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ESTIMATION OF THE DENSITY OF REGRESSION ERRORS BY
POINTWISE MODEL SELECTION

S. PLANCADE

ABSTRACT. This paper presents two results: a density estimator and an estimator of
regression error density. We first propose a density estimator constructed by model
selection, which is adaptive for the quadratic risk at a given point. Then we apply
this result to estimate the error density in an homoscedastic regression framework Y; =
b(X;) + €;, from which we observe a sample (X;,Y;). Given an adaptive estimator b
of the regression function, we apply the density estimation procedure to the residuals
€ =Y — /b\(Xl) We get an estimator of the density of €¢; whose rate of convergence for
the quadratic pointwise risk is the maximum of two rates: the minimax rate we would
get if the errors were directly observed and the minimax rate of convergence of b for the
quadratic integrated risk.
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MSC 2000 Subject Classifications. 62G07-62G08
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1. INTRODUCTION

Consider a sample (X;,Y;) from the homoscedastic regression framework:
(1) Y = b(Xi) + &

where the (¢;) are unobserved independent identically distributed (i.i.d.) data with com-
mon density f, with zero mean and independent of the (X;). The main goal of this paper
is to propose an estimator for the density of ¢;, and to provide an upper bound for the
quadratic risk of this estimator at a fixed point xg.

The main issue in regression problems is to predict Y; by measuring only X;. The first
step in such study is the estimation of the regression function b(z) = E[Y|X = z]. This
question has already been studied at length. The second step consists in studying the
variations of Y; around its conditional mean, which are characterized by the density of the
errors (¢;).

The knowledge of an estimator of the error density has many applications: for example,
it allows model validation and, combined with an estimator of the regression function, it
provides confidence intervals for future observations Y. The reader is referred to Efro-
movich (2005) for practical applications. Many papers are devoted to density estimation
but the difficulty in our problem is to estimate the density from a sample (¢;) which is not
observed. The natural approach consists in computing proxies of the (¢;), i.e. quantities
based on the data which estimate the true (¢;), and applying to them a density estimation
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2 S. PLANCADE

procedure as if they were the true error sample. Observing that ¢; = Y; — b(X;), we natu-
rally estimate the errors by the residuals (¢; = Y; — b(X;)), where b is an estimator of the
regression function. Efromovich applies this strategy with a thresholding density estima-
tion procedure (see for example Efromovich (2005)). He gets an estimator of the density
of the (¢;) whose L?-risk reaches the same minimax rate of convergence we would obtain
if the (¢;) were observed. Nevertheless, this result requires strong conditions of regularity
on the regression function b, and on the density of the (X;) and (¢;). Another estimator is
built in Plancade (2008) by model selection. Its L?-risk has a rate equal to the maximum
of the minimax rates of estimation of b and f if the sample (¢;) was observed. Let us also
mention the papers Akritas and Keilegom (2001) and Kiwitt et al. (2008) which propose
estimators of the regression errors distribution functions. But to the author’s knowledge,
no paper studies pointwise estimation of the error density by any method.

The estimators presented in this paper are based on a pointwise model selection pro-
cedure. Model selection theory has been initiated by Birgé and Massart (see for example
Birgé and Massart (1998)), and adapted to regression function estimation in Baraud (2002)
in the study of integrated quadratic risks. We will use here the estimator bofb proposed
in Baraud (2002), constructed by a model selection procedure based on least square esti-
mators. Although the principle of pointwise model selection is the same, the techniques
to carry it out are different. In particular, the key tool to prove the adaptivity of classical
model selection estimators is the Talagrand inequality, whereas the adaptivity of pointwise
model selection estimators comes out of a simpler Bernstein inequality. The techniques
developed in this paper are based on Laurent et al. (2008), in which they develop these
methods in a different framework.

This paper presents two results. On the one hand, we build a density estimator which
proves to be adaptive for the pointwise risk over some classical classes of regularity. Such
estimators have been constructed using kernel methods in Butucea (2001), with the same
adaptivity properties, along with minimax results over Sobolev classes. Nevertheless, our
estimator is completely data driven, whereas the estimation procedure in Butucea (2001)
brings into play upper bounds on unknown quantities. The second result proceeds from
the application of the above density estimation procedure to residuals from the framework
(1). We get an estimator of the error density, whose pointwise rate of convergence is the
maximum of these two rates: the pointwise minimax rate of estimation of f we would get
if the errors (¢;) where observed and the L?-minimax rate of estimation of b.

The paper is organized as follows. Section 2 presents the estimator of the error density
and the main result. The theoretical tools used to obtain this result are described in
Sections 3 and 4. More precisely, Section 3 is devoted to the construction of a density
estimator by pointwise model selection, and the study of its convergence properties. In
Section 4, we present an estimator of the regression function and apply the density estima-
tion procedure described in Section 3 to the residuals. Section 5 is dedicated to numerical
results. Most of the proofs are gathered in Section 6.



ESTIMATION OF THE DENSITY OF REGRESSION ERRORS 3

2. MAIN RESULT

2.1. Notations. Let ¢ be a function defined on an interval I of R and p be a density on
I. We consider different norms of ¢:

e = sup (o). WW—(%ﬁ@MQU{ me(ﬁﬂmmmmﬁwa

Besides, we consider the following spaces of functions over I:
LXI):={t: I =R, |t| < 400}, LX) :={t:I =R, ||t|lec < +0c0}.

If ¢ is a function k times differentiable, we denote by ¢t(¥) its k-th derivative.

For every set A, we denote by 114 the indicator function of A, that is l4(x) =1ifz € A
and 1 4(z) = 0 otherwise.

For every function ¢ : R — R, we denote by t* the Fourier transform of ¢:

t*(u) = / t(x)e " dr, Yu€R
T€R

For every linear space S,, we denote by t,, the L?-orthogonal projection of ¢t onto S,y,.
We consider the following Sobolev classes, for every «a, L > 0:

W(a, L) = {F € L*(R), % /IR |F* () Pu2du < L2,

The Holder classes are defined as follows. For every 3,L > 0 , and r the largest integer
less than g3, let:

H(B,L) = {F € L*(R),|[F"(x) = F"(y)| < Llz — y|°*~",Va,y € R}
Finally, for every x € R, we denote by E(x) its integer part, that is F(z) € Z and:
E(z) <z < E(xz)+1.

All throughout the paper, C; denotes a universal numerical constant, and C, C’, C” denote
numerical constants which only depends on the given constants of the problem and may
change from one line to another.

2.2. Assumptions. We consider a 3n-sample (X, Y;)ic{—n,...~1}u{1,....2n} from the regres-
sion framework (1), where the (X;) are i.i.d, the (¢;) are i.i.d, independent of the (X;) and
E(e;) = 0. We suppose also that the following assumption holds.

Hy(f) : The density f is upper bounded by v := || f||s and is supported on I = R or
on a known compact set I, that we will suppose equal to [—1,1].

We define two collections of functions, one on R and one on [—1,1]
We consider collections of functions on R constructed from the sine-cardinal function:

o) = =20

For every m > 0, k € Z, we consider ¢, i(z) := /mo(ma — k) for every z € R, and A,,
is the following model:

(2) A = vect{ @, k € Z)

sin(mx)
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The collection of models incorporates the models A,, for m belonging to a grid of step
1/B, B being a fixed positive integer:

1
—N,m < M,}

n ‘= Am7
A { me &

and M, <n.

We consider also collections of functions on [—1, 1] constructed from the compact wavelet
decomposition. We only recall here the definition of wavelet bases, the reader is referred
to Meyer (1990) for more details. Let 1) be a function, called mother wavelet, supported
on a compact set [—B, B| of regularity r, which satisfies the following conditions:

1) 4,...,9) are bounded on [~ B, B]
2) For every 0 < k <r, and ¢ > 1 there exists a constant Cy such that:
[p®) (@) < Co(1 + |2))~", Vo € [-B, B]

3) f_BB zhp(x)de =0, VO<k<r,
4) The set of functions {1, : ® — 29/2¢(27/2x — k), (j, k) € Z?} is an orthonormal
basis of L?(R).
Consider a function ¢ called the father wavelet of regularity r and supported on [—B, B]
which satisfies Assumptions 1) et 2) above, and the following assumptions:

f pe(r)dr =1
4) The set of functions {¢y : ¢ — p(x — k), k € Z} U{¢jr,j € Nk € Z} is an
orthonormal basis of L?(R).

See Meyer (1990) for examples of such functions ¢ and ¢. The set {1, j > 0,k €
7} U{pk, k € Z} is an orthonormal basis of L?[—1,1]. As 1 is supported on [—B, B], the
restriction of ¥; . to [—1, 1] is identically equal to zero for all j € Nand k ¢ [—2/—B, 27+ B].
Let us denote I'(j) := Z N [~2/ — B,2/ + B]. Similarly, ¢y, is identically equal to zero for
all k ¢ [-B —1,B + 1] =I'(0). Finally, we consider the following models:

By, = vect ({1 5,7 =0,...,m — 1,k € (j)} U {pr, k € T(0)})
and the collection of models:
By, :={By,,m € N*, 2™ < M, }
with M, <n.
Proposition 2.1. 1) For every m > 0:

(3) 1Y milloo <

kEZ
2) There exists a constant K( ) such that, for every m € N*,

(4) HZ D vikt Z illee < K*(B)V2™.

J=0 kel'(j) kel (o

From now on, we use common notations for these two collections of models. The
collection M,, is A, if f is supported on R, and B, if f is supported on [—1,1]. We denote
by S, the model A,, or By, and M,, = {S,,,m € J,}. Moreover, we denote by :

Sm = vect(xa, A € Iy}
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where the functions x) denote the 1;; and the ¢, or the ¢,, . Thus according to
Inequalities (3) and (4), we have:

1> X3l < K*Dyy
el
with D,, = m and K =1 for the sine-cardinal models, and D,, = 2™ and K = K(B) for
the wavelets models.
We make different assumptions, for the cases of f supported on R or on a compact set :

H;(08) : Take I =R, we consider the collection of model M,, = A,,. We assume that there
exist 3 > 0 and Cy > 0 such that for every model A,, € A,, the L?-orthogonal
projection f,, of f onto A,, satisfies:

Hf - fm”oo < CO‘D'I’_I’Lﬁ

Moreover, we suppose that f is Lipschitz, i.e. there exists a constant L > 0 such
that for every x,y € I, |f(x) — f(y)| < Ljz — y|.

The following Proposition gives conditions ensuring that Assumption H; holds. The
proof is given in Section 7.

Proposition 2.2. If f € W(a, L) with o > 1/2, then ||f — fmlloo < D&Y2. Moreover,
if « > 3/2 then f is Lipschitz.

H>(3) : Take I = [—1, 1], we consider the collection of models M,, = B,, with regularity r,
and we suppose that f € H(3, L) for some 1 < 3 <r and L > 0.

2.3. Construction of the estimator and main result. In this subsection, we give
the definition of the estimator of f, the heuristical motivation concerning its construction
being developed in the following sections. Let xg be a fixed point in I. We split the sample
(X4, Yi)ie{—n,...~1}U{1,....n} into three independent samples:

(5) Z7 = (Xi,Yi)e(—n,..—1}> Zg§ = (Xi, Yi)ieq1,...2n} zZf = (X, Yi)ietn+1,...2n}

Let b be any estimator of b built out of the first sample Z~. An example of such an
estimator is given in Section 4. Consider the residuals from the second sample:

G=Y; —b(X;), ie{l,...,2n}

Given Z~, the (€) are i.i.d. with common density denoted by f~.

Let 7, be an estimator of v~ = ||f || built from the sample Z;" such that the
probability P[{v~/2 < 1, < 2v~}¢] decreases exponentially in n. We give an explicit
construction of 7, in Section 3.5.

For every model S,,, = vect{xx, A € I,,}, we consider the projection density estimator
associated to the sample (€;):

~ 1 & N
(6) Fn=> (n ZXA(Q)) XA
el i=1
The selected model is:

~ ~ D,, + D; Dy,
(7) A—arg min | sup  {(F7 — Fin)2(w0) — Awy iy Zm
n

SN+ AR a0,
MEJIn | j€ T, j>m n
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where A is a positive constant, and (z,,) and (xj,,) are weights of order In(D,,) and
In(Dj + D,,) more precisely described in (19) and (20).

Finally, we define the following numerical constants, depending on the collection of
models:

D _
(8) o =[5 +1Dl +In(1+ D))t
where Dy = min{D,,, m € M,} and:

— 1/(1+4x)
) o T

and we consider a positive number a3 such that:

1/3

agz 2 ay “as.

We have ap < 1.4, and D; < 1 so that oy < (1/2 4 In2)~!. This implies that az = 1.4
works.
We can prove the following result for our estimator:

Theorem 2.1. We suppose that Assumption Ho(f) holds. Moreover, we suppose that
either Hy(3) or Ha(B) hold for some 3 > 1, with M, = E(asn'/3) + 1. Then

e 9 n o (__ 26 ~9
(10) B[(f — /)2 (0)] < w(o—) " + SB[~ B2
for some constant k and k' depending on the parameters of the problem but not on n.

Comments: Suppose that f € W (3, L) for some 3 > 3/2, then (10) holds.
On the one hand, Butucea (2001) proves that the minimax rate of estimation of a

_2p-1
density over Sobolev class W (3, L) is n~ 26 . She also proves that the adaptive minimax
rate of convergence (which is the best rate of convergence for adaptive estimators over all

classes of convergence W (3, L)) is (n/In n)_%.

On the other hand, we present in Section 4 an adaptive estimator b of b which reaches
the minimax rate over Besov balls, from Baraud (2002).

Thus, the rate of convergence of our estimator is the maximum of the two following
rates:

e the minimax rate of estimation of b over Besov balls.
e the minimax rate of estimation we would obtain for f if the (¢;) were directly
observed.

An analogous comment holds if Assumption Ha((3) holds.

3. DENSITY ESTIMATION BY POINTWISE MODEL SELECTION

In this section, we present a density estimation procedure which products adaptive
estimators for the pointwise risk. This procedure is the one which is applied to the pseudo
observations €; of e;.

The results of this section require weaker assumptions on regularity than the error
density estimation, and are staten for a more general collection of models. The assumptions
considered here are satisfied in particular by the collections defined in Section 2. We
consider a collection of model M,, = {S,,, m € J,,} which satisfies:
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Hgens(3) : For every m € J,, and {xx, A € I,} an orthonormal basis of S,,, there exists an
positive number D,,, such that:

(11) Hf - fm”oo < COD;mﬁ

(12) 1> Bl < K/ Do

AElm,

for some K > 0. We denote by M,, = max,cj, Dy, and we suppose that M, <n.
Moreover, we suppose that the collection M,, si rich enough. More precisely, we
assume that there exists a constant M > 1 such that for every n, for every a €]0, 1]
such that n®M < M, there exists a model m and

(13) n® < D,, < Mn®

Remark: The Property (13) is satisfied by the collections described in Section 2, and by
most of the clasical collections.

3.1. A preliminary risk bound. Let (Vi,...,V5,) be a ii.d. sample drawn from a
density g, split into two samples:

(14) Zy = (%)i6{17...,n}7 Zy = (‘/i)ie{n—&—l...,Qn}

Let zp be a fixed point in I. For every model m € M,, let g, be the projection
estimator of g on S,, from the sample Zy:

(15) =3 G 0
Aelm =1

Let g, be the L2-projection of g onto S,,. Observing that E[g,,(z0)] = gm (7o), we get the
following bias-variance decomposition for every model m:

E[(Gin — 9)*(x0)] = E[(Gm — 9m)*(x0)] + (gm — 9)*(x0)

On the one hand, the variance term is replaced by a bound obtained thanks to (13) in
Hgens(3). Indeed:

E[(Gim(20) — gm(20))*) = Var[ > _ ( ZX/\ )xa(zo)] = Var[— Z > (V)xa(o)]

ALy, i=1 =1 AEln,
As the (V;) are i.i.d. we get:
El(@n (@) — gm(@0)?] = ~Varl Y xa(V)xa(eo)]
el
< CE(Y a0 = [ (3 @) o)
Aelm €R el
< HgHOO Z Xa()xa(z0))?d.

z€R el
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We develop the square in the integral:

B{@n(o0) ~ )] < 2= S0 ([ sa(ehortadadio o)

AN ELy,
Using that the functions (x)) are orthonormal and (13) leads to:
o Dm

~ g
El(Gn(z0) — gm(e0))?] < 1 57 32 () < K2g 2 = g2 P
ALy,

This bound is standard for a variance term. Finally, for every model m € .J,, we have the
following non adaptive bound for g,,:

(16) El(Gn — 9)°(20)] < (9~ 9 (20) + K20 2"

3.2. Construction of the adaptive estimator. The model selection procedure devel-
oped by Birgé and Massart relies on this idea: the best model among the collection M,
is the one which minimizes the squared bias-variance sum above, thus the natural idea
consists in building an estimator of the right hand side in (16) and selecting the model m
which minimizes it.

The term K2vD,,/n is estimated by K20, D,,/n where U, is an estimator of v defined
in Section 3.3.

Let us consider the bias term (g — g)?(z0). Contrary to the L?-bias term |lg — g ||? in
classical model selection procedure, the pointwise bias term (g, — ¢)%(zo) is not easy to
estimate. We replace (g, — g9)%(z0) by SUPjc 1,.D,;> Dy (95 — gm)*(70). Indeed, those two
terms have the same order according to (11) in Hgens(5):

sup (g5 — gm)*(z0) < sup (g5 — 9)*(20) + (gm — 9)*(20)
jGJn,DmSDj jEJnaDmSDjSMn
< sup CoDj_w + COD;fﬁ
]eJnmeSD]
(17) < 20,D;*

Then we define the best theoretical model as:

(18)  mgp :=arg min|[  sup  (g;(20) — gm(20))? + pen(m)] := arg min [Crit(m))]
meJn jeJ,,D;> Dy, meJn

where pen(m) := AK meﬁnDTm, A is a positive constant and x,,, a weight of order In(D,,).

More precisely

(19) T 1= max{By In(1 + Di); 22 n2(1 + Dy) 21
Up, n
where (B1, By) are constants with By > 16/4 and By > 128K?2/A. Asymptotically x,, =
Biln(1 + D).
Then, the natural idea would be to replace (g; — gm)?(z0) by (g — Gm)?(z0), one can
notice that this estimator is biased. In fact:

E[(@m — 5)*(x0)] = (95 — 9m)* (x0) + E[((Gj — Gm)(20) — (9j — gm)(20))’]
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and the last term is a variance-type term. Therefore we use the following bound:

EI(@ — Gn) @0) = (95— 9)(@0))!] < 2(EI@ — 93)(20)] + ElGn — gm) (20))
< oK gl 2D

The last inequality is established by the same upper bounds as (16). So (g; — gm)*(zo) is

Dj+D . .
z J; = where x; ,, is a weight

replaced by the positive part of (G, — g;)*(w0) — AK*Dp2jm,
of order In(1 + Dy, + D;):

B D; + Dy,
(20) Tjm = max{2B; In(1+ D; + Dy,); =2 In*(1+ D; + Dm)L

Un, n

.

Finally the selected model m is m = arg min,,eaq,, C/ﬁt(m) where:

— ~ —~ ~ D;+D
Q1) Crittm) = sup (G — Gn)(w0) — AK Do M, pen(m).
J€JIn,Dj>Dm n
Our estimator of g is gp.
3.3. Estimation of v. In this section, we propose an estimator v, of v = ||g||c con-

structed from the sample Z;. Let my be a medium-size model. More precisely, let
v €]1/3,1/2[ and my = min{m € J,, : Dy, > n"} and pg = D,,,,. We define:
Un = ||Gimo |loo
The following results hold:
Proposition 3.1. Suppose that Assumption Hgens(3) holds, and that for every model
m € My, the functions {xx)xer,, are continuous. Then for every n such that:
(Aq) Copo_ﬁ <v/6
Then there exists a numerical constant C7 such that:
~ C
(22) Plo, <v/2] < 2exp(—K—121/p£0)
If in addition:
Po v
A =< —
(Az) Vn = 3K?2

then there exist numerical constants Co, C3 and Cy such that:

~ Cy n Cs n3/? Cin
(23) Py, > 2v] < exp(—ﬁy%) + exp(_ﬁﬂﬁ) n eXp(_ﬁpTQ))

Comments:

1) There exists an integer N which depends on (K, 3,Cy) such that for every n > N,
(A1) and (Az) hold.

2) The condition of continuity of the () prohibits the piecewise continuous bases, like
for example the histograms. Nevertheless, similar upper bounds can be obtained with
localised bases, included the histograms. Besides, the collections of model in which 7, and
G, are computed can be different.
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3.4. Upper bound for the pointwise risk of gz;.

Theorem 3.1. Assume that Hgens(3), (A1) and (Az) hold, there exists a constant k
which depends on (o, B, Ba) such that the following inequality holds:

E[(Gn — 9)°(@0)] < k(14 0)(1) 2P 4 R,
with: R, = (1/—|—K2Mn)2exp(—@ﬂ)+(%)25/(25+1)K2p0[exp(—%l/pﬂo)—i—exp(—%ﬂ%
Cs n
exp(—x3 )]

Comments:

1) According to (13), po is of order O(n?Y) with v €]1/3,1/2[. Thus we get immediately
that R,, < C/n for some constant C' depending on (v, K, p).

2) If g € H(B,L) then g satisfies Hgens(3). Besides, Stone (1980) proves that the
minimax rate of convergence over the set of k£ times continuously differentiable functions
in density estimation is n~2k/(2k+1)  Tsybakov generalized this result to Holder classes of
functions for every § > 0 (see Tsybakov (2004)). Moreover Lepski and Spokoiny (1997)
show that the adaptive minimax rate of convergence over Holder classes for the white noise
model is (n/Inn)~28/(25+1)  This allows to believe that the adaptive rate of convergence
over Holder classes for density is also (n/Inn)=2%/(2#+1) So our estimator seems to be
adaptive over Holder classes.

According to the comments about Theorem 2.1, our estimator is also adaptive over
Sobolev classes.

3.5. Application to the estimation of the error density.

Now we go back to the initial issue, the estimation of the error density, and clarify the
estimator defined in Section 2. Let us recall that our goal is to build an estimator of the
error density f out of a sample (X;,Y;)i——p, . —1}uf1,..2n} from regression framework (1).
The sample is split into three independent samples Z~, Z;" and Z; defined in (5). Let b
be an estimator of b computed from the sample Z~ and & = Y; —B(Xi) forie {1,...,2n}

the residuals from the two other samples. Given Z~, b is fixed and the (€;) have a density
f~. Let us give f~ explicitly. Let F' be any function, then:

~

E[F(e1)|Z7] = E[F(e1+ (b—0)(X1))|Z7]
1 A~
_ / / Flt+ (b—B)(2)p(x) f(£)dadt
teR Jx=0
1 A~
_ / Flu) / Flu— (b— B)(@)(x)dwdu.
u€eER =0

Hence:
1 P
[ ()= /0 f(t—(b—="0b)(x)u(x)dz.

We can easily deduce from this expression that f~ is upper bounded by v~ := || f 7 ||oc < ¥
for every Z .
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Now, we apply the density estimation procedure presented in Section 3 to the sample
(€;). For every model m, let ]/";,_1 be the projection estimator defined in (6). Let mgy =
min{m : D,, > n7}, and:

VUn = [[fmg lloo-
Then the density estimation procedure is applied to the residuals and provides the esti-
mator J/“;;L, where m is the selected model (7).

Let us explain the basic guidelines of this result. The risk of the estimator J?% comes
from two consecutive approximations of different nature: the first one consists in replacing
the errors (¢;) by the residuals, and the second one is a density estimation error. These
two approximations appear in the following inequality:

(24) E[(f7 — £)*(z0)] < 2{E[(f7 — £7)*(z0)] + E[(f~ — £)*(z0)]}.
On the one hand, for a fixed sample Z~, we prove (see Lemma 6.3) that f~ satisfies

the Assumption Hgens(3) so

B[(fr = )2 (@0)|Z7] < w(s )= 2/@540 4 %

By taking the expectation over Z~, we get the first term in Theorem 2.1. Actually, the
constant C' depends on f~ and so on Z~ and we need to study it more carefully to obtain
this result (see Section 5).

On the other hand f~ is the density of € = ¢; + (b — b)(X;), so the difference between
f and f~ can be expressed in function of (b — b). More precisely, we will prove that:

E[(f = f7)*(w0)] < CE[[b - b]]?).
4. AN ADAPTIVE ESTIMATOR OF THE REGRESSION FUNCTION

In this section, we briefly exhibit an estimator b of b which suits to our setting. This
is the estimator which is implemented in the simulations. The regression function estima-
tor presented here results from Baraud’s works (see Baraud (2002) and Baraud (2000)),
gathered in Plancade (2008). Consider the following assumption:

Hjs : The density p of X; is supported on a compact J, and is lower bounded by a
mgo > 0 and upper bounded by m; < 4o00.

Let us consider a collection of finite dimensional models ¥,, which satisfies the following
assumptions:

Hy: %, is included in a global model S,, with dimension smaller than n'/2=4 for some
d > 0. Furthermore, there exists some nonnegative constants I' and R such that

[{m € My (resp.3,) : D,y = n} <TDFE
for every D € N*. Finally, there exists a constant K such that:
||t||00 S K V NnHtHa Vt € Sn
For every model m € ¥,,, let ?)\m be the least squares estimator of b:
-1
~ ] 1
bm = arg min y(t)  where  n(t) =~ > (V= (X)),

n .
1=—n
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and the selected model is M = arg minmes, [yn(bm) + where G2 is an estimator of
the variance of €;: let V}, be a space of dimension F(n/2) which includes the global model
Sn, then:

7B

1
02 = ————— inf (V; — t(X;))?
n n—E(n/2)tler}9n( (X:))

Let us define b = by, if ||bz|| < n and b = 0 otherwise then:
=~ D
2 . 2 24m
BlIb 121 < O inf (16— bnl + >0

Finally, classical results about approximation theory in Besov spaces lead to the following
statement: if b belong to the Besov space By, then E[||[b — b||2] < Cn~2%/(2a+1) - Thig
entails the following Corollary:

Corollary 4.1. Suppose that Assumptions Ho(f), Hy and H1(8) or Ha(5) hold, and
suppose that b € By with o > 8 — 1/2 then:
n 2

E[(J?ﬁ_@ - f)z(ﬂ«"o)] < Kk(——) 27

Inn

for some constant k independent from n.

In other words, if b is smoother than f, the rate of convergence of ﬁ% is the optimal
rate we would get if the (¢;) were directly observed.

5. SIMULATIONS

5.1. Density estimation. This section illustrates the density estimation procedure pre-
sented in Section 3, with the sine-cardinal collection of models A,, described in (2). We
choose B = 10 and M,, = \/n. We draw 50 samples (Vi,...,V,) of size n = 200, 500,
2000 of i.i.d. variables with gaussian distribution (denoted by N (0,1)) and with Laplace
density g(z) = 3 exp(—|z|) (denoted by £(1)). Let J be the set of 150 regularly spaced
points on [—5,5]. For each sample and for every point x € J we compute an estimator
9 (x) as follows, assuming that the maximum of the density v is known:

e First we compute the projection density estimators (gm(z)) for every m € 5N,
m < M, and every x € J (cf (15)).
e Then for every x € J, we select the best model as:

j+m

m = arg min{sup|(g; — Gm)*(z) —avin(l +j 4+ m) J+ + Brin(l+ m)%

jzm
with a =5 and g = 15.
e We plot the set of points {(x, gm(x)),z € J}
In Figure 1, each graph presents the 50 curves of g5 for a given density ¢g; and a given
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Vi~ N(0,1)

n=200 n=500

n=2000

Vi~ £(1)

n=200 n=500

n=2000

FIGURE 1. Beam of 50 density estimators curves (blue dotted lines) built
from i.i.d. samples of size n=200, 500 and 2000 of density N (0,1) and £(1)
(red thick line), in sine-cardinal bases.
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Figure 2 presents a comparison between our pointwise model selection estimator, and a
global model selection estimator, computed following the procedure developped by Massart
(2007), Section 7, for sample of size n = 500, 2000 with common density x?(3). The global
model selection estimator (dotted blue line) is computed in a mixed piecewise polynomial
an trionometric polynomial basis using matlab programs available on Yves Rozenholc’s
web page (http://www.math-info.univ-paris5.fr/ rozen/). The pointwise model selection
estimator (solid blue line) is built following the procedure described above, on the set .J
of 150 regularly spaced points on [—1, 15]. We observe that the pointwise model selection
estimator (in solid blue line) fits the true density (in red thick line) for a smaller sample
size than the global model selection estimator.

n=>500 n=2000

FIGURE 2. Pointwise model selection estimator (solid blue line) and global
model selection estimator (dotted blue line) for a sample of size n=500,
2000 of density x?(3) (red thick line)

5.2. Error density estimation. This section proposes illustrations of the error density
estimator described in Section 2, with the following procedure:

e We draw a sample (X7, ..., X9,) with common density fx uniform on [0,1] and
x%(3). We draw also a sample (ey,...,€2,) with common density f from a distri-
bution N(0,1) and £(1) . We choose a regression function b(z) = 2® + 5z and
b(x) = exp(—|z|) and compute the sample (Y7,...,Ys,) where Y; = b(X;) + ¢;.

e From the sample {(X;,Y;)}i=1. n, we compute an estimator bofb following the pro-
cedure described in Section 4, using mixed piecewise polynomial and trigonometric
polynomial basis (see Comte et al. (2008)).

e We compute the residuals from the second sample (€;)i=n+1,... 2n, Where § =Y; —
b(X;).

e Let J be a set of 150 regularly spaced points on [—5,5] and apply the density
estimation procedure described in Section 5.1 to the residuals (€;)i=p+1,... 2n-

Figure 3 presents the error density estimator (dotted blue line) and the theoretical
estimator we get by applying the density estimation procedure of Section 5.1 directly to
the sample (€;)i=n+1,..,2n. The thick line is the true density of €;.



ESTIMATION OF THE DENSITY OF REGRESSION ERRORS 15

X; ~U[0,1], & ~N(0,1), b(x) =x3 + 5x

n=200 n=500

n=2000

n=200 n=>500

n=2000

FIGURE 3. Error density estimator (solid blue line), theoretical estimator
we would get if the errors were observed (dotted blue line) and true density
(thick red line).
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We have also checked that the error density estimator hardly depends on the designs’
distribution.

6. PROOFS

6.1. Proof of Theorem 3.1. Let Z; be fixed. Let us denote by E;[.] the conditional ex-
pectation E[.|Z1] and P;[.] the conditional probability P|.|Z;]. We first prove the following
Claim:

Claim 1. If Assumption Hgens(8) holds, there exist constants k and k' which depend on
(Co, B1, Ba, K) such that the following inequality holds:

K(1+v)

(25) E1[(Gm — 9)*(x0)] X Uz, >1/2y < KICTit(Mopt) + (Gmop (T0) — g(x0))?] + -

Proof of Claim 1.
For every j,m € J,, we denote by:
D D;
H(j,m) = AK2a;j7m1/)nD.

The basic idea of the proof is to upper bound Eq[(g7 — g)2($o)]]l{gn2,,/2} by the sum of
two terms:

(26) Ei[(@m — 9)*(x0) 5,50 /2}) < 2E1[((Gm — 9)% (0) — Uopt) 11 (5,510 j2y + E1[Uopt])

where E[U,,] is a quantity with same order as Crit(mgy). Besides:

+00
@) Ea[(@n — 9)2(0) — Unpt) 4] < /0 Pil(Gn — 9)2(20) — Uopt > 2]d

and the quantity U, will be chosen such that the probability under the integral decreases
exponentially in n. Let us consider a first result:

Lemma 6.1. For every § > 0, x > 0 and for every model m:

Py[Crit(m) > (1 + 6)Crit(m) + z] < Z exp[—C(z, j,m)]

jEJ'ruD]ZDm
u nx 7, u'ny/x u'/A n
where C(x,j,m) mln{—VK2 D, + Dm—l- UTjm =" K2(D, +Dm)+ % xg,mVnDj n Dm}

andu=1/(8(1+ %)) and v’ = 1/(4v/2,/1 + }).

Proof of Lemma 6.1: The empirical criterion C/Et(m) (defined in (21)) is built from
Crit(m) (defined in (18)) by replacing the unknown (g;) by their empirical means (g;), so
the deviation between C/‘;'\zt(m) and Crit(m) is upper bounded with Bernstein Inequality
(see Appendix). More precisely:

Py[Crit(m) > (14 6)Crit(m) + ]

< P sup (G — Gm)*(x0) —H(jm))y = (146) sup  (gj — gm)*(w0) + 7]
j€Jn,Dj>Dm j€Jn,Dj>Dm
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As supje, p,>D,, (95 — gm)?(x0) + x is positive, we omit the positive part (.):

Py[Crit(m) > (1 + 6)Crit(m) + 2]

< Pl sup (G —gn)*(xo) = H(jym)) > (1+68)  sup (g7 — gm)*(w0) + ]
j€Jn,D;>Dy, j€Jn,D;>Dy,

Y. PG —Gm) (o) = (1+8)(g5 — gm)*(z0) + x + H(j,m)]
J€Jn.D; =D,

= Z Pjm

J€Jm,Dj>Dm

IA

and for every (j,m):

Pjm = Pi[(Gj — Gm)*(20) = (1+68)(g; — gm)* (o) + (1 + %)( WV]
0

It follows from the inequality (z + y)? < 2?(1+ 1/a) + y*(1 + a), V 2,y € R,a > 0 that:

P < PG~ ) (00) 2 (19 — gm)ao)| + TR
o
= PG~ Gn)@0)l 2 (g5 — gm)lao)| + | L)
0
< PG5 — gm)(@0) — (g5 — gm)(@0)| + (95 — gm)(w0)| = [(g; — gm)(x0)]
o+ Hjm)
1+ 3
= Al Y @ - E@)| 2 [ RS
=1 o

where Us = 32\ xan(Vi)xa (o) — 2oaer,, Xa(Vi)xa(wo) and E(Us) = (g5 — gm) (o). Let us

compute the terms v and ¢ involved in Bernstein Inequality (Theorem 7.1).
By the same methods as in (16) we get:

E((U}) < 2E1[g} (20) + Gm(20)] < 20K%(Dj + D) := v
Let ¢ be an integer greater than 2, then:
E[(U)5] < Ei[U7] x ||Uh]|557

< DD o W)xa@o)lleo + 11D xa(Vi)xa@o) o)

el )\Elj
< Y030 Y @l + 1L D3V D X (@o)llee)
ANl ANl )\Glj )\Glj

Finally, Assumption Heon leads to:
(28) Ei[(U1)}] < 0*[K*(Dj + D))
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and ¢ = K2(Dj + Dy,). Let us denote:

e= LU s L (et VEGm)
1+5 2(1+ 1)

Then Bernstein Inequality provides the following upper bound for P; ,

2

. ME ne
Pjm < 2exp[—min(Z—; )]
Moreover:
ne? na AK?2; U (Dj + Dy,)
w81+ HvKAD; + D) 8(1+ HuK2(D;+ Dyy)
u nx Un
vK? Dj + Dy, AU v
D;,+D 1
% > vz + n\/Ax],ml/)n i+ Bm
C 4\/§ 14+ %KQ(D] + Dm) n 4\/5 1+ %K2<D] + Dm)

u'ny/x u'VA N n
TimlVn——"""7—
K*(Dj+D,) K "D+ Dy,

which provides the upper bound of Lemma 6.1. O

We deduce from Lemma 6.1 an upper bound for a quantity of the kind P;[(g7 —g)%(z0)—
Z/[opt Z .ZL']:

Lemma 6.2. Let § and x some positive numbers, then for every Zy:

1) Pil{(gm — 9)*(z0) = (1 + 5)(jEJ sup (95— 9)*(x0) + Crit(mopt)) + 2} N {1 > mopt}]

< Z exp[—C(z, j, Mopt)] + 2 Z exp[—C(z,m)]

§€JnDj>Dimy meJy,

2u nx Tmlp U nyx  uNVA [nz,n
here C = mi 2Au—" " — AL
where C'(x,m) = min{ +2Au KD, + e D, }

K2 vD,,

2) PL{(Gm — 9)*(w0) = 2(1 + 0)Crit(mept) + 2 sup H(mopt, ) + 2(Gmepe — 9)*(20)
§€Jn,D;<Dm, ,

—|—2I’} N {fl\l < mopt}] < Z eXp[_C<$7jv m)]
jEJnyDszmopt
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Proof of Lemma 6.2:
e Let us prove inequality 1).

Pil{(@n — 9)%(x0) = (1+8)( sup (g7 — 9)*(w0) + Crit(mop)) + x} N {i > mop}]
]GJn,DjZDmopt

< Pil{(@n — 9)*(w0) = (14+38)  sup  (g; — 9)*(wo) + Crit(i) + &} N {0 > moy}]
jEJn,DjZDmopt

+P[Crit(m) > (1 + 8)Crit(mep))]
By definition of m, C/T'\Zt(’fﬁ) = inf,,ey, C/’ﬁt(m) < C/'ﬁt(mopt) thus we get from Lemma
6.1:
Py[Crit(m) > (1+ 8)Crit(mey)] < P[Crit(mep) > (1 + 8)Crit(mep)
S Z eXp[_C(wvjamopt)]

j€Jn,Dj>D

Mopt

Besides for every model m, Crit(m) > pen(m) according to the definition of Crit(m),
and if M < mopt, SUPjen,Dj>Dm,,, (95 — 9)*(x0) > (gm — 9)* (o), thus:

P{(Gm — 9)*(0) = (146)  sup  (g; — g)*(wo) + Crit() + x} N {1 > mp}]
]EJn;DjZDmopt

Py[(Gm — 9)*(z0) = (14 0) (g — 9)*(w0) + pen(m) + x]
< > Pi(Gm — 9)*(@0) = (14 6)(gm — 9)*(w0) + pen(m) + 2] := Y Pn,

medJdn medn

IA

The quantities P, are upper bounded in the same way as P; ,, in the proof of Lemma 6.1,
so we only give the outline of the proof. First of all we have for every model m:

Pa < PlGn — gm)a0)] > —vpenlm) 7
5
1 & 1
- P1[|EZU7;—IE(U¢)|21+% pen(m) + z
i=1

where U; = > 5 c; Xa(Vi)xa(zo). We apply Bernstein Inequality with the following quan-
tities v and c:
E[U?] < vK2D,, := v*
For every integer | > 2, similarly to inequality (28) we have:
E[(U1)}] < v*(K?Dyn)?

thus ¢ = K2D,,. Then Bernstein Inequality provides inequality 1), exactly like in the
proof of Lemma 6.1.

e Let us prove now inequality 2) in Lemma 6.2. If m < mqy given that pen(m) is always

positive:

Crit(m) > sup (g5 — Gm)*(x0) = H(G, )] = Gimope — G)*(20) — H(mopt, M)
jGJn,DjZD;;L

~ ~

Moreover (G — 9)2(20) < 2[(Gn — Gruope)*(00) + (Grpe — 9)(w0)], thus:
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1/'\ ~ ~

Crit(m) > 5(% — 9)%(20) = Gmop — 9)*(x0) — H(migpt, M)
1 R .
> 5Gm = 9)*(@0) = Gmope = 9)*(w0) = sup  H(mop, )
j€Jn,D; <D,
Hence:
1

Py [{7(/557% - g)Q(xO) > (1 + 5)Crit(mopt) + ' sup H(moptvj)
2 ]EJnijSDmopt

B g — 9)2(@0) + 2} {71 < g}
P[Crit(m) > (14 6)Crit(mept) + x] < Z exp[—C(x, J, Mopt)]
jEJn,D]‘ZD

Mopt

which concludes the proof of Lemma 6.2. O

Let us define:

Uopt = 2(Gm—9)*(20)+2(1+8)Crit(mop)+2  sup  H(mop, )+ sup (gj—9)*(zo)
jeJnijSDmopt jEJnijZDmopt

for some constant § > 0 defined later. According to inequalities 1) and 2) in Lemma 6.2,
we have:

Pl[(:q\fh - 9)2(x0) 2 uopt + CC] S 2 Z eXp(*C($, m)) + 2 Z eXp(*C(CE,j, m))

men €032 Dim
Hence:
—+oo
E1[((Gm — 9)*(z0) — Uopt)+] < ; Pi[(Ga — 9)%(w0) > Uppt + x)dz
“+oo
@) <2 (Y ew(-Clam)t Y exp(-Cla.m))ds
0 mEJn jeJ”’DjZDmopt

Besides, for every constant C':

+o0 1 +o0 2
/0 exp(—Cz)dx = Yok /0 exp(—Cy/x)dx = o
Thus

Foo . K 1% D + Dmo +
/0 Z exp(—C(x, j, mopt))dx < Z [exp( Aux%mom - ™) ” - P

jEJijZDmopt jeJn,DjZDmopt
exp(- VA o u ) Dt D)
K\ Dy Dy d 2

Moreover, for every j € J,, (Dj + Dim,,,)/n < 2, and if 1, /v > 1/2 then:

n

oo , 2 | K%v 1
Z eXp :L‘ j’ mopt))dl‘ S . T Z eXp(i §Auxj7mopt ) (D] + Dmopt)
]GJnyD >Dmopt jEJnyDjZDmopt
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2K4 Z WA [ T, nVn
K Dj+ D,

)(‘DJ + Dmopt)
jeJn’Dszmopt

The term f0+°° > exp(—C(x, j, mopt))dx has order 1/n as soon as:

jeJnijmoPt

exp(—%Aua:j,mopt) <(1+4+D;+ Dmom)_(2+‘l)

$.7',mopt nn

exp(— 3\ 5By ) S (1 Ds+ D)~ 3H0

for some a > 0 which is equivalent to:

frime 2 Bt 01

24+a)2K?  Dj+Dmyps ¢ 2
Tjmap > CHIC o DIEImt 102(1 4 D 4 D)

This is guaranteed if:

1 1
Tjm > max{—6(2 +a)(l1+ 5)2 In(1+4 D; + Dy,);

A
32K2 1 D; + D,
(30) = (1+ 5)2(2+a)21n2(1+pj+1)m)]7}

Let By > 32/A and By > 128K2/A be the constants involved in the definition (20) of
the (zj,,) and let consider § > 0 and a > 0 such that 2B; > 22(2 + a)(1 + 3)? and
By > 32K?A(1 + §)%(2 + a)®>. Then zjn,,, satisfies inequality (30), and there exists a
constant C' which depends on (A, By, By, K) such that:

+o00 .
/0 Z exp(—C(x, j,mopt)) | dz < (1 +v)—

. n
]EJnijZDmopt
The same type of computation yields:
+oo
Lo

meJn

exp(C(z,m))) dr < (1+ 1/)%

Then inequality (29) leads to:

(31) Ex (G — 9)2(@0) — Unpe)4] < (14 1)

n
Besides, for every D; < Dy, H(Mopt, j) < 2pen(mep:). Moreover:

sup (95— 9)%(x0) <2 sup (5 — Gmupe) > (%0) + (Gmope — 9)*(20)]
jeJ"“Dszmopt jEJ"“Dszmopt

Hence:
E1Uopt] < 3(Gmop — 9)*(0) + 2(1 + 8)Crit(mop) + 4pen(mop)

+ Sup (g] - gmopt )2 ('1"0)
§€J.D5>Duny

(32) < Clcrit(mom) + 3(gmopt - Q)Q(xo)
By gathering inequalities (26), (31) and (32), we get inequality (25).
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Proof of Theorem 3.1. We prove the following claim:

Claim 2. If Assumption Hgens(3) holds, there exist constants k and k' which depend on
(8, B1, B2), and a universal constant Cy such that

(33)
E[(Gm —9)2 (10) Upz, 50 2y) < £(1+20) () 20/ @FD 4l Fe2py () =2/ 2BHD P, > 20
Inn Inn
~ . 1
(34) E[(G7 — 9)*(x0) Uiz, <v/23] < (v + K*M,)* P, < 5V

Proof of Claim 2
e Let us prove inequality (33). First of all, we notice that if 7, > v/2 then for every

model m:

D,

T < max{BjIn(1+ D,,),2B2In(1 + D,,)— < BsIn(1 + Dy,)}
n

with By = max(B1,2Bs). Thus:

. . Dy,
Crit(m)s, 5,21 < 2[;3}3 (95 — 9)*(z0) + (gm — 9)*(%0)] + ZmVn In(1 + D) ==
jZ=m

D
< 20yD;;?® + B3In(1 + D)0, —=
n

< C(1+70,)[D;%° 4+ In(1 + Dm)%]

for some constant C' depending on (A4, K, 3,C)). Let us denote F(m) = D28+ In(1 +
Dm)Dn—m and mj = arg min F'(m). Then:

n n
F < F((— 2 \/@B+1)y « 911 —28)/(26+1)
(m1) < ((ln(l—i-n)) )< (lnn>

Remark 1. We give here an upper bound for D,,,, which will be useful in the proof of
Theorem 2.1. The model my satisfies:
26 1 ( Dy,
D+ - n" 14 Dy,

+In(1+ Dyy)

Dy,
1+Dm

Besides, the function m — ( +In(1 + Dy,) is increasing so:

35 > a1 = Dy, < ai/(2ﬁ+1)a2n—1/(25+1)
mi

where a and ag are defined in (8) and (9).
Besides:
-If Dy, < Dy, then:

(Gmope — 9)*(w0) < CoDR20% < CoD2P < F(my)
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- If Dy,yy > Doy

(Imope — 9)2(20) < 2[(Gmope — 91 )*(@0) + (gmy — 9)° (20)]
< 2 sup  (Gmoy — 95)%(x0) + C(B,L)D;, 27V
JE€JIn,jZ>mopt
< Crit(mept) + F(my)
< Crit(my) + F(mq)
< C(+v,)F(my)

Hence in these two cases:
Crit(mopt) + (9 = Ginop) *(20) < C(L+ D) F(ma).
Thus according to inequality (25) in Claim 1 we have:
E1[(Gm — 9)%(20)] W5, >0 /2y < max(s, &")(1 + 971)(%)7%/(25“)
And by integrating this result over the sample Z; we get:

(35) El(Gr — 9)2(00) U5, 20/2)] < C(1+ ElFa]) (1) 27/ @40,

Moreover we have proved in (36) that 7, = ||Gimg /oo < K2po. Thus
E[/I/\n] = E[/I/\nl{;;nggy}] + E[Z//\nl{pn>21,}] <2v+ KQp()P[I//\n > 21/]
By reporting this result in (35), we get inequality (33).

e Let us prove inequality (34). For every model m € J,,, (Gm—9)*(%0) < (|Gm (z0)|+1)2.
Besides:

Gm)*(z0) = Y ( ZX,\ ))xA(0))” < Z > o) <) Gl

Al i=1 i=1 Nelm el
(36) < K'D?
Hence:

PlGn ~ 9)* (@) 5, 2] < (KM + 02 P[P0 < 0]

and inequality (22) in Proposition 3.1 ends the proof of (34). O

Theorem 3.1 results directly from Claim 2: P[v, > 2v] and P[v, < v/2] are upper
bounded by Proposition (3.1):

N n o _
E[(Gm — 9)*(w0) 5,50 23] < k(1 + QV)R) 26/@B+1)

n o Cy n C3 ond/? Ca n
JFK,KQPO(R) 2,8/(26+1))[exp( ﬁyi) +6Xp(7ﬁy2ﬁ) +6Xp(*ﬁp*%)]

Then the combination of inequalities (37) and (34) ends the proof of Theorem 3.1 O
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6.2. Proof of Proposition 3.1. e We prove inequality (22). Let x; € I be such that
g(z1) > 5v/6, then by definition of 7,:
Plon <v/2] < Plgmo(z1) <v/2
= Pl(Gmo — 9mo)(
P[(gmo - g?m))(

50/6 — gmg (1) — /3]
(9 = gmo)(z1) — v/3]

)
)

r1) <
r1) <

IN

According to (11), we get:
Pon < /2 < Pl(Gmg — gmo) (1) < Cony” —v/3]
and with condition (Aq):
Plm <v/2] Pl(Gmy = gmo) (1) < /0]
Pll(Gmo = gmo)(21)| = v/6]

Pl Ui = E(UD)] = /6]
i=1

VANVAN

(37)

where U; = ¢ Img XAx(Vi)xa(z1). This term is upper bounded with Bernstein Inequality,
with the following parameters:

BUY = EI(Y aio@)?] = [(X @) @i

I

AEI g AEI g
< v Y [/ (@ @ ) = v 3 2B ()
ANELny 7T AEm,

as the {x\} are orthonormal. Finally, Assumption (13) in Hgens(5) leads to:
E[U?] < vK?py := v”
Let [ be an integer greater than 2, then:
E[(X1)}] < E[U7] x |JU]|?

< 22 ) xa(V)xa(@o)ll%?
ATy
< LY. BWllse, [ D X3 ()2
Nemg ey,
< VP (KPpy)?

thus ¢ = K2pgy. Bernstein Inequality applied to (37) provides (22).

e We prove inequality (23). Let z1 be such that g, (71) > 50,,/6, then:

w22 < Plign,(@) > 2]
6, . R 4 6 N
= P[g(gmo _gmo)(xl) > 5”"" g(’/ - gmo(xl))]'
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By definition of v,

~ 6 - 4 6 .
Pl > 2] < LS g — gm) (1) = 50+ 20 gm) @)
According to (11) of Hgens(5):
~ ~ ~ 2 _
Plon 2 2v] < P[(Gmo — gmo)(Z1) = 3V~ Copg ﬁ]

and Assumption (Aj) leads to:

P> %] < Pl — 9m0) @) 2 591 < Pup(@ng — gmo)(x) > 301
zel
Let:
Z = Sup(/g\mo_gmo)(l‘)
zel
= sup— Z{ Z XA (Vi —EDo(Vi)xa(@)])
v€l M5 \elmg

We upper bound P[Z > v/2] with Talagrand Inequality (see Theorem 7.2 in Section 7),
but the set of functions:

F={es:u— Y xa@xa) —Ea(@)xa(V)],z €I}
AeTmg

is not countable. Nevertheless, for every u the application x — ¢, (u) is continuous (as
the (x») are continuous), so :

—Sllp Z‘PJ} z = Ssup *ngx

xzel T xem(@ n

by density of QNI in I, and Q N [ is countable, which allows us to apply Talagrand
Inequality. For every z € I:

Do Z — EDa (Vi) xa(2))))

Aelmo =1

<{> B@ix{Y I Z (Vi) = EDu(Vi)D)I?}

A€lm, AGImO i=

1
Ko 3 [ 06(V) ~ B (V)P

Al i=1
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Thus:
E[Z] < K% Y E[( Z (Vi) = EDa(Vi)])?]
A€, 2—1
1 n
= K2%p Z VaT(EZX)‘(V
AEm, i=1
K2
= npo Z Var(xa(V1))
>\EImO
K2
< =3 B
A€l
Hence
2
E[Z] < K=po
n

Let us compute the variance term v. For every x € I:

Var( > xa(Vxa@) < E[(Y xa(V)xa(@)?)

AEIm, AE€lm,
- / (Y @) g(w)du
I Nelm,
< / (Ag;mxmwxm))?du
_ VM;MO [ /1 3 (1) ()l () ()

As the family {xx, A € I,,,} is orthonormal:

Var( Z WMxa(z) < v Z xi(z) < vK?py ==
Aelm, A€lmg

Finally, for every x € I:

1Y i@l < [ D0 B@ x>0 XBlle < K?po:=b

AEm, AElm, AEmg
Besides, by Assumption (Az) we have:

K2
Piz>4=Pz>u+E -2 <pPz>H+ 2
2 Un 6

and Talagrand Inequality provides the following upper bound:
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2

14 nv
PlZ>-] < -C
[ e 2] > eXp[ VK2p0 + K4p%/\/ﬁ+K2pgl/2]
02 n 03 2n3/2 C4 n
S eXPl— 5V — +6Xp ——V —F —|—exp —— 5

6.3. Proof of Theorem 2.1. Let consider the decomposition (24). First of all, we study
the first term E[(f — f7)?(x0)] in the right hand side of (24). If Assumption Hy(/3) holds,
f is Lipschitz. It is easy to check that f is Lipschitz as well if Assumption Ha((3) holds
for some 8 > 1. Let us denote L the Lipschitz constant of f.

1 o~
U—fw%m>-<A[ﬂmy—ﬂarwb—wm»mmwm2

1 o~
< / [F(z0) — F(a0 — (b—D)())u(x)da
0
1 —b) (@) () da
< L/Oub b) ()2 Ly
1 —AQx x)dx
< L/O[(bA b)2(x)ulz)
< L|Ib-B2
So
(38) E[(f~ — f)*(zo)] < LE[[|b — b||?]

To study the second term we need the following preliminary lemma.

Lemma 6.3. 1) Let Z~ be fized. If [ satisfies Assumption Hy(3) (resp. Ha(3)), so does
.
2) v~ < v almost everywhere (a.e.).
3) For every m € {1,..., My}:
(F(@0) = ™ (20))* < (m +v)* < (M + v)?

4) Let us consider a sequence (o) of positive number such that a, = o(1/V1Inn). Then
for every n € N such that:

+o%a2Inn <

N —

2
Vinn
where o? = E[e}], we have:

Py~ < ay)] < 2Inna’E[|[b — b])?]

The proof of Lemma 6.3 is given at the end of Section 6.3.

According to 1) in Lemma 6.3, for every Z~, f~ satisfies Assumption Hgens (/) for some
B > 1. Thus, according to Remark 1 in the proof of Claim 2, the result of Claim 2 remains
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true if we restrict ourselves to a maximum size of model M, = E(azn'/3). Indeed, let’s
go back to the proof of Claim 2. The maximum size M, is involved when we state that:

Crit(mep) < Crit(my) where mgy = arg Hli? Crit(m)
medn

And this holds as soon as my € J,. Besides, we have proved that

D, < ai/(lﬁ+1)a2n1/(2ﬂ+1) < O&/3a2n1/2 < M,

So Claim 2 provides the following upper bound:
- n
Er(f~ = £7)(w0)] < (1 +w) ()2 @7+

nn

n o _ _ 1 _
m)*%/(?ﬂmpﬂyﬂ > 27 4+ (v + M), < 5]

Let us define the sets:

(39) +5"pol(

_ _ 1 _ -
Ay ={Copy" < v} A _{f—3K2}

Then:
E[P(v, >2v7)] < E[P(u, >207)1 -] + P[(A])] + P[(Ay)]
-n Cs  _on3/2 Cyin
< E[exp(—?iu 170+8Xp(_fz(y )QE)]‘FQXP(_fé%)
+P[(A7)] + P[(A3)]
And:
ElP(v, <v7/2)] < E[Pi(v, <nu”/2)1,-]+ P[(A7)"]
< 2Bfexp(- v )]+ Pl(AD)]

Thus inequality (39) leads to:
Ei[(f = f7)%(20)] < C(1 +v)[(+)~20/@0+D)

Inn
n n n3/2
(40) ol ) Bfexp(— v )+ exp(= 0 +
n —\c —\c —\c Ci _n
exp(— 2k 75) + PI(AT )]+ PI(A )] + MAPI(AT ] + Bfexp(~ v )

Now we upper bound each term in the right side of the above expression.

Cl _n Cl _n Cl _n
E[exp(—ﬁy p—o)] = E[exp(—ﬁy p—o)l{y_zmnn%}]—i-ﬂﬂ[exp(—ﬁy 7)1{1/_<2lnn
1
< E[ﬁ {V‘ZZlnn%}}+E[1{V‘<21nn}g;;0}]

KZPO]
2M

IN

1
— + Plv” <2lnn
n

Po

K2
Con }

]
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Besides, as pg = n” with v €]1/3,1/2[, there exists N; which depends on v, K2 and o?
such that for every n > Np, the following inequality holds:

2 K?py 1
+20%1lnn < -
vinn Con 2

Then, according to 4) from Lemma 6.3:

K? K? ~
Plv~ <2ln Cpo] < 41n3n($)2E[Hb — b2

21
Thus:
(41) Efexp(— 2Ly~ < ——i—Cln n2 IE[Hb—bH]
K2 po

Similarly, there exists an integer N3 which depends on v, K? and o2 such that, for every
n greater than Nj:

(42) Blexp(-~ 37 ) < 5+ Clun 2 B )
And:
e A
P[(A1 )] < ClnnTﬁE[Hb - b”i]
Do
2 A~
(43) P[(A7)] < Clun CE[|jb - o] ]

The combination of inequalities (40), (41), (42) and (43) leads to:
-~ _ n _
BT~ /(0] < O+ n)[() /e

2
T 22 N\ _28/(26+1)p..3 . Po 2 1 po
HE[[b = bl {po(y ) [n”n 5 +n"n n3/2 +1nnp— +Inn”2]

Cyn
M2 1 1 n 2:3/(25+1) — —
+M?2[In? n + nnpo ]}—i—po(lnn) exp( szg)

Besides, we suppose that M, < asn'/3 and 3 > 1 which entails that

N\ —28/(28+1) < Inn o/
(lnn) = n )

Moreover, n/p = n'=27 and 1 — 2y > 0 then:

M y—2pep4) o Gy O

po(y ) exp( KQp(Q)) =
Hence
-~ _ n _
E[(f~ = f7)*(x0)] < C(+ V)[(m) ielean
3 3 2 2/3
> Do Do Do n
+E[|[b = b]7] x In* n{ 2+2/3 toanan T s Y oes T 7}

We have chosen pgy such that n” < py < 2n” with v in ]1/3,1/2[, which entails that the
quantity:
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3 3 3 2 2/3
4 Po Py 1 Po Po i
In n{ n2+2/3 + n3/2+2/3 + p0n2/3 + nl+2/3 + n2-2/3 + pg }

is upper bounded by a constant. So:

(44) E[(]~ = f7)%(x0)] < C(1 +v)(—) 2D 4 ' (1 + w)E[|[b — b||2]

Inn

Inequalities (38) and (44) conclude the proof of Theorem 2.1 O

Proof of Lemma 6.3:

1) e Suppose that Hy(5) holds. Let v € R and m € N*.

keZ

(F~ = (Fm)w) = /:Oﬂu—<b—6><x>u<x>dx—2<f,¢m,k>¢m,k<u>

~

= f(u— (b= b)(x)p(z)de

=0

SO e 6= D@ Odonst

keZ
- [ = e-he)
-3 [ 0= D@ Ot )

keZ teR

Let x be fixed in [0, 1] and f*(u) := f(u — (b —/l;)(x)), then:

~ ~

flu=O=b)@) =Y | ft=b=b)(@)bmp(t)dtdmp(u) = f*(w) = (f*)mn(u)

keZ teR
Besides, according to 5) in Proposition 7.1:

= () @) = — (F7)(0)e® dp

2m |0|>mm

_ 1 f* (e)eiﬁ(b—/l;(:v))eiﬁude

% |0|>7m
= (/= fm)u+ (b= D)(x))
So for every u € R [(f* — (f*)m)(w)| < ||f — fmlloo, hence:

1

(=@ [ = Fullon@lde < If = full < CoD

T
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e Let f € H(B,L) and r the greater integer smaller than 3. f is r times differentiable
and its r-th derivative is upper bounded, then with classical analysis results we get:

g 1 N

0w = 2 / £t — (b - D) (@) () dz
/ (b~ B)(2)) () da
/0 FOt — (b= B)()u(x)da

For every (t,u) € [-1,1]%

() @) = (F) D (w)| = / (b=B)(@) = £ (u— (b= )(@))u(a)da
< / FO(E = (b =B)(@)) = £ (u = (b= B) (@) () da
< /0 L|t —ul*"p(w)da

= L]t—u|ﬁ_r
so f~ € H(B,L).

2) Let t € R, according to the expression of f~:

1
< /0 [f(t = (b= b)(x))|u(x)de < v
thus v~ = || f 7 |loo < v.
3) A calculus similar to (36) implies that |f,,(zo)| < m, which proves the third point.

4) Given Z~, €1 and (b —3)(X 1) are independent, which entails:

E[e2|Z7] = Bl3|Z7] + E[(b - b)2(X1)|Z 7] + 2E[er (b — b)(X1)|Z7]
Moreover, E[e1|Z~] = 0 hence:
E[e}|Z7]) =0 + |b—b|?
Thus for every A, > 0:

1 1
Wy < v (y)dy < —5 (0 + [b—0]7)
/|y|>An A% Syl A A7
which entails: R
o2+ b —b|?
fmlydy >1 - ——5—=+
/y|<An ( ) A%

On the other hand, f wi<a, £~ (W)dy < 207 Ay, by definition of v~. Hence:

v

1 24 b -2
24, A2
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for every A, > 0. Thus:

2 72
+b—"b
Py~ <an] < Pll- Lﬂ‘ < 2Apa]
An
o2, _ lIb—b|2
= P[1- (24,0, + Aigl) < T%]

Let us consider A,, = 1/(a,VInn), then condition (C) gives:

2
Vinn

1 ~
Pl < [lb= B2 nna?)

P[1—( +0%a2Inn) < Hb—gHilnnai]

IA

< 2ln naZE[Hb */I;Hi]

7. APPENDIX
7.1. Deviation inequalities for empirical processes.

Theorem 7.1. Let (X1,...,X,) be independent random variables. Let us suppose that:
RS 2 1 ¢ ! I! 1-2
EZE[)@] <w, EZE[(XZ»)JF] < g xvuxe
i=1 i=1
for every 1 > 2. Let S =15 X, — E[X,].
1) For every € > 0:
P[S > V2vz + cx| < exp(—nz), P[|S| > V2vx + cx] < 2exp(—nz).
2) Similarly, for every e > 0:

7’L62 7’L€2

2(v? + ce))7 Plisl 2 d < 26Xp(_2(02 + ce)

Theorem 7.2. Let (X1,...,X,) be i.i.d., F a class of function and:

n

P[S > €] < exp(— ).

Let us consider H, v and b such that:

E[|Z]] <H, supVar(t(X;)) <wv, sup|t|lcc <0.
teF teF

Then for every XA > 0:
nA? )
2(v + 4Hb + 3b))
This Theorem results directly from Theorem 1.1 in T. Klein (2005).

P[|Z] > H + ] < exp(—
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7.2. Some results about projection on sine-cardinal bases. Let m be a positive
number, A,, the set of functions generated by {¢., 1,k € Z} described in Section 2.2. The
following Proposition holds:

Proposition 7.1. 1) For every m > 0, k € Z, the Fourier transform of ¢, ) is (bjmk(t) =
(1/\/m)eiikt/ml[—7rm,7rm] (t)

2) The family {¢m x, k € Z} is orthonormal for the L?-norm.

3) For everym >0, || Yz ¢727L7kHoo <m

4) Ay = {t € LA(R), Supp(t*) C [=mm, ™m|} = span(¢mk, k € Z).

5) For every h € L*(R), the Fourier transform of the projection h,, of h on Ay, is
h:n(t) =h" (t)l[—ﬂ'm,frm} (t)

A simple calculus proves that the Fourier transform of 1|_, -1 is 27¢, then ¢* = 1_, 4
and 1) follows by a change of variable. Next, for every k,[ € Z, according to the Parseval
formula, we have:

(s Boni) = (Gt O

and 2) follows easily from 1). With inverse Fourier formula,

™

(bm,k(x) — (\/%/27.()/ e—ikueiuxmdu’

—T
so that > ;. (ﬁ%%k(x) = (m/2m) [T _|e"*™|2du = m. This gives 3). Assertion 4) follows
from Meyer (1990, p.22), and 5) is an immediate consequence of 4). Indeed, for every
h € L*(R):

h,, = arg min ||h — t||> = ar min h* — || = h*1_
m thAm || || gSupp(t*)C[fﬂ'm,ﬂ'm] || H [—7mm,mm]

Proof of Proposition 2.2
o Let feW(a,L), and z € R:

(f— fm)?@) = | /R (" — [ = | / £ (B)e= dt]?

[t|>mm
1
< / ]f*(t)|2t2°‘dt></ —dt
[t|>mm [t|>mm t
1 Co(L, @)
< I? = :
- 8 (2a — 1)(m)2a-1 m2a—1

e Suppose that o > 3/2, then for every z,y € R:
1 k(N (pitr i
[f(z) = fy)l = | /f ()(e"™ — e'™)at]
21 R

tz —y)

= Iy / I ()22 sin Jat|
™ JR

o 17 OzlsinE Dy

el NMCICRIT,

IN

IN
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f is a density so for every t € R, |f*(¢)| < 1, thus:
[ @<
-1
Besides, with Schwarz Inequality, we have:

/ FrOldE < / POt x / 200 dy
[t[>1 [¢]>1 [¢]>1
< L*C

where C' is a constant depending on «. Thus:

[f(@) = fy)] < |o =yl
which proves that f is Lipschitz. O

2+ L%C
27
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