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Abstract. Of course not for an ideal H−− atom. But with the help of an in-
tense homogeneous magnetic field B, the question deserves to be reconsidered.
It is known (see e.g. [BSY, BD]) that as B → ∞ and in the clamped nucleus
approximation, this ion is described by a one dimensional Hamiltonian

N∑

i=1

−∆i

2
− Zδ(xi) +

∑

1≤i<j≤N

δ(xi − xj) acting in L2(R3) (1)

where N = 3, Z = 1 is the charge of the nucleus, and δ stands for the well
known “delta” point interaction. We present an extension of the “skeleton
method”, see [CDR1, CDR2], to the case of three degree of freedom . This is
a tool, that we learn from [R] for the case N = 2, which reduces the spectral
analysis of (1) to determining the kernel a system of linear integral operators
acting on the supports of the delta interactions. As an application of this
method we present numerical results which indicates that (1) has a bound
state for Z = 1 and N = 3.
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1 Introduction

It is known by Lieb’s inequality [L] that an atom with a nucleus charge Z and
an infinite nuclear mass can bind at most N electrons with N < 2Z + 1, so that
the answer to the question posed in the title is no for such an atom. Even it
is strongly believed and numerically and experimentally verified that the bound
should be N ≤ Z + 1. However if one puts the atom in an intense homogeneous
magnetic field the number of electrons that can be bound by a nuclear charge Z
may increase drastically. The Hamiltonian in such conditions reads

HB(N,Z) :=

N∑

j=1

(−i∇j − 1
2B ∧ rj)2

2m
− Z

|rj |
+

∑

1≤j<k≤N

1

|rj − rk|
, (2)

where rj is the position of the jth electron with respect to the fixed nucleus and
B is a constant magnetic field of strength B. If one introduces the critical number
of electrons as (spect dX stands for discrete spectrum of X)

Nc(B,Z) := max{N, spect dH
B(N,Z) 6= ∅}

it was shown in [LSY, Th. 1.5] that

lim inf
Z& B

Z3 →∞

Nc(B,Z)

Z
≥ 2

and they conjectured that the above limit should be indeed 2. The main moti-
vation of the present work is to start the study of the ratio N/Zc(B,N) with

Zc(B,N) := inf{Z, spect dH
B(N,Z) 6= ∅}

for finite Z and N and large B in order to explore how many electrons a charge
Z can bind thanks to this strong magnetic field.

The mechanism by which this binding enhancement occurs is well understood:
high intensity magnetic fields make the atom one dimensional. It has even been
shown, see [BD, Th.1.5], that HB(N,Z), restricted to any fixed total angular
momentum along the magnetic field axis, is asymptotic in the norm resolvent
sense to a rescaled version of (1) as B → ∞, at least for spectral parameters
in a suitable neighbourhood of the bottom of the spectrum of HB(N,Z). Thus
if we prove that (1) has a discrete eigenvalue for a given charge Z, we can
guarantee that this remains true forHB(N,Z), for a large enough intensity of the
magnetic field B. To appreciate the importance of this binding enhancement we
shall compare the ratio N/Zc(B = ∞, N) with the same ones for zero magnetic
field with bosonic statistics, see Table 1.

As often in these atomic problems it is convenient to work with the following
rescaled version of (1)

h(N,λ) :=

N∑

i=1

−∆i

2
− δ(xi) + λ

∑

1≤i<j≤N

δ(xi − xj), λ :=
1

Z
. (3)
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We also remark that to prove the existence of a bound state for N = 3 we
need only consider h := h(3, Z) in the bosonic sector, see [BD, Th. 1.8 and the
discussion in §IX], providing we take the part of HB(N,Z) with total angular
momentum with respect to the magnetic field axis M ≥ 1

2N(N − 1) with N = 3,
i.e. M ≥ 3.

2 Simple variational approaches

We define a critical value of Z attached to (1) as follows

Ẑ(N) := inf{Z, spect dh(N,λ =
1

Z
) 6= ∅}

which may be considered according to the discussion in §1 as Zc(B = ∞, N). It
is natural to try to find a wave function Ψ so that (hΨ, Ψ) is below Σ(Z = 1/λ),
the infimum of the essential spectrum of h; Σ(Z), which, by the HVZ theorem, is
equal to inf h(2, λ), is known only numerically but thanks to the skeleton methods
of Rosenthal, [R, Table I], the curve Z → Σ(Z) is known with a fairly good
accuracy, sufficient for our purposes, see the solid curve in Figure 1 below. The
trial function we take is Ψ(x) := Pbose

∏3
i=1 aie

−|ai|xi , ai > 0 where Pbose denotes
the projector on the functions which are invariant under the exchange of particles.
With a1 = a2 = a3 = a one gets: (hΨ, Ψ) = 3

2a
2 − 3a+ 3λ

2 a and optimizing over
a leads to (hΨ, Ψ) = −3

8(λ − 2)2. Requiring that this value is below Σ gives

Ẑc(3) ≤ 1.75. Then with a two parameter function with a1 = a2 = a and a3 = b
we get

(hΨ, Ψ) =
2a3b+ 4a2b2

(a+ b)2
− 4a2b

(a+ b)2
− 4ab

a+ b
+ λ

(
8a2b

(3a+ b)(a+ b)
+

ab

a+ b

)
.

Looking for the highest possible value of λ so that (hΨ, Ψ) is below Σ by a
“contour plot”, gives Ẑc(3) ≤ 1.45. We have also done the computation with
three parameters and obtained Ẑc(3) ≤ 1.32. One could of course try more
elaborate trial functions; we prefer instead to switch to:

3 The skeleton method

Let τi, resp. τi,j denote the trace (restriction) operators to the plane xi = 0, resp.
xi = xj . To identify these planes with R2, we choose an oriented basis in each of
them as follows: let {A1, A2, A3} denote the canonical basis of R3

equ. basis normal trace op.

x1 = 0 b(1) := {A2, A3} A1 τ1
x2 = 0 b(2) := {A3, A1} A2 τ2
x3 = 0 b(3) := {A1, A2} A3 τ3
x1 = x2 b(4) := {A1+A2√

2
, A3} −A2+A1√

2
=: A4 τ4 := τ1,2

x2 = x3 b(5) := {A2+A3√
2
, A1} −A3+A2√

2
=: A5 τ5 := τ2,3

x3 = x1 b(6) := {A3+A1√
2
, A2} −A1+A3√

2
=: A6 τ6 := τ3,1

.
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and define: (τiΨ)(s) = ψ(s1b
(i)
1 + s2b

(i)
2 ). Let H1(R3) denote the usual

Sobolev space and τ : H1(R3) → ⊕6
i=1L

2(R2) be defined by τΨ :=
(τ1Ψ, τ2Ψ, τ3Ψ, τ1,2Ψ, τ2,3Ψ, τ3,1Ψ). Let h0 := −∆/2 acting on L2(R3) and r0(E) :=
(h0 − E)−1 its resolvent. One can rewrite h := h(3, λ) in the sense of quadratic
forms as h = h0+τ⋆gτ where g stands for the 6×6 diagonal matrix with diagonal
(−1,−1,−1, λ/

√
2, λ/

√
2, λ/

√
2). If we let r(E) := (h−E)−1 then one has using

the second resolvent equation that r(E) = r0(E) − r0(E)τ⋆S(E)−1τr0(E) with
S(E) := g−1 + K(E) and K(E) := τr0(E)τ⋆. We shall use a theorem (see e.g.
[CDR2, Th. 2.3] for a proof) which asserts that

Σ(Z) > −k2 ∈ spect dh ⇐⇒ kerS(−k2) 6= {0}. (4)

It will be easier to work in the Fourier image and to perform a scaling so that

S(−k2) appears to be unitarily equivalent to k(g−1k+K̂(−1)). In view of (4) we

have to find k >
√
−Σ so that ker g−1k+ K̂(−1) 6= {0} where the hat stands for

the Fourier transform. Such a spectral problem in k is sometimes call an operator

pencil. We shall call g−1k + K̂(−1) the skeleton of h. K̂(−1) is a 6×6 matrix of
integral operators on L2(R2). To give a flavour we explicitly write down two of

them; with the notations: T0 := K̂i,i(−1), Ti,j := ̂τir0(−1)τ⋆
j

T0(p, q) = τir̂0(−1)τ⋆
i =

δ(p− q)√
p2 + 2

, T1,2(p, q) =
δ(q1 − p2)

π
(
(p2

1 + p2
2 + q22) + 2

) .

It turns out that these integral operators Ti,j depend mostly on the angle between
the planes on which τi and τj operate their restriction. That is why we adopt
the following notations: Tπ

2
= T1,2, Tπ

4
= T1,4, T̃π

2
:= T1,5, Tπ

3
= T4,5. Thanks

to the fact that we are working in the bosonic sector, the skeleton reduces by
symmetry to 

−k + T0 + 2T ♯
π

2

3T ♯
π

4

3(T ♯
π

4

)⋆
√

2
λ
k + T0 + 2Tπ

3


 (5)

with (εψ(p, q) := ψ(q, p)) T ♯
π

2

:= 1
2

(
Tπ

2
+ T ⋆

π

2

)
, T ♯

π

4

:= 1
3

(
(1 + ε)Tπ

4
+ T̃π

2

)
. Mul-

tiplying (5) on the left by the diagonal matrix with diagonal (1, λ/
√

2) we arrive
at a classical but non selfadjoint eigenvalue problem. We analyse its spectrum
numerically using the set of 9 trial functions Φβ(p) := ϕβ1

(p1)ϕβ2
(p2), with

β ∈ {0.27, 1.7, 6}2 and ϕβi
(u) := exp(−βiu

2), u ∈ R. We get the highest (gen-
eralized) eigenvalue k of (5) as a function of λ see Figure 1. This shows that

Ẑc(3) ≤ 0.86.

Although we do believe that this value 0.86 is very likely to be an upper bound
on Ẑc(3) we warn the reader that beside the uncertainty due to numerics there
is also a gap in our reasoning since we are not yet able to justify our use of
variational technics for a non selfadjoint operator.
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Figure 1. On the letf: the dotted line gives the highest eigenvalue of (5) and the solid line

the essential spectrum of (3). On the right: the square dots stand for the energy of the three

electrons atoms in R
3 with bosonic statistics obtained by the Diffusion Monte Carlo method

[BMBM] and the circle dots for the corresponding two electrons system.

Table 1. Critical ratio

N 2 3

N/Zc(0, N) 2.19 1.71

N/Ẑc(N) 5.31 ≥ 3.48

4 Conclusions

As announced in the introduction, we display in Table 1 the numbers of electron
per unit of nucleus charge at the critical values of these charges.

We have used Zc(0, 2) ≃ 0.9112 from [StSt, (2.12) and references therein] and
Ẑc(2) ≃ 0.377 from [R]. Ẑc(3) has been studied in §3. In order to estimate the
critical charge Zc(0, 3) for binding three bosonic electrons we used the Diffusion
Monte Carlo method [BMBM], which is known to give exact results, within the
statistical uncertainty of the method, for bosonic systems. This method employs
a guided random walk that sample the exact, unknown ground state function.
To guide the random walk and reduce the statistical uncertainty of the results
we used a properly symmetrized guiding function of the kind

Ψ = Pbose

3∏

i=1

exp(−|ai|ri)
∏

i<j

exp(bi,jri,j/(1 + ci,jri,j)).

The parameters have been optimized for each value of λ = 1/Z. We performed
simulations for λ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Comparing the energies with the
corresponding ones of the 2-body system we located the critical λ between 0.5
and 0.6. In order to locate it more precisely we performed additional simulations
in that interval, at steps of 0.025, fitted the results, for both two and three body
systems, with quartic polynomials and computed the intersection. We estimate
λc = 0.570, see Figure 1 on the right.
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