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In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove a global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L p , with p ∈[1, ∞]. Local results for arbitrary initial data are also given.

Introduction

This paper deals with the Cauchy problem for the two-dimensional dissipative quasigeostrophic equation

(QG α ) ∂ t θ + v • ∇θ + |D| α θ = 0, θ | t=0 = θ 0 ,
where the scalar function θ represents the potential temperature and α ∈ [0, 2]. The velocity v = (v 1 , v 2 ) is determined by θ through a stream function ψ, namely v = (-∂ 2 ψ, ∂ 1 ψ), with |D|ψ = θ.

Here, the differential operator |D| = √ is defined in a standard fashion through its Fourier transform: F(|D|u) = |ξ |Fu. The above relations can be rewritten as

v = -∂ 2 |D| -1 θ, ∂ 1 |D| -1 θ = (-R 2 θ, R 1 θ),
where R i (i = 1, 2) are Riesz transforms.

First we notice that solutions for the (QG α ) equation are scaling invariant in the following sense: if θ is a solution and λ > 0 then θ λ (t, x) = λ α-1 θ(λ α t, λx) is also a solution of the (QG α ) equation. From the definition of the homogeneous Besov spaces, described in the next section, one can show that the norm of θ λ in the space Ḃ1+2/p-α p,r , with p, r ∈ [1, ∞], is quasi-invariant. That is, there exists a pure constant C > 0 such that for every λ, t > 0

C -1 θ λ (t) Ḃ1+ 2 p -α p,r θ λ α t Ḃ1+ 2 p -α p,r C θ λ (t) Ḃ1+ 2 p -α p,r .
Besides its intrinsic mathematical importance the (QG α ) equation serves as a 2D model arising in geophysical fluid dynamics, for more details about the subject see [START_REF] Constantin | Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar[END_REF][START_REF] Pedlosky | Geophysical Fluid Dynamics[END_REF] and the references therein. Recently the (QG α ) equation has been intensively investigated and much attention is carried to the problem of global existence. For the sub-critical case (α > 1) the theory seems to be in a satisfactory state. Indeed, the global existence and uniqueness for arbitrary initial data are established in various function spaces (see for example [START_REF] Constantin | Behavior of solutions of 2D quasi-geostrophic equations[END_REF][START_REF] Resnick | Dynamical problem in nonlinear advective partial differential equations[END_REF]). However in the critical case, that is α = 1, Constantin et al. [START_REF] Constantin | On the critical dissipative quasi-geostrophic equation[END_REF] showed the global existence in Sobolev space H 1 under smallness assumption of the L ∞ -norm of the initial temperature θ 0 but the uniqueness is proved for initial data in H 2 . Many other relevant results can be found in [START_REF] Córdoba | A maximum principle applied to quasi-geostrophic equations[END_REF][START_REF] Ju | On the two-dimensional quasi-geostrophic equations[END_REF][START_REF] Ju | Global solutions to the two-dimensional quasi-geostrophic equation with critical or super-critical dissipation[END_REF]. The super-critical case α < 1 seems harder to deal with and work on this subject has just started to appear. In [START_REF] Chae | Global well-posedness in the supercritical dissipative quasi-geostrophic equations[END_REF] the global existence and uniqueness are established for data in critical Besov space B 2-α 2,1 with a small Ḃ2-α 2,1 norm. This result was improved by N. Ju [START_REF] Ju | Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space[END_REF] for small initial data in H s with s 2α. We would like to point out that all these spaces are constructed over Lebesgue space L 2 and the same problem for general Besov space B s p,r is not yet well explored and few results are obtained in this subject. In [START_REF] Wu | Solutions to the 2D quasi-geostrophic equations in Hölder spaces[END_REF], Wu proved the global existence and uniqueness for small initial data in C r ∩ L q with r > 1 and q ∈ ]1, ∞[, which is not a scaling space. We can also mention the paper [START_REF] Wu | Global solutions of the 2D dissipative quasi-geostrophic equations in Besov spaces[END_REF] pα and define

X s p = B s p,1 , if p < ∞, B s ∞,1 ∩ Ḃ0 ∞,1 , otherwise.
Then for θ 0 ∈ X s p there exists T > 0 such that the (QG α ) equation has a unique solution θ belonging to C([0, T ]; X s p ) ∩ L 1 ([0, T ]; Ḃs+α p,1 ). In addition, there exists an absolute constant η > 0 such that if

θ 0 Ḃ1-α ∞,1 η,
then one can take T = +∞. Remark 1. We observe that in our global existence result we make only a smallness assumption of the data in Besov space Ḃ1-α ∞,1 which contains the increasing Besov chain spaces { Ḃs

p c p,1 } p∈[1,∞] .
Remark 2. In the case of s > s p c we have the following lower bound for the local time existence. There exists a nonnegative constant C such that

T C θ 0 -α s-s p c Ḃs-2 p ∞,1 .
However in the critical case s = s p c the local time existence is bounded from below by

sup t 0, q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) q θ 0 L ∞ η ,
where η is an absolute nonnegative constant.

The proof relies essentially on some new estimates for transport-diffusion equation

(TD α ) ∂ t θ + v • ∇θ + |D| α θ = f, θ | t=0 = θ 0 ,
where the unknown is the scalar function θ . Our second main result reads as follows.

Theorem 1.2. Let s ∈ ]-1, 1[, α ∈ [0, 1[, (p, r) ∈ [1, +∞] 2 , f ∈ L 1 loc (R + ; Ḃs p,1 )
and v be a divergence free vector field belonging to L 1 loc (R + ; Lip(R d )). We consider a smooth solution θ of the transport-diffusion equation (TD α ), then there exists a constant C depending only on s and α such that

θ L r t Ḃs+ α r p,1 Ce C t 0 ∇v(τ ) L ∞ dτ θ 0 Ḃs p,1 + f L 1 t Ḃs p,1
.

Besides if v = ∇ ⊥ |D| -1 θ then the above estimate is valid for all s 1, despite we replace

∇v L 1 t L ∞ by ∇v L 1 t L ∞ + ∇θ L 1 t L ∞ .
We use for the proof a new approach based on Lagrangian coordinates combined with paradifferential calculus and a new commutator estimate. This idea has been recently used by the first author to treat the two-dimensional Navier-Stokes vortex patches [START_REF] Hmidi | Régularité höldérienne des poches de tourbillon visqueuses[END_REF]. The rest of this paper is structured as follows. In the next section we recall some basic results on Littlewood-Paley theory and we give some useful lemmas. Section 3 is devoted to the proof of a new commutator estimate while Sections 4 and 5 are dealing successively with the proofs of Theorems 1.2 and 1.1. We give in the end of this paper an appendix.

Preliminaries

In this preparatory section, we provide the definition of some function spaces based on the so-called Littlewood-Paley decomposition and we review some important lemmas that will be used constantly in the following pages.

We start with the dyadic decomposition. Let ϕ ∈ C ∞ 0 (R d ) be supported in the ring C := {ξ ∈ R d , 3 4 |ξ | 8 3 } and such that q∈Z ϕ 2 -q ξ = 1 for ξ = 0.

We define also the function χ(ξ ) = 1 -q∈N ϕ(2 -q ξ). Now for u ∈ S we set -1 u = χ(D)u; ∀q ∈ N, q u = ϕ 2 -q D u and ∀q ∈ Z, ˙ q u = ϕ 2 -q D u.

The following low-frequency cut-off will be also used:

S q u = -1 j q-1 j u and Ṡq u = j q-1 ˙ j u.
We caution that we shall sometimes use the notation q instead of ˙ q and this will be tacitly understood from the context.

Let us now recall the definition of Besov spaces through the dyadic decomposition. Let (p, m) ∈ [1, +∞] 2 and s ∈ R, then the inhomogeneous space B s p,m is the set of tempered distribution u such that u B s p,m := 2 qs q u L p m < ∞.

To define the homogeneous Besov spaces we first denote by S /P the space of tempered distributions modulo polynomials. Thus we define the space Ḃs p,r as the set of distribution u ∈ S /P such that

u Ḃs p,m := 2 qs ˙ q u L p m < ∞.
We point out that if s > 0 then we have B s p,m = Ḃs p,m ∩ L p and

u B s p,m ≈ u Ḃs p,m + u L p .
Another characterization of homogeneous Besov spaces that will be needed later is given as follows (see [START_REF] Triebel | Theory of Function Spaces[END_REF]). For

s ∈ ]0, 1[, p, m ∈ [1, ∞] C -1 u Ḃs p,m R d u(• -x) -u(•) m L p |x| sm dx |x| d 1 m C u Ḃs p,m , (1) 
with the usual modification if m = ∞.

In our next study we require two kinds of coupled space-time Besov spaces. The first one is defined in the following manner: for T > 0 and m 1, we denote by L r T Ḃs p,m the set of all tempered distribution u satisfying

u L r T Ḃs p,r := 2 qs ˙ q u L p m L r T < ∞. The second mixed space is L r T Ḃs p,m which is the set of tempered distribution u satisfying u L r T Ḃs p,m := 2 qs ˙ q u L r T L p m < ∞.
We can define by the same way the spaces L r T B s p,m and L r T B s p,m . The following embeddings are a direct consequence of Minkowski's inequality.

Let s ∈ R, r 1 and (p, m) ∈ [1, ∞] 2 , then we have

L r T Ḃs p,m → L r T Ḃs p,m , if m r, and L r T Ḃs p,m → L r T Ḃs p,m , if r m.
(

Another classical result that will be frequently used here is the so-called Bernstein inequalities (see [START_REF] Chemin | Perfect Incompressible Fluids[END_REF] and the references therein): there exists C such that for every function u and for every q ∈ Z, we have

sup |α|=k ∂ α S q u L b C k 2 q(k+d( 1 a -1 b )) S q u L a , for b a, C -k 2 qk ˙ q u L a sup |α|=k ∂ α ˙ q u L a C k 2 qk ˙ q u L a .
It is worth pointing out that the above inequalities hold true if we replace the derivative ∂ α by fractional derivative |D| α . According to the Bernstein inequalities one can show the following embeddings

Ḃs p,m → Ḃs-d( 1 p -1 p 1 ) p 1 ,m 1 , for p p 1 and m m 1 .
Now let us we recall the following commutator lemma (see [START_REF] Chemin | Perfect Incompressible Fluids[END_REF][START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF] and the references therein).

Lemma 2.1. Let p, r ∈ [1, ∞], 1 = 1 r + 1 r , ρ 1 < 1, ρ 2 < 1,
and v be a divergence free vector field of R d . Assume in addition that

ρ 1 + ρ 2 + d min{1, 2/p} > 0 and ρ 1 + d/p > 0.
Then we have

q∈Z 2 q( d p +ρ 1 +ρ 2 -1) [ ˙ q , v • ∇]u L 1 t L p v L r t Ḃ d p +ρ 1 p,1 u L r t Ḃ d p +ρ 2 p,1 .

Moreover we have for

s ∈ ]-1, 1[ q∈Z 2 qs [ ˙ q , v • ∇]u L p ∇v L ∞ u Ḃs p,1 .
In addition, for v = ∇ ⊥ |D| -1 u, this estimate holds true for all s 1, despite we replace

∇v L 1 t L ∞ by ∇v L 1 t L ∞ + ∇u L 1 t L ∞ .
The following result describes the action of the semi-group operator e t|D| α on distributions whose Fourier transform is supported in a ring. Proposition 2.2. Let C be a ring and α ∈ R + . There exists a positive constant C such that for any p ∈ [1; +∞], for any couple (t, λ) of positive real numbers, we have

supp Fu ⊂ λC ⇒ e t|D| α u L p Ce -C -1 tλ α u L p .
Proof. We will imitate the same idea of [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF]. Let φ ∈ D(R d \{0}), radially and whose value is identically 1 near the ring C. Then we have

e t|D| α u = φ λ -1 |D| u = h λ * u,
where

h λ (t, x) = 1 (2π) d R d φ λ -1 ξ e -t|ξ | α e i x,ξ dξ.
We set

hλ (t, x) := λ -d h t, λ -1 x = 1 (2π) d R d φ(ξ )e -tλ α |ξ | α e i x,ξ dξ.
Now to prove the proposition it suffices to show that hλ (t) L 1 Ce -C -1 tλ α . For this purpose we write with the aid of an integration by parts

1 + |x| 2 d hλ (x) = 1 (2π) d R d (Id -ξ ) d φ(ξ )e -tλ α |ξ | α e i x,ξ dξ.
From Leibnitz's formula, we have

(Id -ξ ) d φ(ξ )e -tλ α ξ α = |γ | 2d β γ C γ,β ∂ γ -β φ(ξ )∂ β e -tλ α ξ α .
As φ is supported in a ring that does not contain some neighbourhood of zero then we get for

ξ ∈ supp φ ∂ β e -tλ α |ξ | α C β 1 + tλ α |β| e -tλ α |ξ | α , ∀ξ ∈ supp φ C β e -C -1 tλ α .
Thus we find that

(Id -ξ ) d φ(ξ )e -tλ α ξ α Ce -C -1 tλ α |γ | 2d β γ C γ,β ∂ γ -β φ(ξ ) .
Since the term of the right-hand side belongs to L 1 (R d ), then we deduce that

1 + |x| 2 d hλ (x) Ce -C -1 tλ α .
This completes the proof of the proposition. 2

Commutator estimate

The main result of this section is the following estimate that will play a crucial role for the proof of Theorem 1.2. 

|D| α (f • ψ) -|D| α f • ψ L p C max 1 -∇ψ -1 d+α L ∞ ; 1 -∇ψ -d-α L ∞ × ∇ψ α L ∞ f Ḃα p,1
.

Proof. First we rule out the obvious case α = 0 and let us recall the following formula detailed in [START_REF] Córdoba | A maximum principle applied to quasi-geostrophic equations[END_REF] which tells us that for all α ∈ ]0, 2[

|D| α f (x) = C α P.V. f (x) -f (y) |x -y| d+α dy.
Now we claim from (1) that if g ∈ Ḃα p,1 , with α ∈ ]0, 1[, then the above identity holds as an L p equality

|D| α f (x) = C α R d f (x) -f (y)
|x -y| d+α dy, a.e.w.

(

) 3 
and moreover,

|D| α f L p f Ḃα p,1 . (4) 
Indeed, the L p norm of the integral function satisfies in view of Minkowski's inequalities

R d f (•) -f (y) | • -y| d+α dy L p R d f (•) -f (• -y) L p |y| d+α dy ≈ f Ḃα p,1
.

Thus we find that the left integral term is finite almost everywhere. Inasmuch as the flow preserves Lebesgue measure then the formula (3) yields

|D| α f • ψ(x) = C α R d f (ψ(x)) -f (y) |ψ(x) -y| d+α dy = C α R d f (ψ(x)) -f (ψ(y)) |ψ(x) -ψ(y)| d+α dy.
Applying again (3) with f • ψ , we obtain

|D| α (f • ψ)(x) = C α R d f (ψ(x)) -f (ψ(y)) |x -y| d+α dy.
Thus we get

|D| α (f • ψ)(x) -|D| α f • ψ(x) = C α R d f (ψ(x)) -f (ψ(y)) |x -y| d+α × 1 - |x -y| d+α |ψ(x) -ψ(y)| d+α dy.
Taking the L p norm and using (1) we obtain

|D| α (f • ψ) -|D| α f • ψ L p f • ψ Ḃα p,1 sup x,y 1 - |x -y| d+α |ψ(x) -ψ(y)| d+α .
(

) 5 
According to [START_REF] Oliver | The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier-Stokes equations with Besov class data in R 2[END_REF] one has the following composition result

f • ψ Ḃα p,1 c α ∇ψ α L ∞ f Ḃα p,1
, for α ∈ ]0, 1[. Therefore [START_REF] Chen | A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation[END_REF] becomes

|D| α (f • ψ) -|D| α f • ψ L p C ∇ψ α L ∞ f Ḃα p,1 × sup x,y 1 - |x -y| d+α |ψ(x) -ψ(y)| d+α .
It is plain from the mean value theorem that

1 ∇ψ d+α L ∞ |x -y| d+α |ψ(x) -ψ(y)| d+α ∇ψ -1 d+α L ∞ ,
which gives easily the inequality sup

x,y

1 - |x -y| d+α |ψ(x) -ψ(y)| d+α max 1 -∇ψ -1 d+α L ∞ ; 1 -∇ψ -d-α L ∞ .
This concludes the proof. 2

Proof of Theorem 1.2

We shall divide our analysis into two cases: r = +∞ and r is finite. The first case is more easy and simply based upon a maximum principle and a commutator estimate. Before we move on let us mention that in what follows we will work with the homogeneous Littlewood-Paley operators but we take the same notation of the inhomogeneous operators.

Set θ q := q θ , then localizing the (QG α ) equation through the operator q gives

∂ t θ q + v • ∇θ q + |D| α θ q = -[ q , v • ∇]θ + f q := R q . ( 6 
)
According to Proposition 6.2 we have

θ q (t) L p θ 0 q L p + t 0 R q (τ ) L p dτ. ( 7 
)
Multiplying both sides by 2 qs and summing over q

θ L ∞ t Ḃs p,1 θ 0 Ḃs p,1 + f L 1 t Ḃs p,1 + t 0 q 2 qs R q (τ ) L p dτ.
This yields in view of Lemma 2.1

θ L ∞ t Ḃs p,1 θ 0 Ḃs p,1 + f L 1 t Ḃs p,1 + C t 0 ∇v(τ ) L ∞ θ L ∞ τ Ḃs p,1
dτ.

To achieve the proof in the case of r = ∞, it suffices to use Gronwall's inequality.

We shall now turn to the proof of the finite case r < ∞ which is more technical. Let ψ denote the flow of the velocity v and set θq (t, x) = θ q t, ψ(t, x) and Rq (t, x) = R q t, ψ(t, x) .

Since the flow preserves Lebesgue measure then we obtain

Rq L p [ q , v • ∇]θ L p + f q L p . ( 8 
)
It is not hard to check that the function θq satisfies

∂ t θq + |D| α θq = |D| α (θ q • ψ) -|D| α θ q • ψ + Rq := R1 q . ( 9 
)
From Proposition 3.1 we find that for q ∈ Z

|D| α (θ q • ψ) -|D| α θ q • ψ L p Ce CV (t) e CV (t) -1 θ q (t) Ḃα p,1
Ce CV (t) e CV (t) -1 2 qα θ q L p , [START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF] where V (t) := ∇v L 1 t L ∞ . Notice that we have used here the classical estimates e -CV (t) ∇ψ ∓1 (t) L ∞ e CV (t) .

Putting together ( 8) and ( 10) yields

R1 q (t) L p f q (t) L p + [ q , v • ∇]θ L p + Ce CV (t) e CV (t) -1 2 qα θ q (t) L p .
Applying the operator j , for j ∈ Z, to Eq. ( 9) and using Proposition 2.2 j θq (t) L p Ce -ct2 jα j θ 0 q L p + C t 0 e -c(t-τ )2 jα f q (τ ) L p dτ + Ce CV (t) e CV (t) -1 2 qα t 0 e -c(t-τ )2 jα θ q (τ ) L p dτ

+ C t 0 e -c(t-τ )2 jα [ q , v • ∇]θ(τ ) L p dτ. ( 11 
)
Integrating this estimate with respect to the time and using Young's inequality

j θq L r t L p C2 -jα/r 1 -e -crt2 jα 1 r j θ 0 q L p + f q L 1 t L p + Ce CV (t) e CV (t) -1 2 (q-j)α θ q L r t L p + C2 -jα/r t 0 [ q , v • ∇]θ(τ ) L p dτ. ( 12 
)
Since the flow ψ preserves Lebesgue measure then one writes 2 q(s+α/r) θ q L r t L p = 2 q(s+α/r) θq L r t L p 2 q(s+α/r) |j -q|>N

j θq L r t L p + |j -q| N j θq L r t L p := I + II.
To estimate the term I we make appeal to Lemma 6.1

j θq L r t L p C2 -|q-j | e t 0 ∇v(τ ) L ∞ dτ θ q L r t L p C2 -|q-j | e V (t) θ q L r t L p .
Therefore we get

I C2 -N e V (t) 2 q(s+α/r) θ q L r t L p . ( 13 
)
In order to bound the second term II we use ( 12)

II C 1 -e -crt2 qα 1 r 2 qs θ 0 q L p + C2 N α r 2 qs f q L 1 t L p + C2 Nα e CV (t) e CV (t) -1 2 q(s+α/r) θ q L r t L p + C2 Nα/r 2 qs t 0 [ q , v • ∇]θ(τ ) L p dτ. ( 14 
)
Denote Z r q (t) := 2 q(s+α/r) θ q L r t L p , then we obtain in view of ( 13) and ( 14) CV (t) e CV (t) -1 + 2 -N e CV (t) Z r q (t)

Z r q (t) C 1 -e -crt2 qα 1 r 2 qs θ 0 q L p + C2 N α r 2 qs f q L 1 t L p + C 2 Nα e
+ C2 Nα/r 2 qs t 0 [ q , v • ∇]θ(τ ) L p dτ.
We can easily show that there exist two pure constants N and C 0 such that

V (t) C 0 ⇒ C2 -N e CV (t) + C2 Nα e CV (t) e CV (t) -1 1 2 •
Thus we obtain under this condition

Z r q (t) C 1 -e -crt2 qα 1 r 2 qs θ 0 q L p + C2 qs f q L 1 t L p + C2 qs t 0 [ q , v • ∇]θ(τ ) L p dτ. ( 15 
)
Summing over q and using Lemma 2.1 lead for V (t) C 0 ,

θ L r t Ḃs+ α r p,1 C θ 0 Ḃs p,1 + C f L 1 t Ḃs p,1 + C t 0 ∇v(τ ) L ∞ θ(τ ) Ḃs p,1 dτ C θ 0 Ḃs p,1 + C f L 1 t Ḃs p,1 + CV (t) θ L ∞ t Ḃs p,1 .
Thus we get in view of the estimate of the case r = ∞

θ L r t Ḃs+ α r p,1 C θ 0 Ḃs p,1 + C f L 1 t Ḃs p,1 . ( 16 
)
This gives the result for a short time.

For an arbitrary positive time T we make a partition (T i ) M i=0 of the interval [0, T ], such that

T i+1 T i ∇v(τ ) L ∞ dτ ≈ C 0 .
Then proceeding for ( 16), we obtain

θ L r [T i ,T i+1 ] Ḃs+ α r p,1 C θ(T i ) Ḃs p,1 + C T i+1 T i f (τ ) Ḃs p,1 dτ.

Applying the triangle inequality gives

θ L r T Ḃs+ α r p,1 C M-1 i=0 θ(T i ) Ḃs p,1 + C T 0 f (τ ) Ḃs p,1 dτ.
On the other hand the estimate proven in the case r = ∞ allows us to write

θ L r T Ḃs+ α r p,1 CM θ 0 Ḃs p,1 + f L 1 T Ḃs p,1 e CV (T ) + f L 1 T Ḃs p,1 .
Thus the following observation C 0 M ≈ 1 + V (t) completes the proof of the theorem.

Proof of Theorem 1.1

For the sake of a concise presentation, we shall just provide the a priori estimates supporting the claims of the theorem. To achieve the proof one must combine in a standard way these estimates with a standard approximation procedure such as the following iterative scheme

⎧ ⎪ ⎨ ⎪ ⎩ ∂ t θ n+1 + v n • ∇θ n+1 + |D| α θ n+1 = 0, v n = (-R 2 θ n , R 1 θ n ), θ n+1 (0, x) = S n θ 0 (x), (θ 0 , v 0 ) = (0, 0).

Global existence

It is plain from Theorem 1.2 that to derive global a priori estimates it is sufficient to bound globally in time the quantity V (t) := ∇v L 1 t L ∞ . First, using the embedding Ḃ0 ∞,1 → L ∞ and Bernstein inequalities we obtain

∇v L 1 t L ∞ ∇v L 1 t Ḃ0 ∞,1 C θ L 1 t Ḃ1 ∞,1 . ( 17 
)
Combined with Theorem 1.2 this yields

V (t) C θ 0 Ḃ1-α ∞,1
e CV (t) .

Since the function V depends continuously in time and V (0) = 0 then we can deduce that for small initial data V does not blow up, and there exist C 1 , η > 0 such that

θ 0 Ḃ1-α ∞,1 < η ⇒ ∇v L 1 (R + ;L ∞ ) C 1 θ 0 Ḃ1-α ∞,1 , ∀t ∈ R + . ( 18 
)
Let us now show how to derive the a priori estimates. Take s s p c := 1 + 2 pα. Then combining Theorem 1.2 with (18) we get

θ L ∞ R + Ḃs p,1 + θ L 1 R + Ḃs+α p,1 C θ 0 Ḃs p,1 e C θ 0 Ḃ1-α ∞,1 C θ 0 Ḃs p,1 .
On the other hand we have from Proposition 6.2

∀t ∈ R + , θ(t) L p θ 0 L p .
Therefore we get an estimate of θ in the inhomogeneous Besov space as follows

θ L ∞ R + B s p,1 C θ 0 B s p,1
.

Using again Theorem 1.2 yields

θ L ∞ t Ḃ0 ∞,1 C θ 0 Ḃ0 ∞,1 e CV (t) C θ 0 Ḃ0 ∞,1
.

Thus we obtain for

p ∈ [1, ∞] θ L ∞ R + X s p C θ 0 X s p . ( 19 
)
For the velocity we have the following result.

Lemma 5.1.

For p ∈ ]1, ∞] there exists C p such that v L ∞ R + B s p,1 C p θ 0 X s p .
However, for p = 1 we have

v L ∞ R + Ḃs 1,1 + v L ∞ R + L p 1 C p 1 θ 0 B s 1,1 , ∀p 1 > 1.
Proof. Let p ∈ ]1, ∞[. Then we can write in view of ( 19)

v L ∞ R + B s p,1 v L ∞ R + Ḃs p,1 + -1 v L ∞ R + L p C θ L ∞ R + Ḃs p,1 + C v L ∞ R + L p C θ 0 B s p,1 + C v L ∞ R + L p .
Combining the boundedness of Riesz transform with the maximum principle

v L ∞ R + L p C p θ 0 L p .
Thus we obtain

v L ∞ R + B s p,1 C p θ 0 B s p,1 .
To treat the case p = ∞ we write according to the embedding Ḃ0 ∞,1 → L ∞ and the continuity of Riesz transform

-1 v(t) L ∞ C θ(t) Ḃ0 ∞,1
.

Combining this estimate with (19) yields

v L ∞ R + B s ∞,1 C θ 0 B s ∞,1 ∩ Ḃ0 ∞,1
.

Hence we get for all

p ∈ ]1, ∞] v L ∞ R + B s p,1 C p θ 0 X s p . ( 20 
)
Let us now move to the case p = 1. Since B s 1,1 → L p 1 for all p 1 1 then we get in view of Bernstein's inequality and the maximum principle

-1 v L p 1 C p 1 θ 0 L p 1 C p 1 θ 0 B s 1,1 . We eventually find that v ∈ L ∞ R + Ḃs 1,1 ∩ L ∞ R + L p 1 . 2
Let us now briefly sketch the proof of the continuity in time, that is θ ∈ C(R + ; X s p ). We should only treat the finite case of p and similarly one can show the case p = ∞. From the definition of Besov spaces we have

θ(t) -θ(t ) B s p,1 q<N 2 qs θ q (t) -θ q (t ) L p + 2 q N 2 qs θ q L ∞ R + L p .
Let > 0 then we get from [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] the existence of the number N such that

q N 2 qs θ q L ∞ R + L p 4 .
Thanks to Taylor's formula

q<N 2 qs θ q (t) -θ q (t ) L p |t -t | q<N 2 qs ∂ t θ q L ∞ R + L p C|t -t |2 N ∂ t θ L ∞ R + B s-1 p,1 .
To estimate the last term we write

∂ t θ = -|D| α θ -v • ∇θ.
In one hand we have |D| α θ ∈ B s-α p,1 → B s-1 p,1 . On the other hand since the space B s p,1 is an algebra (s > 2 p ) and v is zero divergence then

v • ∇θ B s-1 p,1 C vθ B s p,1 C v B s p,1 θ B s p,1 .
Thus we get ∂ t θ ∈ L ∞ R + B s-1 p,1 and this allows us to finish the proof of the continuity.

Local existence

The local time existence depends on the control of the quantity V (t) := ∇v L 1 t L ∞ . In our analysis we distinguish two cases:

• First case: s > s p c = 1 + 2 p -α.
We observe first that there exists r > 1 such that 1 + 2 p -α r s. From [START_REF] Resnick | Dynamical problem in nonlinear advective partial differential equations[END_REF] and according to the said Hölder's inequality we have

V (t) C θ L 1 t Ḃ1 ∞,1 Ct 1 r θ L r t Ḃ1 ∞,1 .
Using Theorem 1.2 we obtain

V (t) Ct 1 r θ 0 Ḃ1-α r ∞,1
e CV (t) .

Thus we conclude that there exist C 0 , η > 0 such that

t 1 r θ 0 Ḃ1-α r ∞,1 η ⇒ V (t) C 0 , ( 21 
)
and this gives from Theorem 1.2

θ L ∞ t B s p,1 + θ L 1 t Ḃ1+ 2 p p,1 C θ 0 B s p,1 . ( 22 
)
We point out that one can deduce from ( 21) that the time existence is bounded below

T θ 0 -r Ḃ1-α r ∞,1 . • Second case: s = s p c = 1 + 2 p -α.
By applying [START_REF] Oliver | The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier-Stokes equations with Besov class data in R 2[END_REF] to the (QG α ) equation with r = 1, p = ∞ and s = 1α we have under the condition

V (t) C 0 θ L 1 t Ḃ1 ∞,1 C q∈Z 1 -e -ct2 qα 2 q(1-α) θ 0 q L ∞ + C q∈Z 2 q(1-α) [ q , v • ∇]θ L 1 t L ∞ .
The second term of the right-hand side can be estimated from Lemma 2.1 as follows

q∈Z 2 q(1-α) [ q , v • ∇]θ L 1 t L ∞ C v L 2 t Ḃ1-α 2 ∞,1 θ L 2 t Ḃ1-α 2 ∞,1 C θ 2 L 2 t Ḃ1-α 2 ∞,1 . ( 23 
)
Notice that we have used in the above inequality the fact that the Riesz transform maps continuously homogeneous Besov space into itself. Hence we get

θ L 1 t Ḃ1 ∞,1 C q∈Z 1 -e -ct2 qα 2 q(1-α) θ 0 q L ∞ + C θ 2 L 2 t Ḃ1-α 2 ∞,1 . ( 24 
)
Using again [START_REF] Oliver | The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier-Stokes equations with Besov class data in R 2[END_REF] with r = 2, p = ∞ and s = 1α, we obtain

θ L 2 t Ḃ1-α 2 ∞,1 C q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ + C q∈Z 2 q(1-α) [ q , v • ∇]θ L 1 t L ∞ . Thus (23) yields θ L 2 t Ḃ1-α 2 ∞,1 C q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ + C θ 2 L 2 t Ḃ1-α 2 ∞,1
.

By the Lebesgue theorem we have lim t→0 + q∈Z

1e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ = 0.

Let η be a sufficiently small constant and define

T 0 := sup t > 0, q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ η .
Then we have under the assumptions t T 0 and

V (t) C 0 θ L 2 t Ḃ1-α 2 ∞,1 2C q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ .
Inserting this estimate into (24) gives

V (t) C θ L 1 t Ḃ1 ∞,1 C q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ + C q∈Z 1 -e -ct2 qα 1 2 2 q(1-α) θ 0 q L ∞ 2 .
For sufficiently small η we obtain V (t) < C 0 and this allows us to prove that the time T 0 is actually a local time existence. Thus we obtain from Theorem 1.2

θ L ∞ T B s p c p,1 + θ L 1 T Ḃ1+ 2 p p,1 C θ 0 B s p c p,1 .

Uniqueness

We shall give the proof of the uniqueness result which can be formulated as follows. There exists at most one solution for the system (QG α ) in the function space

X T := L ∞ T Ḃ0 ∞,1 ∩ L 1 T Ḃ1 ∞,1 . We stress out that the space L ∞ T X s p ∩ L 1 T Ḃs+α p,1 , with p ∈ [1, ∞], is continuously embedded in X T .
Let θ i , i = 1, 2 (and v i the corresponding velocity) be two solutions of the (QG α ) equation with the same initial data and belonging to the space X T . We set θ = θ 1θ 2 and v = v 1v 2 , then it is plain that

∂ t θ + v 1 • ∇θ + |D| α θ = -v • ∇θ 2 , θ| t=0 = 0.
Applying Theorem 1.2 to this equation gives

θ(t) Ḃ0 ∞,1 Ce C ∇v 1 L 1 t L ∞ t 0 v • ∇θ 2 (τ ) Ḃ0 ∞,1 dτ. ( 25 
)
We will now make use of the following law product and its proof will be given later.

v • ∇θ 2 Ḃ0 ∞,1 C v Ḃ0 ∞,1 θ 2 Ḃ1 ∞,1 . ( 26 
)
Since the Riesz transform maps continuously Ḃ0 ∞,1 into itself, then we get

v • ∇θ 2 Ḃ0 ∞,1 C θ Ḃ0 ∞,1 θ 2 Ḃ1 ∞,1
.

Inserting this estimate into (25) and using Gronwall's inequality give the wanted result.

Let us now turn to the proof of (26) which is based on Bony's decomposition [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] v

• ∇θ 2 = T v ∇θ 2 + T ∇θ 2 v + R v, ∇θ 2 , with T v ∇θ 2 = q∈Z Ṡq-1 v • ∇ ˙ q θ 2 and R v, ∇θ 2 = q∈Z i∈{∓1,0} ˙ q v • ˙ q+i ∇θ 2 .
Using the quasi-orthogonality of the paraproduct terms one obtains

T v ∇θ 2 Ḃ0 ∞,1 C q∈Z Ṡq-1 v L ∞ ˙ q ∇θ 2 L ∞ C v Ḃ0 ∞,1 θ 2 Ḃ1 ∞,1
.

By the same way we get

T ∇θ 2 v Ḃ0 ∞,1 C q∈Z Ṡq-1 ∇θ 2 L ∞ ˙ q v L ∞ C ∇θ 2 L ∞ v Ḃ0 ∞,1 C θ 2 Ḃ1 ∞,1 v Ḃ0 ∞,1
.

For the remainder term we write in view of the incompressibility of the velocity and the convolution inequality

R v, ∇θ 2 Ḃ0 ∞,1 = j ∈Z ˙ j R v, ∇θ 2 L ∞ C q j -3 i∈{∓1,0} 2 j ˙ q v L ∞ ˙ q+i θ 2 L ∞ C q j -3 i∈{∓1,0} 2 j -q ˙ q v L ∞ 2 q ˙ q+i θ 2 L ∞ 18 C ∇θ 2 L ∞ v Ḃ0 ∞,1 C θ 2 Ḃ1 ∞,1 v Ḃ0 ∞,1
.

This completes the proof of (26).

Appendix

The following result is due to Vishik [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] and was used in a crucial way for the proof of Theorem 1.2. For the convenience of the reader we will give a short proof based on the duality method. Lemma 6.1. Let f be a function in Schwartz class and ψ be a diffeomorphism preserving Lebesgue measure, then we have for all p ∈ [1, +∞] and for all j, q ∈ Z, ˙ j ( ˙ q f • ψ) L p C2 -|j -q| ∇ψ (j,q) L ∞ ˙ q f L p , with (j, q) = sign(jq).

We shall begin with the proof of Lemma 6.1.

Proof of Lemma 6.1. We distinguish two cases: j q and j < q. For the first one we simply use Bernstein's inequality

˙ j ( ˙ q f • ψ) L p 2 -j ∇ ˙ j ( ˙ q f • ψ) L p .
It suffices now to combine Leibnitz's formula again with Bernstein's inequality

∇ ˙ j ( ˙ q f • ψ) L p ∇ ˙ q f L p ∇ψ L ∞ 2 q ˙ q f L p ∇ψ L ∞ .
This yields to the desired inequality. Let us now move to the second case and use the following duality result

˙ j ( ˙ q f • ψ) L p = sup g L p 1 ˙ j ( ˙ q f • ψ), g , with 1 p + 1 p = 1. ( 27 
)
Let φ ∈ C ∞ 0 (R d ) be supported in a ring and taking value 1 on the ring C (see the definition of the dyadic decomposition). We set ¯ q f := φ 2 -q D f.

Then we can see easily that ˙ q f = ¯ q ˙ q f . Combining this fact with Parseval's identity and the preserving measure by the flow ˙ j ( ˙ q f • ψ), g = ˙ q f, ¯ q ( ˙ j g) • ψ -1 .

Therefore we obtain

˙ j ( ˙ q f • ψ), g ˙ q f L p ¯ q ( ˙ j g) • ψ -1 L p .
This implies in view of the first case ˙ j ( ˙ q f • ψ), g ˙ q f L p 2 j -q ∇ψ -1 L ∞ ˙ j g L p ˙ q f L p 2 j -q ∇ψ -1 L ∞ g L p .

Thus we get in view of (27) the wanted result. 2

Next we give a maximum principle estimate for the equation (TD α ) extending a recent result due to [START_REF] Córdoba | A maximum principle applied to quasi-geostrophic equations[END_REF] for the partial case f = 0. The proof uses the same idea and will be briefly described. Proposition 6.2. Let v be a smooth divergence free vector field and f be a smooth function. We assume that θ is a smooth solution of the equation 

1 ,Theorem 1 . 1 .

 111 in which the global well-posedness is established for small initial data in B s 2,∞ ∩ B s p,∞ , with s > 2α and p = 2 N . The main goal of the present paper is to study existence and uniqueness problems in the super-critical case when initial data belong to the inhomogeneous critical Besov spaces B 1+2/p-α p,with p ∈ [1, ∞]. Our first main result reads as follows. Let α ∈ [0, 1[, p ∈ [1, ∞] and s s p c , with s p c = 1 + 2

Remark 3 .

 3 The estimates of Theorem 1.2 hold true for Besov spaces Ḃs p,m , with m ∈[1, ∞]. The proof can be done strictly in the same line as the case m = 1. It should be also mentioned that we can derive similar results for inhomogeneous Besov spaces.Notation. Throughout the paper, C stands for a constant which may be different in each occurrence. We shall sometimes use the notation A B instead of A CB and A ≈ B means that A B and B A.

Proposition 3 . 1 .

 31 Let f ∈ Ḃα p,1 with α ∈ [0, 1[ and p ∈ [1, +∞], and let ψ be a Lipshitz measurepreserving homeomorphism on R d . Then there exists C := c(α) such that

  ∂ t θ + v • ∇θ + κ|D| α θ = f, with κ 0 and α ∈ [0, 2]. Then for p ∈ [1, +∞] we have θ(t) L p θ(0) L p + t 0 f (τ ) L p dτ. Proof. Let p 2, then multiplying the equation by |θ | p-2 θ and integrating by parts lead to κ |θ | p-2 θ |D| α θ dx = f |θ | p-2 θ dx. On the other hand it is shown in [9] that |θ | p-2 θ |D| α θ dx 0. Now using Hölder's inequality for the right-hand side f |θ | p-2 θ dx f L p θ p-1 L p .

We can deduce the result by integrating in time. The case p ∈ [1, 2[ can be obtained through the duality method. 2 Remark 4. When this paper was finished we had been informed that similar results were obtained by Chen et al. [START_REF] Chen | A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation[END_REF]. In fact they obtained the global well-posedness result for small initial data in Ḃs p c p,q , with p ∈ [2, ∞[ and q ∈ [1, ∞[. For the particular case q = ∞ our result is more precise. Indeed, first, we can extend their result to p ∈ [1, ∞] and second our smallness condition is given in the space Ḃ1-α ∞,1 which contains Besov spaces { Ḃs p c p,1 } p∈ [1,∞] .