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tWe investigate Gevrey order and 1-summability properties of the formal solutionof a general heat equation in two variables. In parti
ular, we give ne
essary andsuÆ
ient 
onditions for the 1-summability of the solution in a given dire
tion. Whenrestri
ted to the 
ase of 
onstants 
oeÆ
ients, these 
onditions 
oin
ide with thosegiven by D.A. Lutz, M. Miyake, R. S
h�afke in a 1999 arti
le ([LMS99℄), and we thusprovide a new proof of their result.Keywords: Heat equation, Gevrey series, 1-summability.AMS 
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1



1 THE PROBLEM 24 Initial 
onditions 154.1 Case a(z) = a 2 C � . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 Case a(z) = bz; b 2 C � . . . . . . . . . . . . . . . . . . . . . . . . . . 171 The problemA formal solution of the 
lassi
al heat initial 
onditions problem(1) ( �t u� �2z u = 0u(0; z) = '(z)in one dimensional spatial variable z reads in the formbu(t; z) = exp �t �2z t�'(z)= Xj�0 tjj!'(2j)(z)provided that all derivatives '(2j) exist1. When ' 2 O(Dp) is holomorphi
 in a dis
D� with 
enter 0 and radius � and hen
e satis�es, for any r < �, estimates of theform ��'(2j)(z)�� � C K2j �(1 + 2j)!;for all j � 0 and positive 
onstants C and K, on Dr then, bu(t; z) 2 O(D�)[[t℄℄ is aseries of Gevrey type of order 1 in t for all z 2 D� (in short, a 1-Gevrey series). TheGevrey estimates are lo
ally uniform with respe
t to z in D�. These 
onditions areoptimal as shown by the following example: Let 
onsider '(z) = 11� z =Xn�0 zn sothat '(2j)(0) = (2j)!. The 
orresponding solution bu(t; z) is of exa
t Gevrey order1 and, in parti
ular, is divergent. It turns out that it is a
tually 1-summable inall dire
tion but R+ in the sense of De�nition 3.1 below, that is, 1-summable in tuniformally with respe
t to z near 0.In 1999, D. Lutz, M. Miyake and R. S
h�afke ([LMS99℄) gave ne
essary andsuÆ
ient 
onditions on ' for bu to be 1-summable in a given dire
tion arg t = �.Various works have been done towards the summability of divergent solutions ofpartial di�erential equations with 
onstant 
oeÆ
ients ( [Bal99℄, [Miy99℄, [BM99℄,[Bal04℄,. . . ) or variable 
oeÆ
ients ([H99℄, [Ou02℄, [PZ97℄, [Mk08℄, [Mk09℄,. . . )1We denote bu, with a hat, to emphasize the possible divergen
e of the series bu.



1 THE PROBLEM 3in two variables. In [Mk05℄, S. Malek has investigated the 
ase of linear partialdi�erential equations with 
onstant 
oeÆ
ients in more variables.In this arti
le we are interested in the very general heat initial 
onditions problemwith inhomogeneous thermal 
ondu
tivity and internal heat generation(2) ( �t u� a(z) �2z u = q(t; z) a(z) 2 O(D�)u(0; z) = '(z) 2 O(D�):The heat equation des
ribes heat propagation under thermodynami
s and Fourierlaws. The 
oeÆ
ient a(z), named thermal di�usivity, is related to the thermal
ondu
tivity � by the formula a = �
� where 
 is the 
apa
ity and � the densityof the medium. We assume that a(z) and '(z) are analyti
 on a neighborhoodof z = 0. The internal heat input q may be smooth or not. An important 
aseis the 
ase with no internal heat generation 
orresponding to a homogeneous heatequation:(3) ( �t u� a(z) �2z u = 0 a(z) 2 O(D�)u(0; z) = '(z) 2 O(D�):In 
ase of an isotropi
 and homogeneous medium, �; 
; � and hen
e a are 
onstants.An adequate 
hoi
e of units allows then to assume a = 1 and the equation redu
esto the referen
e heat equation �tu� �2zu = 0.A
tually, for notational 
onvenien
e, we 
onsider the problem in the form(4) �1� a(z) ��1t �2z� bu = bf(t; z) ; a(z) 2 O(D�) and bf(t; z) 2 O(D�)[[t℄℄where ��1t bu stands for the anti-derivative R t0 bu(s; z)ds of bu with respe
t to t whi
hvanishes at t = 0.Problem (4) is equivalent to( �t bu� a(z) �2z bu = �t bf(t; z)bu(0; z) = bf(0; z):and hen
e to Problem (2) by 
hoosing q(t; z) = �t bf(t; z) and '(z) = bf(0; z).Moreover, Problem (4) redu
es to the homogeneous 
ase (3) if and only if theinhomogenuity bf does not depend on t.



2 GEVREY PROPERTIES 4From now, we denote D = 1� a(z) ��1t �2z and, given a series bu 2 O(D�)[[t℄℄, wedenote bu(t; z) =Xj�0 tjj!uj;�(z) =Xn�0 bu�;n(t)znn! = Xj;n�0 buj;n tjj! znn! �Sin
e �O(D�)[[t℄℄; �t; �z� is a di�erential algebra and a(z) 2 O(D�) the operatorD a
ts inside O(D�)[[t℄℄. More pre
isely, we 
an state:Proposition 1.1 The mapD : O(D�)[[t℄℄ �! O(D�)[[t℄℄is a linear isomorphism.Proof. The operator D is linear. A series bu(t; z) = Xj�0 tjj!buj;�(z) is a solution ofProblem (4) if and only if(5) buj;�(z) = bfj;�(z) + a(z) bu00j�1;�(z) for all j � 0 starting from bu�1;�(z) � 0:Consequently, to any bf(t; z) 2 O(D�[[t℄℄ there is a unique solution bu(t; z) 2 O(D�[[t℄℄,whi
h proves that D is bije
tive. 2In Se
tion 2 we show that the inhomogenuity bf(t; z) and the unique solutionbu(t; z) are together 1-Gevrey.In Se
tion 3 we prove ne
essary and suÆ
ient 
onditions for bu to be 1-summablein a given dire
tion arg t = �. The 
onditions are valid in the 
ase when eithera(0) 6= 0 or a0(0) 6= 0. When a(z) = O(z2) an easy 
ounter-example shows thateven the rationality of bf(t; z) is insuÆ
ient.In Se
tion 4 we dis
uss the a

essibility of our ne
essary and suÆ
ient 
onditions.Indeed, the 
onditions are given not only in terms of the data bf but also in termsof the �rst two terms bu�;0 and bu�;1 of the solution bu itself.In the parti
ular 
ase a = 1 our 
onditions 
oin
ide with those of [LMS99℄. We thusprovide a new proof of the result of [LMS99℄.2 Gevrey propertiesIn this arti
le, we 
onsider t as the variable and z as a parameter. The 
lassi
alnotion of a series of Gevrey type of order 1 is extended to z-families as follows.



2 GEVREY PROPERTIES 5De�nition 2.1 (1-Gevrey series) A series bu(t; z) =Xj�0 tjj!buj;�(z) 2 O(D�)[[t℄℄ isof Gevrey type of order 1 if there exist 0 < r � �; C > 0; K > 0 su
h that for allj � 0 and jzj � r we have jbuj;�(z)j � C Kj �(1 + 2j):In other words, bu(t; z) is 1-Gevrey in t, uniformally in z on a neighbourhood ofz = 0.We denote O(D�)[[t℄℄1 the subset of O(D�)[[t℄℄ made of the series whi
h are ofGevrey type of order 1.Proposition 2.2 �O(D�)[[t℄℄1; �t; �z� is a di�erential algebra stable under ��1t and��1z .Proof. The proof is similar to the one without parameter. Stability under �z isproved using the Cau
hy Integral Formula and is guaranted by the 
ondition \thereexist r � � : : : " in De�nition 2.1. 2It results from this Proposition that the operator D = 1�a(z)��1t �2z a
ts insidethe spa
e O(D�)[[t℄℄1.Be
ause the main result of this se
tion (Theorem 2.5) is set up using Nagumonorms on O(D�) we begin with a re
all of their de�nition and main properties andwe refer to [N42℄ or to [CRSS00℄ for more details.De�nition 2.3 (Nagumo norms)Let f 2 O(D�), p � 0; 0 < r � � and let dr(z) = jzj � r denote the eu
lidiandistan
e of z to the boundary of the dis
 Dr.The Nagumo norm kfkp;r of f is de�ned bykfkp;r = supjzj<r ��f(z)dr(z)p�� :Proposition 2.4 (Properties of Nagumo norms)(i) k:kp;r is a norm on O(D�);(ii) For all z 2 Dr; jf(z)j � kfkp;rd(z)�p;



2 GEVREY PROPERTIES 6(iii) kfk0;r = supz2Dr jf(z)j is the usual sup-norm on Dr;(iv) kfgkp+q;r � kfkp;rkgkq;r;(v) (most important) kf 0kp+1;r � e(p+ 1)kfkp;r.Note that the same index r o

urs on both sides of the inequality (v). One gets thusan estimate of the derivative f 0 in terms of f without having to shrink the domainDr.Theorem 2.5 The mapD : ( O(D�)[[t℄℄1 �! O(D�)[[t℄℄1bu(t; z) 7! bf(t; z) = Dbu(t; z)is a linear isomorphism.Proof. It results from Proposition 2.2 that D�O(D�)[[t℄℄1� � O(D�)[[t℄℄1 andfrom Proposition 1.1 that D is linear and inje
tive. We are left to prove that D isalso surje
tive.Let bf(t; z) =Xj�0 tjj! bfj;�(z) 2 O(D�)[[t℄℄1. The 
oeÆ
ients bfj;�(z) satisfy8>><>>: � bfj;�(z) 2 O(D�) for all j � 0:� There exist 0 < r � �; C > 0; K > 0 su
h that for all j � 0 and jzj � rj bfj;�(z)j � CKj�(1 + 2j)!and we look forward to similar 
onditions on the 
oeÆ
ients buj;�(z) of bu(t; z) =Xj�0 tjj! buj;�(z).From the re
urren
e relation (5) the relationbuj;�(z)�(1 + 2j) = bfj;�(z)�(1 + 2j) + a(z) bu00j�1;�(z)�(1 + 2j)starting from bu�1;�(z) � 0 holds for all j � 0. Applying the Nagumo norms ofindi
es (2j; r) and properties (iv) and (v) of Proposition 2.4 we getkbuj;�(z)k2j;r�(1 + 2j) � k bfj;�(z)k2j;r�(1 + 2j) + ka(z)k0;r kbu00j�1;�(z)k2j;r�(1 + 2j)� 00 + ka(z)k0;r e2 kbuj�1;�(z)k2j�2;r��1 + (2j � 2)�



3 1-SUMMABILITY 7Denote gj = k bfj;�(z)k2j;r�(1 + 2j) and � = ka(z)k0;r e2 and 
onsider the numeri
al sequen
e( v�1 = 0vj = gj + � vj�1 for all j � 0:By 
onstru
tion, kbuj;�(z)k2j;r�(1 + 2j) � vj for all j � 0.Let us bound vj as follows. By assumption, 0 � gj � CKj�(1 + 2j)�(1 + 2j) r2j = C(Kr2)jfor all j and the series g(X) = Pj�0 gjXj is 
onvergent. Due to the re
urren
erelation de�ning the vj's the series v(X) =Pj�0 vjXj satisfy (1��X)v(X) = g(X).It is then 
onvergent and there exist 
onstants C 0 > 0;K 0 > 0 su
h that vj � C 0K 0jfor all j. Hen
e, kbuj;�(z)k2j;r � C 0K 0j�(1 + 2j) for all j � 0:We dedu
e a similar estimate on the sup-norm by shrinking the domain Dr. Indeed,let 0 < r0 < r. For all j � 0 and z 2 Dr0 ,jbuj;�(z)j = ���buj;�(z)dr(z)2j 1dr(z)2j ���� 1(r � r0)2j ��buj;�(z)dr(z)2j ��Hen
e, supz2Dr0 jbuj;�(z)j � 1(r � r0)2j kbuj;�k2j;r� C 0 � K 0(r � r0)2�j�(1 + 2j) 23 1-summabilityStill 
onsidering t as the variable and z as a parameter, one extends the 
lassi
alnotions of summability to families parameterized by z in requiring similar 
onditions,the estimates being however uniform with respe
t to the parameter z. For a generalstudy of series with 
oeÆ
ients in a Bana
h spa
e we refer to [Bal00℄. Among themany equivalent de�nitions of 1-summability in a given dire
tion arg t = � at t = 0



3 1-SUMMABILITY 8we 
hoose here a generalization of Ramis de�nition whi
h states that a series bf is1-summable in the dire
tion � if there exists a holomorphi
 fun
tion f whi
h is 1-Gevrey asymptoti
 to bf on an open se
tor ��;>� bise
ted by � with opening largerthan � (
f. [R80℄ D�ef 3.1). There are various equivalent ways of expressing the1-Gevrey asymptoti
ity. We 
hoose to extend the one whi
h sets 
onditions on thesu

essive derivatives of f (see [Mal95℄ p. 171 or [R80℄ Thm 2.4, for instan
e).De�nition 3.1 (1-summability) A series bu(t; z) 2 O(D�)[[t℄℄ is 1-summable inthe dire
tion arg t = � if there exist a se
tor ��;>�, a radius 0 < r � � and afun
tion u(t; z) 
alled 1-sum of bu(t; z) in the dire
tion � su
h that1. u is de�ned and holomorphi
 on ��;>� �Dr;2. For any z 2 Dr the map t 7! u(t; z) has bu(t; z) = Xj�0 tjj! buj;�(z) as Taylorseries at 0 on ��;>�;3. For any proper2 subse
tor � �� ��;>� there exist 
onstants C > 0;K > 0su
h that for all ` � 0, all t 2 � and z 2 Dr���t̀ u(t; z)�� � CK`�(1 + 2`) :We denote O(D�)fftgg1;� the subset of O(D�)[[t℄℄ made of all 1-summable series inthe dire
tion arg t = �. A
tually, O(D�)fftgg1;� is in
luded in O(D�)[[t℄℄1.For any �xed z 2 Dr, the 1-summabilty of the series bu(t; z) is the 
lassi
al1-summability and Watson Lemma implies the uni
ity of its 1-sum, if any.Proposition 3.2 �O(D�)fftgg1;� ; �t; �z� is a di�erential C -algebra stable under��1t and ��1z .Proof. Let bu(t; z) and bv(t; z) be two 1-summable series in dire
tion �. In De�nition3.1 we 
an 
hoose the same 
onstants r; C;K both for bu and bv. The produ
t w(t; z) =2In this 
ontext a subse
tor � of a se
tor �0 is said a proper subse
tor and one denotes � �� �0 ifits 
losure in C is 
ontained in �0 [ f0g.



3 1-SUMMABILITY 9u(t; z)v(t; z) satis�es 
onditions 1 and 2 of De�nition 3.1. Moreover,���t̀w(t; z)�� = ��� X̀p=0�p̀� �pt u(t; z)�`�pt v(t; z)���� C2K` �(1 + 2`) ����� X̀p=0 �(1 + `)�(1 + 2`) �(1 + 2p)�(1 + p) ��1 + 2(`� p)���1 + (`� p)� ������ C2K` (`+ 1)�(1 + 2`)� C 0K 0` �(1 + 2`) for adequate C 0;K 0 > 0:This proves 
ondition 3 of De�nition 3.1 for w(t; z), that is, stability ofO(D�)fftgg1;�under multipli
ation.Stability under �t, ��1t or ��1z is straightforward. Stability under �z is obtainedusing the Integral Cau
hy Formula on a dis
 Dr0 with r0 < r. 2We may noti
e that the 1-sum u(t; z) of a 1-summable series bu(t; z) 2 O(D�)fftgg1;�may be analyti
 with respe
t to z on a dis
 Dr smaller than the 
ommon dis
 D�of analyti
ity of the 
oeÆ
ients buj;�(z) of bu(t; z) = Xj�0 tjj!buj;�(z). With respe
t tot, the 1-sum u(t; z) is analyti
 on a se
tor supposedly open and 
ontaining a 
losedse
tor ��;� bise
ted by � with opening �; there is no 
ontrol on the angular openingex
ept that it must be larger than � and no 
ontrol on the radius of this se
torex
ept that it must be positive. Thus, the 1-sum u(t; z) is well de�ned as a se
tionof the sheaf of analyti
 fun
tions in (t; z) on a germ of 
losed se
tor of opening �(i.e., a 
losed interval I�;� of length � on the 
ir
le S1 of dire
tions issuing from 0,
f. [MalR92℄ 1.1 or [L-R94℄ I.2) times f0g � C z . We denote OI�;��f0g the spa
e ofsu
h se
tions.Corollary 3.3 The operator of 1-summationS : ( O(D�)fftgg1;� �! OI�;��f0gbu(t; z) 7! u(t; z)is a homomorphism of di�erential C -algebras for the derivations �t and �z and it
ommutes with ��1t and ��1z .



3 1-SUMMABILITY 10Theorem 3.4Let a dire
tion arg t = � issuing from 0 and a series bf(t; z) 2 O(D�)[[t℄℄ be given.Re
all D = 1�a(z)��1t �2z and assume that either a(0) 6= 0 or a(0) = 0 and a0(0) 6= 0.Then, the unique solution bu(t; z) of Dbu = bf in O(D�)[[t℄℄ is 1-summable in thedire
tion � if and only if bu�;0(t); bu�;1(t) and bf(t; z) are 1-summable in the dire
tion�. Moreover, the 1-sum u(t; z), if any, satis�es equation (4) in whi
h bf(t; z) isrepla
ed by the 1-sum f(t; z) of bf(t; z) in dire
tion �.Proof. We �rst pla
e ourselves in the 
ase a(0) 6= 0.Denote a(z) =Xn�0 anzn.As a preliminary remark we noti
e that, by identi�
ation of equal powers of z inEquation(4) �1� a(z) ��1t �2z�Xn�0 bu�;n(t) znn! =Xn�0 bf�;n(t) znn! ;we get 8><>: bu�;0(t)� a0 ��1t bu�;2(t) = bf�;0(t)bu�;1(t)� a1 ��1t bu�;2(t)� a0 ��1t bu�;3(t) = bf�;1(t)and so on : : :so that ea
h bu�;n(t) is uniquely and linearly determined from bu�;0(t); bu�;1(t) andbf(t; z).� The 
ondition is ne
essary by Proposition 3.2. Indeed, if bu is 1-summable thenso are bu�;0(t) = bu(t; 0); bu�;1(t) = 1z �bu(t; z) � bu�;0(t)����z=0 and bf = Du.� Prove that the 
ondition is suÆ
ient. Assume that bu�;0(t); bu�;1(t) and bf(t; z)are 1-summable in dire
tion �.Set bu(t; z) = bu�;0(t) + z bu�;1(t) + ��2z bv(t; z) and bw = ��1t bv.With these notations Equation (4) be
omes(6) �1� 1a(z)�t��2z � bw(t; z) = bg(t; z) where bg = 1a(z) (bu�;0 + zbu�;1 � bf)and it suÆ
es to prove that bw is 1-summable in dire
tion � when bg is. To thisend, we pro
eed through a �xed point method as follows.



3 1-SUMMABILITY 11Setting bw(t; z) =Xp�0 bwp(t; z) Equation (6) readsbw0 � 1a(z)�t��2z bw0 = bg+ bw1 � 1a(z)�t��2z bw1+ � � �+ bwp � 1a(z)�t��2z bwp+ � � �and we 
hoose the solution given by the system
(7) 8>>>>>>>><>>>>>>>>:

bw0 = bgbw1 = 1a(z)�t��2z bw0: : :bwp = 1a(z)�t��2z bwp�1: : :We 
an 
he
k that, for all p � 0, the formal series bwp(t; z) are of order O(z2p)in z and 
onsequently, the series bw(t; z) =Pp�0 bwp(t; z) itself makes sense asa formal series in t and z.Let w0(t; z) denote the 1-sum of bw0 = bg in dire
tion � and for all p > 0, letwp(t; z) be determined as the solution of System (7) in whi
h all bwp are re-pla
ed by wp. All wp are de�ned on a 
ommon domain ��;>� �D�0 .We are willing to prove that the series Xp�0wp(t; z) is 
onvergent with sumw(t; z), the 1-sum of bw(t; z) in dire
tion �.The 1-summability of bw0 implies that there exists 0 < r0 < �0 and, for anysubse
tor � �� ��;>�, there exist 
onstants C 0 > 0, K 0 > 0 su
h that for all` � 0 and (t; z) 2 ��Dr0 ,���t̀w0(t; z)�� � C 0K 0` �(1 + 2`):Denote B = maxz2Dr ��� 1a(z) ���



3 1-SUMMABILITY 12From w1 = 1a(z) �t��2z w0 we dedu
e that���t̀w1�� = ��� 1a(z) �`+1t ��2z w0���� B maxz2Dr ���`+1t w0�� jzj22!� C 0K 0`+1 ��1 + 2(`+ 1)�Bjzj22!and, by re
ursion, that(8) ���t̀wp(t; z)�� � C 0K 0`+p ��1 + 2(`+ p)�(Bjzj2)p(2p)! for all p � 0:This impliesXp�0 ���t̀wp(t; z)�� � C 0K 0` �(1 + 2`)Xp�0�2`+ 2p2p ��K 0B jzj2�p� C 0 (4K 0)` �(1 + 2`)Xp�0 �4K 0Bjzj2�psin
e �2`+ 2p2p � � 2`+2pXk=0 �2`+ 2pk � = 22`+2p:Denote L = 4K 0Br2 and 
hoose r so small that L < 1.Denote C = C 0Pp�0 Lp <1 and K = 4K 0.Then,(9) Xp�0 ���t̀wp(t; z)�� � CK`�(1 + 2`) on ��Dr:In parti
ular, for ` = 0, the seriesPwp(t; z) is normally 
onvergent on ��Dr.Consequently, its sum w(t; z) exists and is analyti
 on � � Dr. This provespoint 1 of De�nition 3.1 if we 
hoose as se
tor � � ��;>� a se
tor bise
ted by� with opening larger than � .For all ` � 1, the series P �t̀wp(t; z) is also normally 
onvergent on � � Drso that the series Pwp(t; z) 
an be derivated termwise in�nitely many timeswith respe
t to t and the estimates (9) imply(10) ���t̀w(t; z)�� � CK`�(1 + 2`) on ��Drwhi
h proves the 
ondition 3 of De�nition 3.1.



3 1-SUMMABILITY 13Moreover, summing the Equations (7) for wp and the 1-sum g(t; z) insteadof bwp and bg(t; z) we get w(t; z) = g(t; z) + 1a(z)Xp�0 �t��2z wp(t; z) = g(t; z) +1a(z)�t��2z w(t; z). Hen
e, w(t; z) satis�es Equation (6) with right hand sideg(t; z) in pla
e of bg(t; z).Finally, the fa
t that all derivatives of w(t; z) with respe
t to t are bounded on� implies the existen
e of limt!0t2� �t̀w(t; z) for all z 2 Dr and hen
e the existen
e ofthe Taylor series of w at 0 on � for all z 2 Dr. Sin
e w(t; z) satis�es Equation(6), so does its Taylor series. Sin
e Equation (6) has a unique formal solutionbw(t; z), we 
an 
on
lude that the Taylor expansion of w(t; z) is bw(t; z), whi
hproves part 2 of De�nition 3.1.This a
hieves the proof of the 1-summability of bu(t; z) in dire
tion � in the
ase when a(0) 6= 0.� The fa
t that the 1-sum u(t; z) of bu(t; z) in dire
tion � satis�es Equation (4)with right hand side the 1-sum f(t; z) of bf(t; z) instead of bf(t; z) is equivalentto the fa
t that w(t; z) satis�es Equation (6) with right hand side g(t; z) insteadof bg(t; z), whi
h we proved above. It is also a 
onsequen
e of Corollary 3.3.In the 
ase when a(0) = 0 and a0(0) 6= 0 the ne
essary 
ondition again re-sults from Proposition 3.2. The fa
t that u(t; z) satis�es Equation (4) results fromCorollary 3.3. We sket
h the proof of the suÆ
ient 
ondition.Denote a(z) = zA(z) with A(0) 6= 0.In this 
ase, identi�
ation of equal powers of z shows that bu�;0 = bf�;0 and that allbu�;n for n � 1 are uniquely determined by bu�;1 and bf .We set again bu(t; z) = bu�;0 + zbu�;1 + �t��2z bw so that bw satis�es the equation(11) �1� 1zA(z)�t��2z � bw(t; z) = bg(t; z) where bg = 1A(z)�bu�;1 + bu�;0 � bfz �:Still, bg is a formal series, assumed to be 1-summable in dire
tion � and we look for bwin the form bw =Xp�0 bwp as previously. The operator 1z ��2z implies that bwp = O(zp)instead of O(z2p). If we denote B = maxz2Dr 1jA(z)j , then, for all p and `,���t̀wp�� � C 0K 0`+p��1 + 2(`+ p)�(Bjzj)pp!



3 1-SUMMABILITY 14and it follows that, for a 
onvenient 
hoi
e of r > 0,���t̀w(t; z)�� � CK` �(1 + 2`)with C = C 0Xp�0(4KBr)p <1 and K = 4K 0. 2The 
ase of a thermal di�usivity a(z) = O(z2) gives rise to the 
onditionsbu�;0(t) = bf�;0(t) and bu�;1(t) = bf�;1(t) and we 
ould hope of similar ne
essary andsuÆ
ient 
onditions whi
h apply to the inhomogenuity bf(t; z) only. This is not the
ase sin
e the previous proof 
annot be extended to that situation. Indeed, theappearan
e of ��2zz2 instead of ��2z or ��2zz implies that no power of z remains in theestimates (8) and we 
annot guaranty the 
onvergen
e of the estimate for �t̀w.The 
ounter-example below shows that even with bf(t; z) independent of t andrational the 1-summability of bu(t; z) may fail.Counter-example 3.5Consider the heat initial 
onditions problem (4) with bf(t; z) = Xn�0 zn = 11� zand a(z) � 1. The series bf(t; z) is independent of t and is 
onvergent in z near 0with rational sum. The problem is equivalent to the heat initial 
onditions problemwithout internal heat generation(12) 8><>: �tbu� z2 �2zbu = 0bu(0; z) =Xn�0 znIn this 
ase, bu�;0(t) = bf�;0(t) � 1, bu�;1(t) = bf�;1(t) � 1 and for all n � 2, bu�;n(t)satis�es bu0�;n(t)� n(n� 1)bu�;n(t) = 0 and bu�;n(0) = n!:Consequently, bu�;n(t) = n! en(n�1)t.Suppose bu(t; z) is 1-summable in a dire
tion � with sum u(t; z).Then, sin
e bu�;n(t) = �nz bu(t; z)���z=0 all bu�;n(t) are 1-summable in dire
tion � withsum u�;n(t) = �nz u(t; z)���z=0. The Integral Cau
hy Formula applied to �nz u(t; z) atz = 0 provides estimates of the formju�;n(t)j = ����� n!2�i Zj�j=R<r u(t; �)�n+1 d������ � n!2� C2�RRn+1 = C kn n!



4 INITIAL CONDITIONS 15on a se
tor bise
ted by � with opening larger than �. In our 
ase, bu�;n(t) = u�;n(t) =n! en(n�1)t. The fun
tions en(n�1)t being unbounded on any se
tor larger than a halfplane su
h estimates are impossible. Hen
e, bu(t; z) is 1-summable in no dire
tion. 24 Initial 
onditionsWe end this arti
le with a dis
ussion of how to apply the above result and we developthe 
ases when a(z) = a 2 C � or a(z) = bz; b 2 C � .The formal series bf(t; z) is a data of the problem and although its 1-summabilitymay be not obvious we assume that it is known. bf(t; z) is not itself the initial
onditions but is 
losely 
onne
ted to (see Se
tion 1).The series bu�;0(t) and bu�;1(t) 
an, at least theoreti
ally, be 
omputed in termsof bf(t; z) from the formulabu(t; z) =Xk�0 �a��1t �2z�k bf(t; z)and an expli
it 
omputation 
an be a
hieved for simple a(z) su
h as a(z) = a
onstant, a(z) = bz (b 2 C �) or a(z) = a+ bz. However, an expli
it 
omputation ofbu�;0(t) and bu�;1(t) looks like hopeless for a general a(z).4.1 Case a(z) = a 2 C �When a is a 
onstant then the operators a; �t and �z 
ommute and �a��1t �2z�k =ak��kt �2kz . From the 
al
ulation of bu(t; z) =Pk�0 �a��1t �2z�k bf(t; z) we obtain(13) 8>>>>><>>>>>: bu�;0(t) = Xk�0 tkk! Xj+n=k an bfj;2nbu�;1(t) = Xk�0 tkk! Xj+n=k an bfj;2n+1Our aim is to 
hara
terize the 1-summability of these two series as a property ofthe inhomogenuity bf .� We start with the 
ase where bf(t; z) = Xn�0 bf0;n znn! is independent of t whi
h
orresponds to Problem (3). For simpli
ity, we denote bf(z).



4 INITIAL CONDITIONS 16The formul� (13) be
ome(14) 8>>>>><>>>>>: bu�;0(t) = Xk�0 (at)kk! bf0;2kbu�;1(t) = Xk�0 (at)kk! bf0;2k+1De�ne the 2-Lapla
e transform of bf(z) by L[2℄z bf(�) = Xn�0 bf0;n �nn! n![n=2℄! where[n=2℄ stands for the integer part of n=2. Then,L[2℄z bf�(at)1=2� = bu�;0(t) + (at)1=2bu�;1(t):and we may stateProposition 4.1 Suppose a(z) = a 2 C � and bf(t; z) = bf(z).Then, the following three assertions are equivalent.(i) bu�;0(t) and bu�;1(t) are 1-summable in dire
tion �;(ii) L[2℄z bf(z) is 2-summable in the dire
tions 12 (� + arg a) mod �;(iii) bf(z) is analyti
 near 0 and it 
an be analyti
ally 
ontinued to se
tors neigh-bouring the dire
tions 12 (� + arg a) mod � with exponential growth of order 2at in�nity.Assertion (iii) with a = 1 (hen
e arg a = 0) is how the 
onditions are formulatedin [LMS99℄ and proved via dire
t Borel-Lapla
e estimations. Our method providesthus a new proof of this result.� Consider now the 
ase of a general bf(t; z).The interpretation of the 1-summability of bu�;0(t) and bu�;1(t) be
omes more involvedand uses Borel and Lapla
e transforms of bf(t; z) in both variables.We denote Lz or Bz and so on. . . the 1-Lapla
e or 1-Borel transform w.r.t. z and soon. . . . These operators are de�ned here by Lzzn = �n[n℄! and Bz = L�1z where [n℄denotes the integer part of n.Consider LtLz bf��; (a�)1=2� = Xk�0 �k Xj+n=k bfj;2nan + (a�)1=2Xk�0 �k Xj+n=k bfj;2n+1anand



4 INITIAL CONDITIONS 17B�LtLz bf��; (a�)1=2�(t) = Xk�0 tkk! Xj+n=k bfj;2nan + (at)1=2Xk�0 tkk! Xj+n=k bfj;2n+1an (theterms in �k are divided by k! and the terms in �k+1=2 by [k + 1=2℄! = k!).Denote bF (t) = B�LtLz bf��; (a�)1=2�(t2). Then,bF (t1=2) = bu�;0(t) + (at)1=2bu�1(t)and we may state:Proposition 4.2 Suppose a(z) = a 2 C � and bf(t; z) general.Then, the series bu�;0(t) and bu�;1(t) are 1-summable in dire
tion � if and only if theseries bF asso
iated with bf as above is 2-summable in the dire
tions �=2 mod �.The 
ondition in Proposition 4.1 may be not easy to 
he
k but seems reasonnable.In Proposition 4.2, the link between bf and bF is more 
ompli
ated and the questionremains of how to 
he
k the 2-summability of bF in pra
ti
e.4.2 Case a(z) = bz; b 2 C �In this 
ase, �a(z)��1t �2z�k = bk��kt (z�2z )k and(z�2z )k � znn! = 8><>: zn�k(n� k)! (n� 1)!(n� k � 1)! if 0 � k < n0 if n � k:From the 
al
ulation of bu(t; z) =Pk�0 �bz��1t �2z�k bf(t; z) we obtain(15) 8>>>>><>>>>>: bu�;0(t) = Xj�0 tjj! bfj;0 = bf�;0(t)bu�;1(t) = Xj;k�0 bfj;k+1 bk tj+k(j + k)!k!Sin
e bu�;0(t) = bf�;0(t) is 1-summable when so is bf(t; z), our aim is now to 
hara
-terize the 1-summability of the series bu�;1(t) as a property of bf .� Let us �rst again pla
e ourselves in the situation of Problem (3) where the inho-mogenuity bf(t; z) =Pn�0 bf0;n znn! is independent of t.



REFERENCES 18Formul� (15) be
ome(16) 8>><>>: bu�;0(t) = = bf0;0;bu�;1(t) = Xk�0 bf0;k+1 bk tk:Thus, Lz bf(bt) = bf0;0 + btbu�;1(t) and we may stateProposition 4.3 Suppose a(z) = bz; b 2 C � and bf(t; z) = bf(z).Then, bu�;0(t) is a 
onstant and the following three assertions are equivalent.(i) bu�;1(t) is 1-summable in dire
tion �;(ii) Lz bf(z) is 1-summable in the dire
tion � + arg b;(iii) bf(z) is analyti
 near 0 and it 
an be analyti
ally 
ontinued to a se
tor neigh-bouring the dire
tion � + arg b with exponential growth of order 1 at in�nity.� Consider the 
ase of a general bf(t; z).The Lapla
e transform of bf w.r.t. z reads Lz bf(t; z) = bf�;0(t)+ zPj;n�0 tjj! bfj;n+1zn.Consider the series bg(t; z) = LtLz�1z �Lz bf(t; z) � bf�;0(t)��, We 
an 
he
k that theBorel transform of the series bg(t; bt) is equal to bu�;1(t) and we may state:Proposition 4.4 Suppose a(z) = bz; b 2 C � and bf(t; z) general.Then, the series bu�;1(t) is 1-summable in dire
tion � if and only if the Borel trans-form of bg(t; bt) is 1-summable in dire
tion �.The 
omment following Propositions 4.1 and 4.2 keeps valid.Referen
es[Bal99℄ W. Balser, Divergent solutions of the heat equation: on an arti
le of Lutz,Miyake and S
h�afke, Pa
i�
 J. of Math, 188 (1999), 53-63.[Bal00℄ W. Balser, Formal power series and linear systems of meromorphi
 ordi-nary di�erential equations, Springer-Verlag, New York, 2000[Bal04℄ W. Balser, Multisummability of formal power series solutions of partialdi�erential equations with 
onstant 
oeÆ
ients, J. Di�erential Equations,201 (2004), 63-74.



REFERENCES 19[BM99℄ W. Balser, Summability of formal solutions of 
ertain partial di�erentialequations, A
ta S
i. Math.(Szeged), 65 no 3-4 (1999), 543-551.[CRSS00℄ M. Canalis-Durand, J.-P. Ramis, R. S
h�afke, Y. Sibuya, Gevrey solutionsof singularly perturbed di�erential and di�eren
e equations, J. reine undangew. Math., 518 (2000), 95-129.[H99℄ M. Hibino, Divergen
e property of formal solutions for singular �rst orderlinear partial di�erential equations, Publ.Res.Inst. Math.S
i., 35 (1999),893-919.[L-R94℄ M. Loday-Ri
haud, Stokes phenomenon, multisummability and di�eren-tial Galois groups, Ann. Inst. Fourier, Grenoble 44, 3 (1994), 849-906.[LMS99℄ D.A. Lutz, M. Miyake, R. S
h�afke, On the Borel summability of divergentsolutions of the heat equation, Nagoya Math. J., 154 (1999), 1-29.[Mal95℄ B. Malgrange, Sommation des s�eries divergentes, Expo. Math., 13 (1995),163-222.[MalR92℄ B. Malgrange, J.-P. Ramis Fon
tions multisommables, Ann. Inst. Fourier,Grenoble 42, 1-2 (1992), 353-368.[Mk05℄ S. Malek, On the summability of formal solutions of linear partial di�er-ential equations, J. Dyn. Control Syst., 11 (2005), no 3, 389-403.[Mk08℄ S. Malek, On the Stokes phenomenon for holomorphi
 solutions ofintegro-di�erential equations with irregular singularity, J. Dyn. ControlSyst., 14 (2008), no 3, 371-408.[Mk09℄ S. Malek, On Gevrey fun
tions solutions of partial di�erential equa-tions with Fu
hsian and irregular singularities, J. Dyn. Control Syst.,15 (2009), no 2, To appear.[Miy99℄ M. Miyake, Borel summability of divergent solutions of the Cau
hy prob-lem to non-Kowaleskian equations, Partial di�erential equations and theirappli
ations (Wuhan,1999), World S
i. Publ., River Edge, NJ, (1999),225-239.[N42℄ M.Nagumo, �Uber das Anfangswertproblem partieller Di�erentialglei
hun-gen, Japan J. Math, 18 (1942), 41-47.



REFERENCES 20[Ou02℄ S. �Ou
hi, Multisummability of formal solutions of some linear partialdi�erential equations, J. Di�erential Equations, 185 (2002), no 2, 513-549.[PZ97℄ M. E. Pli�s, B. Ziemian, Borel resummation of formal solutions to nonlin-ear Lapla
e equations in 2 variables, Ann. Polon. Math., 67 (1997), no 1,31-41.[R80℄ J.-P. Ramis, Les s�eries k-sommables et leurs appli
ations, Mi
rolo
alCalulus and Relativisti
 Quantum Theory, D. Iagolnitzer, �ed., Le
tureNotes in Physi
s 126, Springer-Verlag, New York (1980), 178-199.


