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Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations

Nikolai Yu Bakaev, Michel Crouzeix, Vidar

Introduction

Consider the initial-value problem u t -∆u = 0 in Ω and u = 0 on ∂Ω, for t > 0, with u(•, 0) = v in Ω, (

where Ω is a domain in R 2 , and denote by E(t) the solution operator related to this problem and defined by u(t) = E(t)v. Then it is a special case of a result of Stewart [START_REF] Stewart | Generation of analytic semigroups by strongly elliptic operators[END_REF] that if ∂Ω is smooth, then E(t) is an analytic semigroup on C 0 ( Ω) = {v ∈ C( Ω) : v = 0 on ∂Ω} generated by ∆. This follows from the resolvent estimate

(λI + ∆) -1 v C ≤ C 1+|λ| v C , for v ∈ C 0 ( Ω) and λ / ∈ Σ δ = {λ : | arg λ| ≤ δ}, ( 0.2) 
where v C = sup x∈Ω |v(x)| and where δ ∈ (0, 1 2 π) is arbitrary. In addition to the stability estimate E(t)v C ≤ v C , which follows by the maximum-principle, this entails the smoothing estimate

E (t)v C ≤ C t v C , for v ∈ C 0 ( Ω).
Such a result is valid also under lesser regularity requirements on ∂Ω, cf. Ouhabaz [START_REF] Ouhabaz | Gaussian estimates and holomorphy of semigroups[END_REF].

In this paper, we are interested in maximum-norm estimates for spatially semidiscrete approximations of parabolic problems such as (0.1) based on continuous, piecewise polynomial finite elements of degree r-1 ≥ 1. Let T h = {τ } denote a family of closed face-to-face triangles in Ω with mutually disjoint interiors, with diameter h τ , and set h = max τ ∈T h diam (τ ). Let Ω h be the interior of the set ∪{τ : τ ∈ T h } and assume that Ω h ⊆ Ω. If Ω is a polygonal domain it is natural to choose T h so that Ω h = Ω.

We consider, in fact, a whole family of such triangulations {T h } and assume that this is a regular family of triangulations in the sense that h τ /d τ ≤ C for all τ ∈ T h , where d τ is the radius of the largest disc contained in τ . We associate with T h the finite dimensional spaces

S h = {χ ∈ C( Ω) : χ| τ ∈ P r-1 for τ ∈ T h , χ = 0 on ∂Ω ∪ (Ω \ Ω h )},
where P k denotes the set of polynomials of degree k.

The semidiscrete finite element problem associated with (0.1) is then to find u h (t) ∈ S h for t > 0 such that, with v h ∈ S h given, (u h,t , χ) + (∇u h , ∇χ) = 0 for χ ∈ S h , t > 0, (0.3)

u h (•, 0) = v h in Ω, where (v, w) = Ω v(x) w(x) dx.
With -∆ h : S h → S h defined by

-(∆ h ψ, χ) = (∇ψ, ∇χ), ∀ ψ, χ ∈ S h ,
this problem may also be written u h,t -∆ h u h = 0, for t > 0, with u h (0) = v h .

The solution operator of this problem, defined by u h (t) = E h (t)v h , is the semigroup E h (t) = e ∆ h t in S h generated by ∆ h . The issue is then to show that this semigroup is analytic in S h , equipped with the maximumnorm, and this may be expressed either as a resolvent estimate for -∆ h or as the stability and a smoothing property of E h (t). In Schatz et al. [START_REF] Schatz | Maximum norm stability and error estimates in parabolic finite element equations[END_REF] it was thus shown in the case of a convex domain Ω with smooth boundary, and for quasiuniform piecewise linear finite elements (r = 2) that, with h = max(1, log(1/h)),

E h (t)v h C + t E h (t)v h C ≤ C h v h C , for v h ∈ S h . (0.4)
Using semigroup theory this shows the resolvent estimate (cf. [START_REF] Thomée | Galerkin Finite Element Methods for Parabolic Problems[END_REF], Lem. 8.7)

(λI + ∆ h ) -1 v h C ≤ C 2 h 1+|λ| v h C , for λ / ∈ Σ δ h , where δ h = 1 2 π -c -2 h . (0.5)
In Schatz et al. [START_REF] Schatz | Stability, analyticity, and almost best approximation in maximum-norm for parabolic finite element equations[END_REF] the logarithmic factor in (0.4) was removed, which implies that the resolvent estimate (0.5) holds without a logarithmic factor as well, and for λ ∈ Σ δ , for some δ ∈ (0, 1 2 π) independent of h. In Bakaev et al. [START_REF] Yu | Maximum-norm estimates for resolvents of elliptic finite element operators[END_REF] a direct proof was given that this resolvent estimate holds for any angle δ ∈ (0, 1 2 π). The result in [START_REF] Yu | Maximum-norm estimates for resolvents of elliptic finite element operators[END_REF] holds for Ω in R d with d ≥ 2 arbitrary, with ∂Ω smooth. In Chatzipantelidis et al. [START_REF] Chatzipantelidis | Parabolic finite element equations in nonconvex polygonal domains[END_REF] such a resolvent estimate, with a logarithmic factor, was shown when Ω is a plane polygonal domain, which may be nonconvex. For some earlier work cf., e.g., [START_REF] Yu | Maximum norm resolvent estimates for elliptic finite element operators[END_REF][START_REF] Yu | Long-time behavior of backward difference type methods for parabolic equations with memory in Banach space[END_REF][START_REF] Crouzeix | Resolvent estimates for elliptic finite element operators in one dimension[END_REF]. In all these results quoted the family of triangulations is required to be quasiuniform, which is a somewhat undesirable restriction. Our purpose in this paper is therefore to weaken this condition. The technique of proof will depend heavily on Crouzeix and Thomée [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF], where the stability of the L 2 -projection onto S h was studied under milder assumptions on the triangulations than quasiuniformity.

An earlier attempt to treat this problem was made in Crouzeix and Thomée [START_REF] Crouzeix | Resolvent estimates in lp for discrete Laplacians on irregular meshes and maximum-norm stability of parabolic finite difference schemes[END_REF] where a resolvent estimate of the desired type, with a logarithmic factor, was shown for a modified discrete Laplacian, defined by

-(∆ h ψ, χ) h = (∇ψ, ∇χ), ∀ ψ, χ ∈ S h ,
where (•, •) h denotes a simple quadrature approximation of the L 2 -inner product, and for triangulations of Delaunay type, not required to be quasiuniform.

We now introduce some notation. Following [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF], given τ 0 ∈ T h , we let Q j (τ 0 ) denote the set of triangles which are "j triangles away from τ 0 ", defined by setting Q 0 (τ 0 ) = τ 0 and then, recursively, for j ≥ 1, Q j (τ 0 ) to be the union of the closed triangles τ which are not in i<j Q i (τ 0 ), but which have at least one vertex in Q j-1 (τ 0 ). We further set l(τ 0 , τ) = j for τ ∈ Q j (τ 0 ) and denote by n j (τ 0 ) the number of triangles in

Q j (τ 0 ).
In what follows we shall use the following auxiliary result from [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF] showing the exponential decay property of the L 2 -projection P h which was used to show the maximum-norm stability of this operator: Lemma 0.1. There exist C > 0 and γ = γ r ∈ (0, 1) such that, for all τ, τ 0 ∈ T h and v ∈ L 2 , with supp v ∈ τ 0 ,

P h v L2(τ ) ≤ Cγ l(τ,τ0) v L2 .
In [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF] it was shown that one can choose, e.g., γ 2 = 0.318, γ 3 = 0.376, γ 4 = 0.353.

We now make the assumption that the family {T h } of triangulations satisfies, with some α ≥ 1 and β ≥ 1, τ0) , for all τ, τ 0 ∈ T h , (0.6) and n j (τ ) ≤ Cβ j , j ≥ 1, for all τ ∈ T h . (0.7) For quasiuniform triangulations this holds with α = 1 and β any number > 1, and if (0.6) holds with α > 1, we may choose β = α 4 in (0.7).

h τ /h τ0 ≤ Cα l(τ,
Under these assumptions we show that if the above conditions on {T h } hold, with (0.6) and (0.7), and if

α 2 βγ < 1, (0.8) 
with γ as in Lemma 0.1, then, for any fixed δ ∈ (0, 1 2 π), we have

(λI + ∆ h ) -1 χ C ≤ C 1/2 h 1 + |λ| , ∀ χ ∈ S h , λ / ∈ Σ δ . (0.9)
Here and below we write h = max(1, log(1/h min )), where h min = min τ ∈T h h τ . For example, for r = 2, with β = α 4 , the condition (0.8) requires α < γ -1/6 2 = (0.318) -1/6 ≈ 1.21, which permits a substantial degree of nonquasiuniformity.

We note that the L 2 -projection P h : L 2 → S h is stable in maximum-norm if αβγ < 1, thus in particular when condition (0.8) holds. This was shown in [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF] in the case of a polygonal domain Ω, with Ω h = Ω, but the proof is valid under our present assumptions.

It follows from (0.9) by standard semigroup theory that, under our present assumptions on T h , the solution operator E h (t) of (0.3) satisfies the stability and smoothing estimate (0.4), with the factor h replaced by

1/2 h .
The resolvent estimate (0.9) will be shown in Section 3 below, in which the Laplacian is replaced by a more general second order elliptic operator. We begin in the next Section 2 by considering a spatially one-dimensional elliptic operator. In this case we shall show the corresponding resolvent estimate without the logarithmic factor.

The one-dimensional case

In this section we consider the one-dimensional elliptic operator

Au = -(au ) + bu + cu, in Ω = (0, 1),
with a, b, c bounded real-valued functions, with a(x) ≥ a 0 > 0 on Ω. We introduce the sesquilinear form

A(u, w) = 1 0 (au w + bu w + cu w) dx. (1.1)
It is then an easy matter to show that there exist constants

c 0 > 0, c 1 , c 2 , c 3 ∈ R such that c 0 w 2 -c 1 w 2 ≤ Re A(w, w) ≤ c 2 w 2 and |Im A(w, w)| ≤ c 3 w w , ∀ w ∈ H 1 0 . (1.2)
Here . denotes the usual L 2 -norm on Ω. With the sesquilinear form (1.1) we associate its numerical range

W (A) ⊂ C defined by W (A) = {A(w, w); w ∈ H 1 0 , w = 1}. (1.3) 
From the previous assumptions we may write A(w, w) = x + iy for w = 1, where

x ≥ c 0 w 2 -c 1 and |y| ≤ c 3 w . Therefore W (A) ⊂ P = {z = x+iy ∈ C; x ≥ c 0 c -2 3 y 2 -c 1 }, (1.4) 
e.g., the numerical range of A is included in the horizontal parabolic domain P.

We consider now a closed subset Σ ⊂ C of the complex plane such that d(λ, P) ≥ c(1+|λ|), for all λ ∈ Σ, where c > 0.

(1.5)

For instance, we can choose for Σ the complement of any open sector containing P. When A is selfadjoint positive definite, P is a subset of the positive real axis, and Σ may be chosen as the complement of any sector Σ δ as defined in (0.2).

Let 0 = x 0 < x 1 < • • • < x N +1 = 1 be a partition of Ω into subintervals I j = (x j , x j+1
) and let h j = x j+1 -x j . We assume

h i /h j ≤ Cα |i-j| , with α ≥ 1. (1.6) Let S h = {χ ∈ C 0 (Ω) : χ| Ij ∈ P r-1 , j = 0, . . . , N}
, where P k denotes the set of polynomials of degree ≤ k, and define

A h : S h → S h by (A h ψ, χ) = A(ψ, χ), ∀ ψ, χ ∈ S h .
The following is then the main result in this section.

Theorem 1. Under the above assumptions, with 1 ≤ α < r, we have

(λI -A h ) -1 v h C ≤ C 1+|λ| v h C , ∀ λ ∈ Σ, v h ∈ S h .
Proof. We introduce, for x ∈ Ω, the adjoint discrete Green's function

G x h (y, λ) = (( λI -A * h ) -1 δ x h )(y), for λ ∈ Σ, where δ x h ∈ S h is the discrete delta-function defined by (χ, δ x h ) = χ(x), ∀ χ ∈ S h .
It is easy to see that ((λI

-A h ) -1 χ)(x) = (χ, G x h (., λ)), ∀ χ ∈ S h
, and in order to prove Theorem 1 it suffices to show that, with C independent of x and λ,

G x h (., λ) L1 ≤ C 1+|λ| , for λ ∈ Σ. (1.7)
The following will be a basic tool.

Lemma 1.1.

There is a constant

C = C Σ such that, for v ∈ H 1 0 and λ ∈ Σ, if λ v 2 -A(v, v) = F, then (1+|λ|) v 2 + v 2 ≤ C|F |.
Proof. We first note that, since A(v, v)/ v 2 ∈ W (A), we have

d(λ, P) v 2 ≤ λ -A(v, v)/ v 2 v 2 = |F |. By (1.5) this shows (1+|λ|) v 2 ≤ C|F |.
The conclusion of the lemma follows since, by (1.2) and the triangle inequality,

c 0 v 2 ≤ Re A(v, v) + c 1 v 2 ≤ |F | + (c 1 + Re λ) v 2 ≤ C|F |.
We note that, with

G = G x h (•, λ) for x ∈ Ω, λ ∈ Σ, we have λ(χ, G) -A(χ, G) = (χ, δ x h ) = χ(x), ∀ χ ∈ S h . (1.8)
Choosing χ = G and using Lemma 1.1 we obtain

(1+|λ|) G 2 + G 2 ≤ C G C ≤ C G 1/2 G 1/2 . (1.9)
Using the inequality xy ≤ 1 4 x 4 + 3 4 y 4/3 to bound the right hand side, we find

(1+|λ|) G 2 + G 2 ≤ 1 2 G 2 + C G 2/3 , (1.10)
and hence

G ≤ C (1+|λ|) 3/4 and G ≤ C (1+|λ|) 1/4 • (1.11) Since G L1 ≤ G this implies (1.7) for λ bounded.
For treating large values of λ ∈ Σ we use the weight function

ρ(y) = ρ x h (y) = ((x -y) 2 + h 2 x ) 1/2 , where h x := h j if x ∈ [x j , x j+1 ).
We consider the expression

λ ρG 2 -A(ρG, ρG) = λ(ρ 2 G, G) -A(ρ 2 G, G) -R(G, G), where R(G, G) = A(ρG, ρG) -A(ρ 2 G, G),
or, after subtraction of (1.8) with

χ = P h (ρ 2 G), λ ρG 2 -A(ρG, ρG) = F, where F = -A(ρ 2 G -P h (ρ 2 G), G) -(ρ 2 G, δ) -R(G, G).
(1.12)

By Lemma 1.1 this implies (1+|λ|) ρG 2 + (ρG) 2 ≤ C|F |. (1.13)
The proof of the bound needed for the right hand side will be based on several lemmas. The first one is a one-dimensional analogue of Lemma 0.1.

Lemma 1.2.

There exists C > 0 such that, for all v ∈ L 2 with supp(v) ∈ I l ,

P h v L2(Ij ) ≤ Cγ |j-l| v , for all j, l, where γ = γ r = 1/r. (1.14)
Proof. We recall some material from [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF]. First we introduce the spaces S 2 h = {χ ∈ S h ; χ(x j ) = 0, j = 1, . . . , N} and S 1 h , the orthogonal complement of S 2 h in S h with respect to the inner product in L 2 (Ω). For r = 2 we have S 2 h = {0} and S 1 h = S h . We also introduce the orthogonal projection π j onto S j h , j = 1, 2, and obtain at once

P h = π 1 + π 2 .
Recall that π 2 is determined locally on each I j by the equations (π 2 w, q) L2(Ij ) = (w, q) L2(Ij ) , for all q ∈ P r-1 with q(x j ) = q(x j+1 ) = 0.

Thus, since supp(v) ⊂ I l , we have, since then π 2 v| Ij = 0, that

P h v L2(Ij ) = π 1 v L2(Ij ) if j = l,
and also

P h v L2(I l ) ≤ P h v ≤ v .
To show (1.14) it therefore suffices to consider the case j = l. We now consider the functions ψ i , i = 1, . . . , N, defined by ψ i ∈ S 1 h and ψ i (x j ) = δ ij for j = 1, . . . , N. Recall from Lemma 2 of [START_REF] Crouzeix | The stability in Lp and W 1 p of the L 2 -projection onto finite element function spaces[END_REF] that supp(ψ j ) = I j-1 ∪ I j , and that these functions constitute a basis for S 1 h with

ψ i+1 2 L2(Ii) = ψ i 2 L2(Ii) = h i r 2 -1 , ψ i 2 = h i-1 + h i r 2 -1 and (ψ i , ψ i+1 ) = (-1) r h i r(r 2 -1) • Now if we set π 1 v = N i=1 w i ψ i , we have, with w 0 = w N +1 = 0, (ψ i-1 , ψ i )w i-1 + ψ i 2 w i + (ψ i+1 , ψ i )w i+1 = (v, ψ i ), for i = 1, . . . , N.
After division of the i th equation by ψ i 2 , this linear system can be written as

(I + K)W = F := (f 1 , . . . , f N ) T , with f i = (v, ψ i )/ ψ i 2 , ( 1.15) 
where W = (w 1 , . . . , w N ) T and where we note that f i = 0 for i = l, l +1. Here K = (k ij ) is the tridiagonal N × N matrix with diagonal entries k ii = 0 and bidiagonal elements

k i,i-1 = (ψ i , ψ i-1 ) ψ i 2 = (-1) r r h i-1 h i-1 + h i and k i,i+1 = (ψ i , ψ i+1 ) ψ i 2 = (-1) r r h i h i-1 + h i •
We now introduce the norms

W p = N i=1 (h i+1 +h i )|w i | p 1/p , for 1 ≤ p < ∞, with W ∞ = max i |w i |,
and also denote by • p the matrix operator norms induced by these vector norms. In particular we have

K ∞ = max i j |k ij | = 1/r, and noticing that DKD -1 = K T , where D = diag(h 0 +h 1 , h 1 +h 2 , . . . , h N -1 +h N ),
we then also obtain K 1 = 1/r. From the Riesz-Thorin interpolation theorem we deduce that K p ≤ 1/r for all p with 1 ≤ p ≤ ∞. We now introduce the projection P j : C N → C N defined by (P j W ) i = w i if i = j -1 or i = j, and = 0 otherwise. Using (1.15) and the (2s+1)-diagonal character of K s we find

P j W = s≥|j-l|-1 (-1) s P j K s F,
and therefore

P j W 2 ≤ s≥|j-l|-1 K s 2 F 2 ≤ 1 r |j-l| r 2 r -1 F 2 .
Simple calculations using (1) give

π 1 v 2 L2(Ij ) ≤ |w j | 2 ψ j 2 L2(Ij ) + |w j+1 | 2 ψ j+1 2 L2(Ij ) + 2|w j ||w j+1 ||(ψ j+1 , ψ j )| ≤ h j r 2 -1 1 + 1 r (|w j | 2 + |w j+1 | 2 ) ≤ 1 r(r -1) P j W 2 .
To bound F 2 , we note that

|f i | 2 ≤ v 2 ψ i 2 L2(I l ) ψ i 4 = (r 2 -1) v 2 h l (h i-1 + h i ) 2 , for i = l, l + 1,
and hence

F 2 2 = (h l-1 +h l )|f l | 2 + (h l +h l+1 )|f l+1 | 2 ≤ (r 2 -1) v 2 h l h l-1 + h l + h l+1 h l + h l1 ≤ 2(r 2 -1) v 2 .
Altogether we obtain

π 1 v L2(Ij ) ≤ (r(r -1)) -1/2 P j W ≤ r -|j-l| r 3/2 (r -1) -3/2 F 2 ≤ r -|j-l| r 3/2 (r + 1) 1/2 (r -1) -1 √ 2 v = C r r -|j-l| v ,
which completes the proof.

A version of the following Lemma was shown in the quasiuniform case in [START_REF] Thomée | Maximum-norm stability and error estimates in Galerkin methods for parabolic equations in one space variable[END_REF].

Lemma 1.3. Under the assumption (1.6) we have

ρ δ x h ≤ Ch 1/2
x , for x ∈ Ω.

Proof. Let x ∈ [x j , x j+1 ), recall that h x = h j . Then for any ϕ ∈ C ∞ 0 (I l ) with ϕ = 1 we have, using a local inverse estimate on I j and Lemma 1.2,

(δ x h , ϕ) = (δ x h , P h ϕ) = (P h ϕ)(x) ≤ Ch -1/2 j P h ϕ L2(Ij ) ≤ Ch -1/2 j r -|l-j| . Hence δ x h L2(I l ) = sup ϕ∈C ∞ 0 (I l ) ϕ =1 (δ x h , ϕ) ≤ Ch -1/2 j r -|l-j| .
For y ∈ I l we also have, by (1.6),

ρ(y) 2 = |y -x| 2 + h 2 j ≤ C |l-j| s=0 α s h j 2 + h 2 j ≤ C(|l-j| + 1) 2 α 2|l-j| h 2 j . (1.16)
Hence, since α/r < 1,

ρδ x h 2 ≤ N l=1 sup I l ρ(y) 2 δ x h 2 L2(Ij ) ≤ C N l=1 (|l-j| + 1) 2 α 2|l-j| h j r -2|l-j| ≤ C h j s≥0 (s+1) 2 (α/r) 2s = Ch j ,
which shows the Lemma.

Lemma 1.4. Under the assumptions from the beginning of this section we have

|R(G, G)| ≤ C (1+|λ|) 3/2 + C (ρG) (1+|λ|) 3/4 , for x ∈ Ω, λ ∈ Σ.
Proof. We find at once

R(G, G) = A(ρG, ρG) -A(ρ 2 G, G) = (aρ G, ρ G) -(bρ G, ρG) -2 Im (aρ G, (ρG) ), and hence, since |ρ | ≤ 1, |R(G, G)| ≤ C G 2 + C G (ρG)
. The Lemma now follows by (1.10).

Lemma 1.5. Under the assumptions from the beginning of this section we have

|A(ρ 2 G -P h (ρ 2 G), G)| ≤ C (1+|λ|) 1/4 ρG , for x ∈ Ω, λ / ∈ Σ δ . Proof. We set ζ = ρ 2 G -R h (ρ 2 G) where R h is the H 1 0 -projection onto S h . Then ρ 2 G -P h (ρ 2 G) = (I -P h )ζ. We have from Theorem 2 in [5] (ρ 2 G -P h (ρ 2 G)) = ((I -P h )ζ) ≤ C ζ . Therefore |A(ρ 2 G -P h (ρ 2 G), G)| ≤ C (ρ 2 G -P h (ρ 2 G)) G ≤ C (1+|λ|) 1/4 ζ .
(1.17)

It is well known that, since we are in the one-dimensional case, R h u(x i ) = u(x i ) for all i. We consider now a subinterval I j and set ρ j = ρ(x j ). Noting that ρ/ρ j is bounded above and below on I j we have

ζ L2(Ij ) = ((I -R h )((ρ 2 -ρ 2 j )G)) L2(Ij ) ≤ Cρ j G L2(Ij ) + Cρ j h j G L2(Ij ) ≤ C ρ G L2(I) .
Taking square and summing, this shows ζ ≤ C ρG . In view of (1.17) this completes the proof.

To continue the proof of Theorem 1 we set µ = (1+|λ|) -1/2 and obtain, using Lemmas 1.3, 1.4 and 1.5, for F defined in (1.12),

|F | ≤ |A(ρ 2 G -P h (ρ 2 G), G)| + ρG ρδ + |R(G, G)| ≤ C(µ 1/2 + h 1/2 x ) ρ G + Cµ 3 + Cµ 3/2 (ρG) .
Using (1.13) we deduce

µ -2 ρ G 2 + (ρG) 2 ≤ C(µ 1/2 + h 1/2 x ) ρ G + Cµ 3 + Cµ 3/2 (ρG) ≤ 1 2 µ -2 ρ G 2 + Cµ 2 (µ + h x ) + Cµ 3 + (ρG) 2 . Therefore ρ G ≤ Cµ 2 (h x + µ) 1/2 . Using the estimate (1.11) we obtain (ρ + µ) G ≤ Cµ 2 (h x + µ) 1/2 . Noting that (ρ + µ) -1 2 ≤ 2 1 0 dy y 2 + h 2 x + µ 2 ≤ C(h x + µ) -1 , we finally have G L1 ≤ (ρ + µ) -1 (ρ + µ) G ≤ Cµ 2 = C(1+|λ|) -1 , which completes the proof.
As a consequence of Theorem 1 we may conclude that -A h generates an analytic semigroup E h (t) = e -A h t , the solution operator of the semidiscrete problem

(u h,t , χ) + A(u h , χ) = 0 for χ ∈ S h , t > 0, with u h (•, 0) = v h in Ω,
associated with the parabolic equation with elliptic operator A, and that stability and smoothing estimates as in (0.4) hold, this time without the logarithmic factor h , but with an exponentially growing factor e c1t if c 1 > 0 in (1.2).

The two-dimensional case

In this section we consider the elliptic operator

Au = -div (a∇u) + b • ∇u + cu, in Ω ⊂ R 2 , (2.1)
with a, b, c bounded real-valued, and a(x) ≥ a 0 > 0 in Ω. This time we set

A(u, w) = Ω (a∇u • ∇ w + b • ∇u w + cu w) dx,
and note that there are

c 0 > 0, c 1 , c 2 , c 3 ∈ R such that c 0 ∇w 2 -c 1 w 2 ≤ Re A(w, w) ≤ c 2 ∇w 2 and |Im A(w, w)| ≤ c 3 ∇w w , ∀ w ∈ H 1 0 .
The numerical range W (A) is defined as in (1.3), and again (1.4) holds. As earlier we choose a closed subset Σ ⊂ C such that Σ ∩ P = ∅ and d(λ, P) ≥ c(1+|λ|) for λ ∈ Σ. We now consider triangulations T h and the corresponding finite dimensional spaces S h consisting of piecewise polynomials of degree r -1 ≥ 1, as defined in Introduction. We shall show the following resolvent estimate for the discrete version A h : S h → S h of the operator A in (2.1).

Theorem 2. Let the conditions on Ω and {T h } from the introduction hold, in particular (0.6) and (0.7) with some α, β ≥ 1, and let α 2 βγ < 1, (2.2) with γ = γ r as in Lemma 0.1. Then we have

(λI -A h ) -1 v h C ≤ C 1/2 h 1 + |λ| v h C , ∀ v h ∈ S h , λ ∈ Σ, (2.3)
where, as above, h = max(1, log(1/h min )) with h min = min τ ∈T h h τ .

For x ∈ Ω fixed we will use the adjoint discrete Green's function

G x h (y, λ) = (( λI -A * h ) -1 δ x h )(y) for λ ∈ Σ, where δ x h ∈ S h is the discrete delta-function defined by (χ, δ x h ) = χ(x), ∀ χ ∈ S h .
As in Section 1 we have ((λI -A h ) -1 χ)(x) = (χ, G x h (., λ)), ∀ χ ∈ S h , and to prove the Theorem it suffices to show

G x h (., λ) L1 ≤ C 1/2 h 1+|λ| , for λ ∈ Σ, x ∈ Ω. (2.4) 
We obtain in the same way as for Lemma 1.1.

Lemma 2.1. There is a constant

C = C Σ such that, for v ∈ H 1 0 and λ ∈ Σ, if λ v 2 -A(v, v) = F, then (1+|λ|) v 2 + ∇v 2 ≤ C|F |.
We note that, writing for brevity

G = G x h (•, λ) for x ∈ Ω, λ ∈ Σ, λ(χ, G) -A(χ, G) = (χ, δ x h ) = χ(x), ∀ χ ∈ S h . ( 2.5) 
Choosing χ = G and using Lemma 2.1 we obtain

(1+|λ|)| G 2 + ∇G 2 ≤ C|G(x)| ≤ C G C ≤ C 1/2 h ∇G . (2.6)
This yields, with µ := (1+|λ|

) -1/2 , ∇G ≤ C 1/2 h and G ≤ Cµ 1/2 h . ( 2.7) 
Remark. It appears that the continuous Green's function g = g x (., λ) satisfies ∇g = ∞ and g ≤ C µ. For A = -∆ this can be shown by an argument which starts with an explicit formula for the Green's function when Ω = R 2 , and the conclusion should hold also for more general operators A. Thus the first estimate in (2.7) may be considered as satisfying, but an improvement of the second estimate to G ≤ Cµ might be possible and would show Theorem 2 without a logarithmic factor. Now we will deduce the L 1 estimate (2.4) from the estimate of G . For λ bounded this follows directly from the inequality G L1 ≤ C G . We now turn to larger values of λ ∈ Σ. With the given point x ∈ Ω h we associate a triangle τ (arbitrarily if x is on an edge) such that x ∈ τ and set h x = h τ . We then use the weight function

ρ(y) = ρ x h (y) = (|x -y| 2 + h 2 x ) 1/2
, and note that ρ 2 is a quadratic polynomial. We have

G L 1 ≤ (ρ 2 + µ 2 ) -1 (ρ 2 + µ 2 )G ≤ C h x + µ (ρ 2 + µ 2 )G , ( 2.8) 
where the second inequality follows from

(ρ 2 + µ 2 ) -1 2 ≤ 2π ∞ 0 r dr (r 2 + h 2 x + µ 2 ) 2 = π h 2 x + µ 2 • We shall show that ρ 2 G ≤ Cµ 2 (h x +µ+ G ), (2.9) 
and therefore

G L 1 ≤ Cµ(µ+ G ).
Using the second inequality in (2.7), this completes the proof of (2.4) and hence of the theorem.

For the proof of (2.9) we consider the expression

λ ρ m G 2 -A(ρ m G, ρ m G) = λ(ρ 2m G, G) -A(ρ 2m G, G) -R m (G, G),
where m = 1 or 2, and

R m (G, G) = A(ρ m G, ρ m G) -A(ρ 2m G, G).
After subtraction by (2.5) with χ = P h (ρ 2m G), this yields

λ ρ m G 2 -A(ρ m G, ρ m G) = F m , ( 2.10) 
where

F m = -A(ρ 2m G -P h (ρ 2m G), G) -(ρ 2m G, δ x h ) -R m (G, G). (2.11)
By Lemma 2.1 it follows from (2.10) that

µ -2 ρ m G 2 + ∇(ρ m G) 2 ≤ C|F m |. (2.12)
To show (2.9) we will use this first for m = 1 and then for m = 2, together with the appropriate bounds for F 1 and F 2 . The bounds needed for these functions will require the following Lemmas, which are analogous to those used in the one-dimensional case. Assuming that these lemmas have been proved, we are now ready for the proof of our main result. We first remark that

R m (G, G) = m 2 (a ρ m-1 G ∇ρ, ρ m-1 G ∇ρ) -m( b • ∇ρ ρ m-1 G, ρ m G) + 2m Im (a ∇(ρ m G), ρ m-1 G ∇ρ).
Using that |∇ρ| ≤ 1 in Ω, this implies

|R m (G, G)| ≤ C( ∇(ρ m G) ρ m-1 G + ρ m-1 G 2 ). ( 2 

.15)

We now take m = 1 in (2.12) and use (2.11) to obtain 

µ -2 ρG 2 + ∇(ρG) 2 ≤ C|F 1 | ≤ C |A(ρ 2 G -P h (ρ 2 G), G)| + |(ρG, ρδ x h )| + |R 1 (G, G)| . ( 2 
µ -2 ρG 2 + ∇(ρG) 2 ≤ C ∇(ρG) G + G 2 + ρG ≤ 1 2 ( ∇(ρG) 2 + µ -2 ρG 2 ) + C(µ 2 + G 2 ), which shows µ -2 ρG 2 + ∇(ρG) 2 ≤ C(µ + G ) 2 ,
and hence ρG ≤ Cµ(µ + G ) and ∇(ρG) ≤ C(µ + G ).

(2.17)

We now take m = 2 in (2.12) to find

µ -2 ρ 2 G 2 + ∇(ρ 2 G) 2 ≤ C|F 2 | ≤ C |A(ρ 4 G -P h (ρ 4 G), G)| + |(ρ 2 G, ρ 2 δ x h )| + |R 2 (G, G)| .
Hence, using Lemma 2.2, (2.14), and (2.15) with m = 2,

µ -2 ρ 2 G 2 + ∇(ρ 2 G) 2 ≤ C ∇(ρG) + G + h x ρ 2 G + ∇(ρ 2 G) ρG + ρG 2 ≤ 1 2 µ -2 ρ 2 G 2 + ∇(ρ 2 G) 2 + C µ 2 ( ∇(ρG) + G + h x ) 2 + C ρG 2 .
Using now (2.17) this yields

µ -2 ρ 2 G 2 ≤ Cµ 2 (h x + µ + G ) 2 ,
and completes the proof of (2.9). It now only remains to prove Lemmas 2.2 and 2.3.

Proof of Lemma 2.2. Let τ ∈ Q j (τ 0 ). Then for any ϕ ∈ C ∞ 0 (τ ) with ϕ = 1 we have, using Lemma 0.1,

(δ x h , ϕ) = (δ x h , P h ϕ) = (P h ϕ)(x) ≤ Ch -1 τ0 P h ϕ L2(τ0) ≤ Ch -1 τ0 γ j . Hence δ x h L2(τ ) = sup ϕ∈C ∞ 0 (τ ) ϕ =1 (δ x h , ϕ) ≤ Ch -1 τ0 γ j .
For y ∈ τ we also have

ρ(y) 2 = |y -x| 2 + h 2 τ0 ≤ C j l=0 α l h τ0 2 + h 2 τ0 ≤ C(j + 1) 2 α 2j h 2 τ0 .
Hence, since α 2 βγ 2 < α 2 βγ < 1,

ρδ x h 2 ≤ j≥0 sup Qj (τ0) ρ(y) 2 δ x h 2 Qj (τ0) ≤ j≥0 C (j + 1) 2 α 2j h 2 τ0 n j (τ ) h -2 τ0 γ 2j ≤ C j≥0 (j + 1) 2 (α 2 βγ 2 ) j = C < ∞.
Using now that α 4 βγ 2 ≤ (α 2 βγ) 2 < 1,

ρ 2 δ x h 2 ≤ j≥0 sup Qj (τ0) ρ(y) 4 δ x h 2 Qj(τ0) ≤ C j≥0 (j + 1) 4 α 4j h 4 τ0 n j (τ ) h -2 τ0 γ 2j ≤ C j≥0 (j + 1) 4 (α 4 βγ 2 ) j h 2 τ0 = C h 2 τ0 ,
which completes the proof.

Proof of Lemma 2.3. We first remark that, for χ ∈ S h ,

|A(ρ 2 χ -P h (ρ 2 χ), χ)| ≤ C ρ -1 ∇(ρ 2 χ-P h (ρ 2 χ)) ( ρ∇χ + χ ) + ρ 2 χ -P h (ρ 2 χ) χ ≤ C ρ -1 ∇(ρ 2 χ-P h (ρ 2 χ)) ( ∇(ρχ) + χ ) + χ 2 .
In order to get (2.13) it suffices to show that

ρ -1 ∇(ρ 2 χ-P h (ρ 2 χ)) ≤ C χ . ( 2 

.18)

Let I h be the standard Lagrange interpolant from C(Ω h ) onto the continuous, piecewise polynomials of degree r -1 on the triangulation T h of Ω h . We shall apply I h only to functions which vanish on ∂Ω h and then extend the definition of I h v to Ω by setting

I h v = 0 in Ω \ Ω h , so that I h v ∈ S h .
Recall that there exists a constant K such that, for any τ ∈ T h and any polynomial q of degree ≤ r + 3, we have I h q L2(τ ) ≤ K q L2(τ ) . We set

ζ 1 = ρ 2 χ -I h (ρ 2 
χ), and we clearly have ρ 2 χ -P h (ρ 2 χ) = (I -P h )ζ 1 . It therefore now suffices to show that

ρ -1 ∇ζ 1 ≤ C χ and ρ -1 ∇(P h ζ 1 ) ≤ C χ . ( 2 

.19)

For each τ ∈ T h , let x τ ∈ τ and ρ τ = ρ(x τ ), and note that ρ τ /ρ is bounded above and below on τ . We then have

ζ 1 = (ρ 2 -ρ 2 τ )χ -I h ((ρ 2 -ρ 2 τ )χ). Since (ρ 2 -ρ 2 τ
)χ is a polynomial of degree at most r + 1 we may use an inverse property and the boundedness of

I h in L 2 (τ ) to obtain ∇ζ 1 L2(τ ) ≤Ch -1 τ ζ 1 L2(τ ) ≤ Ch -1 τ (ρ 2 -ρ 2 τ )χ L2(τ ) ≤ C ρχ L2(τ ) , (2.20) 
and thus

ρ -1 ∇ζ 1 L2(τ ) ≤ C χ L2(τ ) .
The first inequality in (2.19) now follows by squaring and summing over the triangles.

In order to show the second inequality in (2.19), we start with

ρ -1 ∇(P h ζ 1 ) L2(τ ) ≤ Cρ -1 τ h -1 τ P h ζ 1 L2(τ ) .
Using Lemma 0.1 we obtain

P h ζ 1 L2(τ ) ≤ C τ ∈T h γ (τ,τ ) ζ 1 L2(τ ) .
As in (2.20) we have

ζ 1 L2(τ ) ≤ Ch τ ρχ L2(τ ) , and hence ρ -1 ∇(P h ζ 1 ) L2(τ ) ≤ C τ ∈T h γ (τ,τ ) (ρ τ /ρ τ ) (h τ /h τ ) χ L2(τ ) .
We now note that h τ /h τ ≤ Cα (τ,τ ) and ρ τ /ρ τ ≤ Cl(τ, τ )α l(τ,τ ) .

(2.21) Indeed, the second inequality follows from

ρ τ ρ τ = |x τ -x| 2 + h 2 x |x τ -x| 2 + h 2 x ≤ 1 + |x τ -x τ | |x τ -x| 2 + h 2 x ≤ 1 + C |x τ -x τ | h τ ≤ C l(τ,τ ) j=1 α j . Thus ρ -1 ∇(P h ζ 1 ) L2(τ ) ≤ C τ ∈T h l(τ, τ )(α 2 γ) l(τ,τ ) χ L2(τ ) .
We now use the fact that if M = (m jk ) is a symmetric matrix, then its norm, subordinate to the Euclidean norm, is bounded by max j k |m jk |, and deduce, since α 2 βγ < 1, (2.23) Similarly to the above we find

ρ -1 ∇ζ 2 L2(τ ) ≤ Cρ -1 τ h -1 τ ζ 2 L2(τ ) ≤ Cρ -1 τ h -1 τ (ρ 4 -ρ 4 τ )χ L2(τ ) ≤ C ρ 2 χ L2(τ ) .
The first inequality in (2.23) now follows by squaring and summing over T h . It remains to show the second inequality in (2.23). We start with

ρ -1 ∇(P h ζ 2 ) L2(τ ) ≤ Cρ -1 τ h -1 τ P h ζ 2 L2(τ ) .
Using Lemma 0.1 we obtain

P h ζ 2 L2(τ ) ≤ C τ ∈T h γ (τ,τ ) ζ 2 L2(τ ) .
As above we have ζ 2 L2(τ ) ≤ Ch τ ρ τ ρ 2 χ L2(τ ) and hence, using (2.21)

ρ -1 ∇(P h ζ 2 ) L2(τ ) ≤ C τ ∈T h γ (τ,τ ) (ρ τ /ρ τ )(h τ /h τ ) ρ 2 χ L2(τ ) ≤ C τ ∈T h l(τ, τ )(α 2 γ) l(τ,τ ) ρ 2 χ L2(τ ) .
Arguing as for ζ 1 , we deduce

ρ -1 ∇(P h ζ 2 ) ≤ C max τ τ ∈T h l(τ, τ )(α 2 γ) l(τ,τ ) ρ 2 χ ≤ C ∞ j=1 j (α 2 βγ) j ρ 2 χ ≤ C ρ 2 χ ,
which completes the proof.

As in the one-dimensional case, Theorem 2 shows that -A h generates an analytic semigroup E h (t) = e -A h t , the solution operator of the semidiscrete analogue of the parabolic problem associated with the operator A, and that the corresponding stability and smoothing estimates hold, this time with a logarithmic factor 1/2 h .

ρ - 1

 1 ∇(P h ζ 1 ) ≤ C max τ τ ∈T h l(τ, τ )(α 2 γ) l(τ,τ ) χ ≤ C ∞ j=1 j (α 2 βγ) j χ ≤ C χ .We now turn to the proof of (2.14). We have|A(ρ 4 χ -P h (ρ 4 χ), χ)| ≤ C ρ -1 ∇(ρ 4 χ-P h (ρ 4 χ)) ( ρ∇χ + ρχ ) + ρ 4 χ-P h (ρ 4 χ) χ ≤ C ρ -1 ∇(ρ 4 χ-P h (ρ 4 χ)) ( ∇(ρχ) + χ ) + ρ 4 χ χ .In order to get (2.14) it suffices to show thatρ -1 ∇(ρ 4 χ-P h (ρ 4 χ)) ≤ C ρ 2 χ . (2.22) For this we now set ζ 2 = ρ 4 χ -I h (ρ 4 χ). This time ρ 4 χ -P h (ρ 4 χ) = (I -P h )ζ 2 , and it thus now suffices to show that ρ -1 ∇ζ 2 ≤ C ρ 2 χ and ρ -1 ∇(P h ζ 2 ) ≤ C ρ 2 χ .

  Under the assumptions of Theorem 2 we have, for x ∈ Ω, χ ∈ S h .
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x , for x ∈ Ω.