can be done in O(min(n/ε, n + 1/ε2 log(1/ε))
using Lawler’s FPTAS for SubsetSum [13], or the one
of Kellerer et al [12]. We have 2n couples of tasks to
consider, since the largest task is either a or b in an
optimal dominant schedule. For the other cases, the
complexity is at most the complexity of the FPTAS
for SubsetSum. �

8 Conclusion and extensions

The concept of operator non availability periods is a
new concept in the theory of scheduling arising from a
practical industrial problem: the scheduling of chemi-
cal experiments taking into account the absence of the

18

chemists. We focused on the case of small Ona peri-
ods, which reflected in fact our industrial context. A
new polynomial algorithm was found for a single Ona
period that is related to a variant of the well-known
Subset-Sum problem. For small k−Onas and Onas
problems, we have precisely determined their complex-
ity and inapproximability status. The performance of
list scheduling algorithms has also been analyzed. The
remaining approximability open question is whether
there exists a FPTAS for the small 2-Onas problem.
It would also be interesting to develop a more efficient
PTAS for small k−Onas, for instance by solving more
efficiently constant size problems to optimality. In the
same idea, it could be investigated if good approxima-
tion ratio, smaller than 3/2 for instance, can be ob-
tained by a list schedule or any fast algorithm on the
periodic version.

Finally one can wonder if positive and negative ap-
proximability results for Ona extend to relaxed version
of the problem: for instance if tasks are only forbidden
to start, like in [1], or to complete during the periods.
For short we call Fs-schedule (for forbidden start) a
schedule where no task starts inside a period, and Fe-
schedule (for forbidden end) a schedule where no task
completes. An Ona-schedule is then both a Fs and a
Fe schedule. Consider the following language:

LY
k = { x an instance of k−Onas | there exists a

Y -schedule for x of makespan at most
∑

i pi}

where Y is either Ona, Fe or Fs environment. It
means that LY

k represents all the instances for which a
Y -schedule exists without idle time. Clearly as an Ona
-schedule is also a Fs-schedule and a Fe-schedule, we
have LOna

k ⊆ LFs
k ,LFe

k . But in a schedule with-
out idle time, any task must start immediately after
the completion of its predecessor. Hence we also have
the reverse inclusion, proving that the 3 languages
LOna

k , LFs
k and LFe

k are in fact identical. Since
proofs of Theorems 3 and 4 establish that LOna

2 is
NP-complete, both Fs and Fe scheduling problems
are NP-hard for more than 2 periods, even in the case
small and periodic.

If the complexity status is the same, inapproxima-
bility of the problems differ. Indeed this is not difficult
to see that any list scheduling algorithm has a perfor-
mance guarantee of 2 for Fs or Fe with small unavail-
ability periods. Recall that in contrast problem Onas
does not belong to APX if P 6= NP. When the num-
ber of periods is fixed, we have proved that k-Onas

do not belong to FPTAS for more than k ≥ 3 peri-
ods. Is it still true for Fe or Fs relaxations ? For Fe
scheduling, we can use the same gap reduction as in
Corollary 1 adding to an instance x a (k + 1)th period
at time C =

∑
i pi. The new instance g(x) has k + 1

periods, and:

x ∈ LFe
k ⇒ OPT (g(x)) = C

x /∈ LFe
k ⇒ OPT (g(x)) ≥ C + L

proving that k-Fe scheduling does not belong to FP-
TAS for k ≥ 3. For Fs scheduling, we need to restrict
to instances of LFs

k verifying L ≤ pi < 3/2L for all
tasks. Proofs of Theorems 3 and 4 again show that
this language remains NP-complete. In the gap re-
duction g we add to such an instance x a new task l
of duration 3/2L and again a (k + 1)th period at time
C =

∑
i pi. Then we have

x ∈ LFs
k ⇒ OPT (x′) = C + 3/2L

x /∈ LFs
k ⇒ OPT (x′) ≥ C + 2L

since if x /∈ LFs
k , the last task of the schedule can

not start before time C + L. Hence once again k-Fs
scheduling does not belong to FPTAS for k ≥ 3, even
for equal and periodic unavailability periods.

Finally note that, maybe surprisingly, algorithm 1
for 1−Ona remains optimal in both environments: we
can always shift tasks in an Fe or Fs schedule to con-
vert it into an Ona schedule of same makespan, except
for trivial cases.

To conclude we can cite some interesting extensions
of the model. The first natural one that arises from
the previous paragraph is to mix the 3 models, the
tasks being from one of them (forbidden start, forbid-
den end or both), i.e. some tasks may required the
additionnal resource only for set-up, or only for ter-
minaison, or for both of them. Mauguire, Billaut and
Bouquard [17] study such mix of tasks for machine un-
aivalability periods, where some tasks are resumable
and some others are not. They also mix different types
of periods: a second extension for Onas could consider
several additional resources with their own availability
constraints. Some resources may be required only for
start-up, while others only for terminaison. The case
of two additionnal ressources, one needed for start-up
and one needed for terminaison, seems particularly in-
teresting. Finally our model could be compared to a
server that handles zero duration set-ups and termi-
nations of the tasks. One could consider a classical

19

server model with non-zero set-up times, but with un-
availability constraints.

References

[1] J.-C. Billaut and F. Sourd. Single machine
scheduling with forbidden start times. 4OR -
Quarterly Journal of the Belgian, French and Ital-
ian Operations Research Societies, to appear. DOI
10.1007/s10288-007-0061-5.

[2] N. Brauner, G. Finke, V. Lehoux-Lebacque,
C. Rapine, C. Potts, and V. Strusevich. Operator
non-availability periods. 4OR - Quarterly Journal
of the Belgian, French and Italian Operations Re-
search Societies, to appear. DOI 10.1007/s10288-
008-0084-6.

[3] P. Brucker, C. Dhaenens-Flipo, S. Knust,
S.A.Kravchenko, and F. Werner. Complexity re-
sults for parallel machine problems with a single
server. Journal of Scheduling, 5:429–457, 2002.

[4] A. Caprara, H. Kellerer, and U. Pferschy. The
multiple subset sum problem. SIAM Journal on
Optimization, 11(2):308–319, 2000.

[5] A. Caprara and U. Pferschy. Worst-case analy-
sis of the subset sum algorithm for bin packing.
Operations Research Letters, 32:159–166, 2004.

[6] C. Chekuri and S. Khanna. A PTAS for the multi-
ple knapsack problem. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 213–222,
2000.

[7] M.R. Garey and D.S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, 1979.

[8] R.L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathemat-
ics, 17, 1969.

[9] N.G. Hall, C. Potts, and C. Sriskandarajah. Par-
allel machine scheduling with a common server.
Discrete Applied Mathematics, 102:223–243, 2000.

[10] K. Jansen. Parametrized approximation scheme
for the multiple knapsack problem. In ACM-SIAM
Symposium on Discrete Algorithms (SODA),
pages 665–674, 2009.

[11] Min Ji, Yong He, and T.C.E. Cheng. Single-
machine scheduling with periodic maintenance to
minimize makespan. Computers & Operation Re-
search, 34:1764–1770, 2007.

[12] H. Kellerer, R. Mansini, U. Pferschy, and M.G.
Speranza. An efficient fully polynomial approxi-
mation scheme for the subset-sum problem. Jour-
nal of Computer and System Sciences, 66(2):349–
370, 2003.

[13] E.L. Lawler. Fast approximation algorithms for
knapsack problems. Mathematics of Operations
Research, 4:339–356, 1979.

[14] V. Lebacque, N. Brauner, B. Celse, G. Finke,
and C. Rapine. Planification d’expériences dans
l’industrie chimique. In J.-F. Boujut, D. Llerena,
and D. Brissaud, editors, Les systèmes de pro-
duction : applications interdisciplinaires et muta-
tions, pages 21–32. Hermès-Lavoisier, 2007. ISBN
978-2-7462-1819-2.

[15] C.-Y. Lee. Machine scheduling with availability
constraints. In J.Y.-T. Leung, editor, Handbook
of Scheduling: Algorithms, Models and Perfor-
mance Analysis, pages 22–1 – 22–13. Chapman &
Hall/CRC, London, 2004.

[16] J.Y.-T. Leung, M. Dror, and G.H. Young. A note
on an open-end bin packing problem. Journal of
Scheduling, 4:201–207, 2001.

[17] P. Mauguire, J.-C. Billaut, and J.-L. Bouquard.
New single machine and job-shop scheduling prob-
lems with availability constraints. Journal of
Scheduling, 8:211–231, 2005.

20

