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We introduce an extension, indexed by a partially ordered set P and cardinal numbers κ, λ, denoted by (κ, <λ) ; P , of the classical relation (κ, n, λ) → ρ in infinite combinatorics. By definition, (κ, n, λ) → ρ holds if every map F : [κ] n → [κ] <λ has a ρ-element free set. For example, Kuratowski's Free Set Theorem states that (κ, n, λ) → n + 1 holds iff κ ≥ λ +n , where λ +n denotes the n-th cardinal successor of an infinite cardinal λ. By using the (κ, <λ) ; P framework, we present a self-contained proof of the first author's result that (λ +n , n, λ) → n + 2, for each infinite cardinal λ and each positive integer n, which solves a problem stated in the 1985 monograph of Erdős, Hajnal, Máté, and Rado. Furthermore, by using an order-dimension estimate established in 1971 by Hajnal and Spencer, we prove the relation

, for every infinite cardinal λ and all positive integers n and r with 2 ≤ r < n. For example, (ℵ 210 , 4, ℵ 0 ) → 32,768. Other order-dimension estimates yield relations such as (ℵ 109 , 4, ℵ 0 ) → 257 (using an estimate by Füredi and Kahn) and (ℵ 7 , 4, ℵ 0 ) → 10 (using an exact estimate by Dushnik).

Introduction

The present paper deals with finding large free sets for infinite set mappings of finite order. For a set X and a cardinal λ, we denote by [X] λ (resp., [X] <λ ) the set of all subsets of X with λ elements (resp., less than λ elements). For cardinals κ and λ, a subset D of the powerset P(κ) of κ, and a map F : D → [κ] <λ , we say that a subset H of κ is free with respect to F if F (X) ∩ H ⊆ X for each X ∈ P(H) ∩ D. For cardinals κ, λ, ρ, and for a positive integer r, the statement (κ, r, λ) → ρ holds if every map F : [κ] r → [κ] <λ (we say a set mapping of order r) has a ρ-element free set. Likewise, (κ, <ω, λ) → ρ means that every map F : [κ] <ω → [κ] <λ has a ρ-element free set. Denote by λ +n the n-th successor of an infinite cardinal λ. Kuratowski's Free Set Theorem (see [START_REF] Kuratowski | Sur une caractérisation des alephs[END_REF] or [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Theorem 46.1]) states that (κ, n, λ) → n + 1 iff κ ≥ λ +n , for all infinite cardinals κ and λ and every non-negative integer n.

Whether larger free subsets can be found leads to unexpected discoveries. An argument that originates in Lázár [START_REF] Lázár | On a problem in the theory of aggregates[END_REF] shows that the relation (λ + , 1, λ) → λ + holds for each infinite cardinal λ (cf. [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Corollary 44.2]). Therefore, the relation (λ + , 1, λ) → m holds a fortiori, for each positive integer m. Further, Hajnal-Máté [START_REF] Hajnal | Set mappings, partitions, and chromatic numbers[END_REF] and Hajnal [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF], respectively, proved that the relation (λ +r , r, λ) → m holds for every infinite cardinal λ, every r ∈ {2, 3}, and every integer m > r (cf. [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Theorem 46.2]).

In the presence of the Generalized Continuum Hypothesis GCH, we can say more. Indeed, it follows from [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Theorem 45.5] that the relation (λ +r , r, λ) → λ + holds for every integer r ≥ 2 and every infinite cardinal λ.

On the other hand, without assuming GCH, the situation gains a touch of strangeness. Set t 0 := 5, t 1 := 7, and for each positive integer n, t n+1 is the least positive integer such that t n+1 → (t n , 7) 5 (the latter notation meaning that for each f : [t n+1 ] 5 → {0, 1}, either there exists a t n -element subset X of t n+1 such that f "[X] 5 = {0} or there exists a 7-element subset X of t n+1 such that f "[X] 5 = {1}). The existence of the sequence (t n | n < ω) is ensured by Ramsey's Theorem. It is established in Komjáth and Shelah [START_REF] Komjáth | Two consistency results on set mappings[END_REF] that for each positive integer n, there exists a generic extension of the universe in which (ℵ n , 4, ℵ 0 ) → t n . In particular, there exists a generic extension of the universe in which (ℵ 4 , 4, ℵ 0 ) → t 4 .

By using algebraic tools of completely different nature and purpose introduced in [START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF][START_REF] Gillibert | Critical points of pairs of varieties of algebras[END_REF] called compatible norm-coverings, the first author established in [START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF]Théorème 3.3.13] the relation (λ +r , r, λ) → r + 2 (1.1)

for each positive integer r and each infinite cardinal λ, thus improving by one the cardinality of the free set given by Kuratowski's Free Set Theorem, and thus solving in the affirmative the question, raised in [6, page 285], whether (ℵ 4 , 4, ℵ 0 ) → 6. In the present paper, we develop a self-contained approach to such questions, and we extend the methods in order to find further large free sets results. In particular, we establish the relation

(λ +(n-1) , r, λ) → 2 ⌊ 1 2 (1-2 -r ) -n/r ⌋ , (1.2) 
for each infinite cardinal λ and for all positive integers n and r with 2 ≤ r < n; here ⌊x⌋ denotes the largest integer below any real number x.

Our main idea is to extend the (κ, r, λ) → ρ notation by introducing a partially ordered set (poset) parameter, thus defining the notation (κ, <λ) ; P , for cardinals κ, λ and a poset P , see Definition 3.1. In particular, the statements (κ, <λ) ; ([ρ] <ω , ⊆) and (κ, <ω, λ) → ρ are equivalent, for all cardinals κ, λ, and ρ (cf. Proposition 3.4). Then we define the Kuratowski index of a finite poset P as the least non-negative integer n such that (κ +(n-1) , <κ) ; P holds for each infinite cardinal κ (cf. Definition 4.1), with a minor adjustment for antichains. This definition is tailored in order to ensure that the finite Boolean lattice P(n) of all subsets of n has Kuratowski index n, for each positive integer n. Smaller posets have smaller Kuratowski index (Proposition 4.4) while the Kuratowski index function is subadditive on finite direct products (cf. Proposition 4.6). As a corollary, the Kuratowski index is bounded above by the order-dimension (cf. Proposition 4.7).

We apply these results to the truncated cubes B m ( r) (cf. Notation 5.1). In particular, we present the first author's proof of the relation (1.1), which uses the fact that the order-dimension of B n+2 ( n) (and thus also its Kuratowski index) is equal to n + 1. By using a further estimate of the order-dimension established in a 1971 paper by Spencer [START_REF] Spencer | Minimal scrambling sets of simple orders[END_REF], we deduce the relation (1.2) (cf. Proposition 5.7). For example, (ℵ 210 , 4, ℵ 0 ) → 32,768.

Another estimate of the order-dimension of B m ( r), originating from a 1986 paper by Füredi and Kahn [START_REF] Füredi | On the dimensions of ordered sets of bounded degree[END_REF], not so good asymptotically but giving larger free sets for smaller alephs (cf. Proposition 5.8), yields, for example, the relation

(ℵ 109 , 4, ℵ 0 ) → 257 .
Finally, Dushnik's original exact estimate yields, for example, the relation (ℵ 7 , 4, ℵ 0 ) → 10 .

Basic concepts

2.1. Set theory. We shall use basic set-theoretical notation and terminology about ordinals and cardinals. We denote by f "(X), or f "X (resp., f -1 X) the image (resp., inverse image) of a set X under f . Cardinals are initial ordinals. We denote by cf α the cofinality of an ordinal α. We denote by ω := {0, 1, 2, . . . } the first limit ordinal, mostly denoted by ℵ 0 in case it is viewed as a cardinal. We identify every non-negative integer n with the finite set {0, 1, . . . , n -1} (so 0 = ∅). We denote by κ + the successor cardinal of a cardinal κ, and we define κ +n , for a non-negative integer n, by κ +0 := κ and κ +(n+1) = (κ +n ) + .

We denote by P(X) the powerset of a set X, and we set

[X] κ := {Y ∈ P(X) | card Y = κ} , [X] <κ := {Y ∈ P(X) | card Y < κ} , [X] κ := {Y ∈ P(X) | card Y ≤ κ} ,
for every cardinal κ.

Partially ordered sets (posets).

All our posets will be nonempty. For posets P and Q, a map f :

P → Q is isotone if x ≤ y implies that f (x) ≤ f (y)
, for all x, y ∈ P . We denote by 0 P the least element of P if it exists. An element p in a poset P is join-irreducible if p = X implies that p ∈ X, for every (possibly empty) finite subset X of P ; we denote by J(P ) the set of all join-irreducible elements of P , endowed with the induced partial ordering. We set

Q ↓ X := {q ∈ Q | (∃x ∈ X)(q ≤ x)} , Q X := {q ∈ Q | (∃x ∈ X)(q < x)} ,
for all subsets Q and X of P ; in case X = {a} is a singleton, then we shall write Q ↓ a (resp., Q a) instead of Q ↓ {a} (resp., Q {a}). We set J P (a) := J(P ) ↓ a, for each a ∈ P . A subset Q of P is a lower subset of P if P ↓ Q = Q. We say that P is a tree if P has a smallest element and P ↓ a is a chain for each a ∈ P .

An infinite combinatorial statement with a poset parameter

The statement referred to in the section title is the following. Definition 3.1. For cardinals κ, λ and a poset P , let (κ, <λ) ; P hold if for every mapping F : P(κ) → [κ] <λ , there exists a one-to-one map f : P κ such that

F (f "(P ↓ x)) ∩ f "(P ↓ y) ⊆ f "(P ↓ x) ,
for all x ≤ y in P .

(3.1)

In most cases, we shall use the symbol (κ, <λ) ; P only in case P is lower finite, in which case it is sufficient to assume that the mapping F is defined only on [κ] <ω (we can always set F (X) := ∅ for infinite X). Once this is set, it is of course sufficient to assume that F is isotone (replace F (X) by (F (Y ) | Y ⊆ X)). Lemma 3.2. Let P and Q be posets, with Q lower finite, and let κ, λ be cardinals. If (κ, <λ) ; Q and P embeds into Q, then (κ, <λ) ; P .

Proof. We may assume that P is a sub-poset of Q. Let F : [κ] <ω → [κ] <λ be isotone. By assumption, there exists a one-to-one map g : Q κ such that

F (g"(Q ↓ x)) ∩ g"(Q ↓ y) ⊆ g"(Q ↓ x) ,
for all x ≤ y in Q .

The restriction f of g to P is one-to-one. As F is isotone and f "(P ↓ x) ⊆ g"(Q ↓ x) for each x ∈ P , (3.1) is obviously satisfied.

The following lemma states that the (κ, <λ) ; P relation can be "verified on the join-irreducible elements". Lemma 3.3. Let P be a lower finite poset and let λ and κ be infinite cardinals. Then (κ, <λ) ; P iff for every isotone mapping G : [κ] <ω → [κ] <λ , there exists a one-to-one map g : J(P ) κ such that G(g" J P (x)) ∩ g" J P (y) ⊆ g" J P (x) , for all x ≤ y in P .

(3.2)
Proof. It is trivial that (κ, <λ) ; P entails the given condition. For the converse, we shall fix a bijection ϕ : [κ] <ω → κ, and set

Φ(X) := ϕ -1 X , for each X ∈ P(κ) . That is, Φ(X) is the union of all finite subsets Y of κ such that ϕ(Y ) ∈ X. In particular, Φ(X) belongs to [κ] <λ whenever X belongs to [κ] <λ . Now let F : [κ] <ω → [κ] <λ be an isotone map. We can define a map G : [κ] <ω → [κ] <λ by the rule G(X) := Φ F {ϕ(Y ) | Y ⊆ X} , for each X ∈ [κ] <ω .
By assumption, there exists a one-to-one map g : J(P ) κ which satisfies the condition (3.2). As P is lower finite, we can define a map f : P → κ by the rule f (x) := ϕ(g" J P (x)) , for each x ∈ P .

As P is lower finite, every element of P is the join of all elements of J(P ) below it. Hence, as both g and ϕ are one-to-one, f is one-to-one as well. Now we prove that the condition (3.1) holds. Let x ≤ y in P and let u ∈ P ↓ y such that f (u) ∈ F (f "(P ↓ x)), we must prove that u ≤ x. As

f "(P ↓ x) = {ϕ(g" J P (v)) | v ∈ P ↓ x} ⊆ {ϕ(Y ) | Y ⊆ g" J P (x)} and F is isotone, we get ϕ(g" J P (u)) = f (u) ∈ F (f "(P ↓ x)) ⊆ F ({ϕ(Y ) | Y ⊆ g" J P (x)}) , thus g" J P (u) ⊆ Φ F ({ϕ(Y ) | Y ∈ g" J P (x)}) = G(g" J P (x))
. This means that for each p ∈ J P (u), g(p) belongs to G(g" J P (x)). As g(p) also belongs to g" J P (y) (because p ≤ u ≤ y), it follows, using (3.2), that g(p) ∈ g" J P (x), and so p ≤ x. As this holds for each p ∈ J P (u), we obtain that u ≤ x, as was to be proved.

We shall now recall a few known facts about the relation (κ, <ω, λ) → ρ (cf. Section 1). In case λ ≥ ℵ 1 and ρ ≥ ℵ 0 , the existence of κ such that (κ, <ω, λ) → ρ is a large cardinal axiom, that entails the existence of 0 # in case ρ ≥ ℵ 1 (cf. [START_REF] Devlin | More on the free subset problem[END_REF], and also [START_REF] Koepke | The consistency strength of the free-subset property for ωω[END_REF][START_REF] Koepke | On the free subset property at singular cardinals[END_REF] for further related consistency strength results). The relation (κ, <ω, λ) → ρ follows from the infinite partition property κ → (θ) <ω 2 (existence of the θ th Erdős cardinal ) where θ := max{ρ, λ + }, see [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Theorem 45.2] and the discussion preceding it. This notation is related to ours via the following easy result.

Proposition 3.4. The statements (κ, <λ) ; ([ρ] <ω , ⊆) and (κ, <ω, λ) → ρ are equivalent, for every cardinal ρ and all infinite cardinals κ, λ.

Proof. We use the characterization of the ; relation given by Lemma 3.3. First observe that J([ρ] <ω ) = {{ξ} | ξ < ρ}. Assume that the statement (κ, <λ) ; [ρ] <ω holds, and let F : [κ] <ω → [κ] <λ . By using the easy direction of Lemma 3.3, we obtain a one-to-one map f : ρ κ such that, putting H := f "(ρ),

F (f "(p)) ∩ H ⊆ f "(p) , for each p ∈ [ρ] <ω . (3.3)
This means that H is free with respect to F . Conversely, assume that (κ, <ω, λ) → ρ holds, and let F : P(κ) → [κ] <λ . By assumption, there exists H ∈ [κ] ρ which is free with respect to F . Then (3.3) holds, for any one-to-one map f : ρ H. Hence (κ, <λ) ; ([ρ] <ω , ⊆) holds.

The following observation illustrates the difficulties of checking Definition 3.1 on arbitrary posets. Proposition 3.5. There exists no cardinal κ satisfying (κ, <ℵ 1 ) ; (P(ω), ⊆).

Proof. Observe that J(P(ω)) = {{n} | n < ω}. Let X ≡ fin Y hold if the symmetric difference X △ Y is finite,
for all subsets X and Y of κ. Let ∆ be a set that meets the ≡ fin -equivalence class [X] ≡ fin of X in exactly one point, for each X ∈ P(κ), and denote by F (X) the unique element of [X] ≡ fin ∩ ∆ if X is at most countable, ∅ otherwise. If the relation (κ, <ℵ 1 ) ; (P(ω), ⊆) holds, then there is a one-to-one map f : ω κ such that F (f "(p)) ∩ f "(q) ⊆ f "(p) for all p ⊆ q in P(ω). As F (f "(ω)) ≡ fin f "(ω), there exists m < ω such that f "(ω \ m) ⊆ F (f "(ω)). Put p := ω \ (m + 1). It follows from the relation f "(p)

≡ fin f "(ω) that F (f "(p)) = F (f "(ω)), thus f (m) ∈ F (f "(ω)) ∩ f "(ω) = F (f "(p)) ∩ f "(ω) ⊆ f "(p) , while f (m) / ∈ f "(p), a contradiction.
4. The Kuratowski index of a finite poset Definition 4.1. A non-negative integer n is a Kuratowski index of a finite poset P if either P is an antichain, or P is not an antichain, n > 0, and the relation (κ +(n-1) , <κ) ; P holds for each infinite cardinal κ. Furthermore, we shall call the Kuratowski index of P the least such n if it exists (we shall see shortly that it does), and we shall denote it by kur(P ).

The reason of our adjustment of Definition 4.1 for antichains lies essentially in the fact that the relation (κ, <λ) ; P trivially holds for every antichain P and all cardinals κ, λ such that κ ≥ card P . Proposition 4.2. The number of join-irreducible elements in P is a Kuratowski index of P , for each finite poset P . Hence, kur(P ) is defined and kur(P ) ≤ card J(P ).

Proof. The statement is trivial in case P is an antichain, so suppose that P is not an antichain. Set n := card J(P ), let λ be an infinite cardinal, and set κ := λ +(n-1) . It follows from Kuratowski's Free Set Theorem [START_REF] Kuratowski | Sur une caractérisation des alephs[END_REF] that the relation (κ, <λ) ; (P(n), ⊆) holds (cf. Proposition 3.4). As the assignment x → J P (x) defines an embedding from P into (P(J(P )), ⊆), it follows from Lemma 3.2 that the relation (κ, <λ) ; P holds. Proposition 4.3. Let T be a well-founded tree and let κ be an infinite cardinal such that card T ≤ κ and card(T ↓ p) < cf κ for each p ∈ T . Then the relation (κ, <κ) ; T holds.

Proof. As T is well-founded, there exists a unique map ρ from T to the ordinals (the rank map) such that ρ(q) = {ρ(p) | p ∈ T q} for each q ∈ T . The range θ of the map ρ is an ordinal and card θ ≤ κ. Fix a partition (I η | η < θ) of κ such that card I η = κ for each η < θ. Fix also a one-to-one map ν : T κ. We define a strict ordering ⊳ on T (lexicographical product) by p ⊳ q ⇐⇒ either ρ(p) < ρ(q) or (ρ(p) = ρ(q) and ν(p) < ν(q)) .

Observe that ⊳ is a strict well-ordering of T and that it extends the original strict ordering <. Let F : P(κ) → [κ] <κ . We define, by ⊳-induction, a map f : T → κ, as follows. Let q ∈ T and suppose that f (p) has been defined and belongs to I ρ(p) , for each p ∈ T such that p ⊳ q. It follows from the assumptions on T that the set

X q := {f (p) | p ∈ T , ρ(p) = ρ(q) , ν(p) < ν(q)} ∪ (F (f "(T ↓ p)) | p ∈ T q)
(where T q is evaluated with respect to the original ordering of T ) has cardinality less than κ. Hence, I ρ(q) \ X q is nonempty. We pick f (q) ∈ I ρ(q) \ X q .

We claim that f is one-to-one. Indeed let p, q ∈ T distinct, we prove that f (p) = f (q). We may assume that p ⊳ q. If ρ(p) = ρ(q), then ν(p) < ν(q), so f (p) ∈ X q and the conclusion follows. If ρ(p) < ρ(q), then the conclusion follows from f (p) ∈ I ρ(p) , f (q) ∈ I ρ(q) , and

I ρ(p) ∩ I ρ(q) = ∅.
Furthermore, for all p < q in T , f (q) does not belong to X q , thus, a fortiori, not to F (f "(T ↓ p)). Therefore, F (f "(T ↓ p)) ∩ f "(T ↓ q) ⊆ f "(T ↓ p) for all p ≤ q in T .

From Lemma 3.2 we deduce immediately the following. Lemma 4.5 (Product Lemma). Let P and Q be lower finite posets with zero and let α, β, γ be infinite cardinals such that α ≤ β ≤ γ and card Q < cf α. If (β, <α) ; P and (γ, <β + ) ; Q, then (γ, <α) ; P × Q.

Proof. We use the equivalent form of the ; relation provided by Lemma 3.3. Let F : P(γ) → [γ] <α . As β ≤ γ, there exists a partition (U, V ) of the set γ such that card U = β and card V = γ. As α ≤ β, we can define a map H :

P(V ) → [V ] <β + by the rule H(Y ) := V ∩ F (X ∪ Y ) | X ∈ [U ] <ω , for each Y ∈ P(V ) .
As (γ, <β + ) ; Q, there exists a one-to-one map h : J(Q) V such that

(∀y ≤ y ′ in Q) H(h" J Q (y)) ∩ h" J Q (y ′ ) ⊆ h" J Q (y) . (4.1)
As card Q < cf α, we can define a map G :

P(U ) → [U ] <α by the rule G(X) := U ∩ (F (X ∪ h" J Q (y)) | y ∈ Q) , for each X ∈ P(U ) .
As (β, <α) ; P , there exists a one-to-one map g : J(P ) U such that (∀x ≤ x ′ in P ) G(g" J P (x)) ∩ g" J P (x ′ ) ⊆ g" J P (x) . (4.2)

As J(P × Q) = (J(P ) × {0 Q }) ∪ ({0 P } × J(Q)) and γ is the disjoint union of U and V , we can define a one-to-one map f : J(P × Q) γ by the rule

f (p, 0 Q ) := g(p)
, for each p ∈ J(P ) ; f (0 P , q) := h(q) , for each q ∈ J(Q) .

Let (x, y) ≤ (x ′ , y ′ ) in P × Q, we verify that the following statement holds:

F (f " J P ×Q (x, y)) ∩ f " J P ×Q (x ′ , y ′ ) ⊆ f " J P ×Q (x, y) . (4.3) 
So let (p, q) ∈ J P ×Q (x ′ , y ′ ) such that f (p, q) ∈ F (f " J P ×Q (x, y)), that is, f (p, q) ∈ F (g" J P (x) ∪ h" J Q (y)). We must prove that (p, q) ≤ (x, y). We separate cases. Case 1. q = 0 Q . As

g(p) = f (p, q) ∈ F (g" J P (x) ∪ h" J Q (y)) ∩ U ⊆ G(g" J P (x))
while g(p) ∈ g" J P (x ′ ), it follows from (4.2) that g(p) ∈ g" J P (x), that is, p ≤ x. Case 2. p = 0 P . As

h(q) = f (p, q) ∈ F (g" J P (x) ∪ h" J Q (y)) ∩ V ⊆ H(h" J Q (y))
while h(q) ∈ h" J Q (y ′ ), it follows from (4.1) that h(q) ∈ h" J Q (y), that is, q ≤ y. This completes the proof of (4.3).

Proposition 4.6. The inequality kur(P × Q) ≤ kur(P ) + kur(Q) holds, for any finite posets P and Q with zero.

Proof. We may assume that P and Q are both nonzero. Set m := kur(P ) and n := kur(Q). Let κ be an infinite cardinal and set λ := κ +m . As (κ +(m-1) , <κ) ; P and (λ +(n-1) , <λ) ; Q, it follows from the Product Lemma (Lemma 4.5) that (λ +(n-1) , <κ) ; P × Q. Now observe that λ +(n-1) = κ +(m+n-1) .

Denote by dim(P ) the order-dimension of a poset P , that is, the smallest number κ of chains such that P embeds into a product of κ chains. The order-dimension of a finite poset is finite. It follows immediately from Proposition 4.3 that the Kuratowski index of a nontrivial finite tree is 1. Hence, by applying Proposition 4.6, we obtain immediately the following upper bound for kur(P ). Proposition 4.7. Le n be a positive integer and let P be a finite poset. If P embeds, as a poset, into a product of n trees, then kur(P ) ≤ n. In particular, kur(P ) ≤ dim(P ).

As dim(P ) ≤ card J(P ) (for the assignment x → J P (x) defines a meet-embedding from P into P(J(P ))), this bound is sharper than the previously observed bound card J(P ) (cf. Proposition 4.2). In fact, it dates back to Baker [START_REF] Baker | Dimension, join-independence, and breadth in partially ordered sets[END_REF] that dim(P ) ≤ wd J(P ), where wd denotes the width function (the width of a poset is the supremum of the cardinalities of all antichains of that poset). Hence, kur(P ) ≤ dim(P ) ≤ wd J(P ) ≤ card J(P ) .

(4.4)

While Proposition 4.7 provides an upper bound for the Kuratowski index of a finite poset, our next result, Proposition 4.8, will provide a lower bound. The classical definition of breadth, see Baker [START_REF] Baker | Dimension, join-independence, and breadth in partially ordered sets[END_REF] or Ditor [4, Section 4], runs as follows. Let n be a positive integer. A join-semilattice P has breadth at most n if for every nonempty finite subset X of P , there exists a nonempty Y ⊆ X with at most n elements such that X = Y . This is a particular case of the following definition of breadth, valid for every poset, and, in addition, self-dual : we say that a poset P has breadth at most n if for all x i , y i (0 ≤ i ≤ n) in P , if x i ≤ y j for all i = j in {0, 1, . . . , n}, then there exists i ∈ {0, 1, . . . , n} such that x i ≤ y i . We denote by br(P ) the least non-negative integer n, if it exists, such that P has breadth at most n, and we call it the breadth of P .

Proposition 4.8. Let P be a finite poset with zero such that P ↓ a is a join-semilattice for each a ∈ P . Then the inequality max{br(P ↓ a) | a ∈ P } ≤ kur(P ) holds.

Proof. We may assume that P = {0}. Hence n := max{br(P ↓ a) | a ∈ P } is a positive integer. Pick a ∈ P such that n = br(P ↓ a). There are p 0 , . . . , p n-1 ∈ P ↓ a such that p i (p j | j = i) for each i < n, where the join (p j | j = i) is evaluated in P ↓ a. The assignment X → (p i | i ∈ X) defines a join-embedding from P(n) into P , thus, by Proposition 4.4, kur(P ) ≥ kur(P(n)) = n (the latter equality is part of the content of Kuratowski's Free Set Theorem, cf. Proposition 3.4).

As an immediate application of Propositions 4.7 and 4.8, we obtain the following. Corollary 4.9. Let n be a positive integer and let P be a product of n nontrivial finite trees. Then kur(P ) = n.

Kuratowski indexes of truncated cubes

In this section, we shall give estimates of Kuratowski indexes of truncated cubes, with applications to finding large free sets for set mappings of order greater than one. Diagrams indexed by B m ( 2), for m > 2, are widely used in Gillibert [START_REF] Gillibert | Critical points between varieties generated by subspace lattices of vector spaces[END_REF]. As B m ( m) = B m ( m -1) for each positive integer m, we shall assume that r < m whenever we consider the poset B m ( r). The following result is related to [START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF]Corollaire 3.3.3]. Proposition 5.2. Let r and m be integers with 1 ≤ r < m and let κ and λ be infinite cardinals. Then the following statements are equivalent:

(i) (κ, <λ) ; B m ( r); (ii) for every F : [κ] r → [κ] <λ there exists H ∈ [κ] m such that F (X) ∩ H ⊆ X for each X ∈ [H] r ; (iii) (κ, r, λ) → m (cf. Section 1).
Proof. An easy argument, similar to the one used in the proof of Proposition 3.4, yields the equivalence of (i) and (ii). Furthermore, as every map from [κ] r to [κ] <λ trivially extends to a map from [κ] r to [κ] <λ , (ii) implies (iii).

Finally assume that (iii) holds, and let F : [κ] r → [κ] <λ . We must find an melement free set, with respect to F , of κ. We may assume that F is isotone. By applying (ii) to the restriction F ′ of F to [κ] r , we obtain an m-element subset H of κ which is free with respect to F ′ . Let X ∈ [H] r . For each ξ ∈ H \ X, from X ⊆ H \ {ξ} and card X ≤ r ≤ card(H \ {ξ}) it follows that there exists Y ∈ [H] r such that X ⊆ Y ⊆ H \ {ξ}. By applying this to all elements ξ ∈ H \ X, we obtain that we can write X = (X i | i < s), for a positive integer s and subsets X 0 , . . . , X s-1 of H. As F (X i ) ∩ H ⊆ X i for each i < s and as F is isotone, we obtain that F (X) ∩ H ⊆ X. Therefore, H is free with respect to F , and so (ii) holds.

As B m ( r) is a finite lattice with breadth r + 1, it follows from Proposition 4.8 that kur B m ( r) ≥ r+1, for all integers r and m > r such that 1 ≤ r < m. Furthermore, as B m ( r) has exactly m join-irreducible elements (namely the singletons), it follows from Proposition 4.2 that kur B m ( r) ≤ m.

On the other hand, according to the results of Lázár, Hajnal-Máté, and Hajnal cited in Section 1, it follows from Proposition 5.2 that the relation (λ +r , <λ) ; B m ( r) holds for all integers r ∈ {1, 2, 3} and m > r. In particular, kur B m ( r) ≤ r +1, and thus, as the converse inequality holds, kur B m ( r) = r +1, whenever r ∈ {1, 2, 3} and r < m < ω. Arguing as above, in the presence of GCH we obtain from the relation (λ +r , r, λ) → λ + (cf. [START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF]Theorem 45.5]) that kur B m ( r) = r + 1-now for all integers r and m such that 1 ≤ r < m.

Without assuming GCH, Komjáth and Shelah's result (cf. Section 1) yields that kur B t4 ( 4) may be larger than or equal to 6. In particular, kur B t4 ( 4) = 5 in any set-theoretical universe satisfying GCH, while kur B t4 ( 4) ≥ 6 in some generic extension. And therefore, the Kuratowski index function is not absolute (in the set-theoretical sense).

We sum up in the following proposition some of the results above. While the integer t 4 of Proposition 5.3 is quite large, smaller values yield new Kuratowski indexes that were not available by using earlier methods. The following result is due to the first author [START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF]Lemme 3.3.12]. The proof of the order-dimension exact estimate dim B n+2 ( n) = n+ 1 is contained in [START_REF] Dushnik | Concerning a certain set of arrangements[END_REF], however [START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF]Lemme 3.3.12] provides an easy direct proof in that case. Of course it is obvious that the breadth of B n+2 ( n) is n + 1, and so the conclusion of Lemma 5.4 follows from Propositions 4.7 and 4.8.

Lemma 5.4. kur B n+2 ( n) = dim B n+2 ( n) = br B n+2 ( n) = n + 1, for every positive integer n.
The following corollary is observed in [8, Théorème 3.3.13].

Corollary 5.5 (Gillibert). The relation (λ +n , n, λ) → n + 2 holds for each infinite cardinal λ and each positive integer n.

In particular, this answers in the affirmative the question, raised on [6, page 285], whether (ℵ 4 , 4, ℵ 0 ) → 6.

These methods show that in order to prove the existence of large free sets for set mappings of type a positive integer r (as defined in [6, Section 46]), it is sufficient to establish upper bounds for the order-dimension of finite lattices of the form B m ( r). This problem gets somewhat simplified by using the following easy result. Clearly ψ is isotone. Let X, Y ∈ B m ( r) such that ψ(X) ψ(Y ), we must prove that X ⊆ Y . We may assume that Y = m. In particular, card Y ≤ r, and thus, by part of the proof of Proposition 5.2, we can write Y = (Y j | j < s), for a positive integer s and Y 0 , . . . , Y s-1 ∈ [m] r . For each i ∈ X and each j < s,

ϕ({i}) ≤ ψ(X) ≤ ψ(Y ) ≤ ψ(Y j ) ≤ ϕ(Y j ) ,
thus, as ϕ is an order-embedding, i ∈ Y j . As this holds for all possible choices of i and j, we obtain that X ⊆ Y . Therefore, ψ is an order-embedding, and so B m ( r) order-embeds into the same product of chains as B m (1, r) does.

Getting estimates of the order-dimension of B m (1, r) has given rise to a great deal of work, starting with Dushnik [START_REF] Dushnik | Concerning a certain set of arrangements[END_REF]. Further refinements can be found, for example, in Kierstead [START_REF] Kierstead | On the order-dimension of 1-sets versus k-sets[END_REF][START_REF] Kierstead | The dimension of two levels of the Boolean lattice[END_REF]. We shall illustrate how large free sets can be obtained from small order-dimensions in Proposition 5.7.

We shall use Dushnik's work [START_REF] Dushnik | Concerning a certain set of arrangements[END_REF]. For integers m, r with 1 ≤ r ≤ m, Dushnik denotes by N (m, r) the minimal number N such that there exists a set S of N linear orderings of m such that for each A ∈ [m] r and each a ∈ A, there exists S ∈ S such that (x, a) ∈ S for each x ∈ A. Then Dushnik establishes in [5, Theorem III] that dim B m (1, r) = N (m, r + 1) , for all integers m, r such that 1 < r < m . (5.1) In order to get estimates of N (m, r + 1), we shall use Hajnal's work quoted in Spencer's paper [START_REF] Spencer | Minimal scrambling sets of simple orders[END_REF]. For integers n and r such that 1 ≤ r ≤ n, Spencer denotes by M (n, r) the maximal cardinality of an "r-scrambling" family of subsets of n, and he establishes on [START_REF] Spencer | Minimal scrambling sets of simple orders[END_REF]Lemma,p. 351] the inequality

M (n, r) ≥ 1 2 (1 -2 -r ) -n/r , (5.2) 
where ⌊x⌋ denotes the largest integer below any real number x. Furthermore, Spencer establishes on [20, page 351] the inequality N 2 M(n,r) , r + 1 ≤ n , for all integers n, r such that 1 ≤ r < n .

(5.3)

Now let n and r be integers such that 1 < r < n, and set dim B m (1, r) ≤ n. Therefore, by Lemma 5.6, dim B m ( r) ≤ n as well, and therefore, by Proposition 4.7, kur B m ( r) ≤ n. Now an immediate application of Proposition 5.2 yields the relation (κ +(n-1) , r, κ) → m, for each infinite cardinal κ. This completes the proof of the following result.

m := 2 ⌊ 1 2 (1-2 -r ) -n/r ⌋ . ( 5 
Proposition 5.7. Let n and r be positive integers with 2 ≤ r < n. Then the relation (λ +(n-1) , r, λ) → 2 ⌊ 1 2 (1-2 -r ) -n/r ⌋ holds for each infinite cardinal λ.

Denote by lg x and log x the base two logarithm, resp. the natural logarithm of a positive real number x. Set E(n, r) := 2 ⌊ 1 2 (1-2 -r ) -n/r ⌋ , for all integers n, r such that 2 ≤ r < n. Elementary calculations yield the asymptotic estimate lg lg E(n, r) ∼ n r2 r log 2

, as n ≫ r ≫ . and so on. Smaller values of n also give nontrivial large free sets, however, for those values the bounds that we shall discuss now are better. We recall the following estimate of the order-dimension of B m (1, r). This estimate is first stated explicitly in Brightwell et al. [START_REF] Brightwell | The dimension of suborders of the Boolean lattice[END_REF]Proposition 1.5], where it is attributed to Füredi and Kahn [START_REF] Füredi | On the dimensions of ordered sets of bounded degree[END_REF]. However, the estimate is not stated explicitly in the latter paper, although the proof is an easy modification of the proof of that paper's [7, Proposition 2.3]. which is better than the relation (ℵ 171 , 4, ℵ 0 ) → 256 given by Table 1. However, for r = 4 and n ≥ 211 the size of the free set given by Proposition 5.7 becomes larger again.

We illustrate on

We can even obtain further large free sets results by using Dushnik's original exact estimate of the order-dimension of a truncated cube under certain conditions [START_REF] Dushnik | Concerning a certain set of arrangements[END_REF]. Proposition 5.9 (Dushnik). Let m, j, and k be positive integers such that m ≥ 4, 2 ≤ j ≤ ⌊ √ m⌋, and m + j 2 -j j ≤ k < m + (j -1) 2 -j + 1 j -1 .

Then dim B m (1, k -1) = m -j + 1.

In the context of Proposition 5.9, it follows from Lemma 5. Of course, the "origin" ℵ 0 can be changed, in any of these relations, to any infinite cardinal, so, for example, the relation (λ +9 , 5, λ) → 12 holds for any infinite cardinal λ.

Discussion

Our work [START_REF] Gillibert | From objects to diagrams for ranges of functors[END_REF] makes a heavy use of Kuratowski indexes of finite lattices, in particular in order to evaluate "critical points" between quasivarieties of algebraic structures. Now evaluating the Kuratowski index of a finite poset may be a hard problem, even in the case of easily describable finite lattices. For example, consider the finite lattices P and Q represented in Figure 6.1. Both P and Q have breadth P Q Figure 6.1. Two lattices of breadth two and order-dimension three two and order-dimension three. Furthermore, P embeds, as a poset, into Q, thus, by Proposition 4.4, kur(P ) ≤ kur(Q). Therefore, by Propositions 4.7 and 4.8, we obtain the inequalities 2 ≤ kur(P ) ≤ kur(Q) ≤ 3 . We do not know which one of those inequalities can be strengthened to an equality. The statement kur(P ) = 2 is equivalent to For every infinite cardinal λ and every F : [λ + ] <ω → [λ + ] <λ , there are distinct ξ 0 , ξ 1 , ξ 2 , η 0 , η 1 , η 2 < λ such that ξ i / ∈ F ({ξ j , η j }), η i / ∈ F ({ξ j , η j }), and η i / ∈ F ({ξ 0 , ξ 1 , ξ 2 }) for all i = j in {0, 1, 2}, while the statement kur(Q) = 2 is equivalent to the apparently stronger statement For every infinite cardinal λ and every F : [λ + ] <ω → [λ + ] <λ , there are distinct ξ 0 , ξ 1 , ξ 2 , η 0 , η 1 , η 2 < λ such that ξ i / ∈ F ({ξ j , η j }) and η i / ∈ F ({ξ 0 , ξ 1 , ξ 2 , η j }) for all i = j in {0, 1, 2}.

Such results could be relevant in further improving "large free sets" results such as Corollary 5.5 and Proposition 5.7. In particular, the gap between E(n, 4) (which gives a positive large free set result in Proposition 5.7) and t n (which gives Komjáth and Shelah's negative large free set result) looks huge. Can the bound E(n, 4) be improved in Proposition 5.7? On the other hand, we do not even know whether the relation (ℵ 4 , 4, ℵ 0 ) → 7 holds.

Proposition 4 . 4 .

 44 If a poset P embeds into a finite poset Q, then kur(P ) ≤ kur(Q).The proof of the following result is inspired by the proof of Kuratowski's Free Set Theorem, see[START_REF] Erdős | Combinatorial Set Theory: Partition Relations for Cardinals[END_REF] Theorem 46.1]. It is closely related to[START_REF] Gillibert | Points critiques de couples de variétés d'algèbres[END_REF] Lemme 3.3.7].

Notation 5 . 1 .

 51 For integers r, k, r 0 ≤ • • • ≤ r k-1 , and m such that 1 ≤ r ≤ m and 1 ≤ r j ≤ m for each j < k, we define the truncated m-dimensional cubes B m ( r) := {X ∈ P(m) | either card X ≤ r or X = m} , B m (r 0 , . . . , r k-1 ) := {X ∈ P(m) | card X ∈ {r 0 , . . . , r k-1 }} . endowed with containment.

Proposition 5. 3 .

 3 (i) r + 1 ≤ kur B m ( r) ≤ m for all integers r and m such that 1 ≤ r < m. (ii) kur B m ( r) = r + 1 for all integers r and m such that 1 ≤ r < m and r ∈ {1, 2, 3}. (iii) Assume that GCH holds. Then kur B m ( r) = r+1 for all integers r and m such that 1 ≤ r < m. (iv) There exists a model of ZFC where kur B t4 ( 4) ≥ 6.

Lemma 5 . 6 .

 56 The equality dim B m ( r) = dim B m (1, r) holds, for all integers m and r such that 1 ≤ r < m.Proof. As B m ( r) contains B m (1, r), the inequality dim B m ( r) ≥ dim B m (1, r) is trivial. Conversely, set N := dim B m (1,r) and let K be a product of chains (any lattice would do) with an order-embedding ϕ : B m (1, r) ֒→ K. We set ψ(X) := (ϕ({i}) | i ∈ X) , for each X ∈ B m ( r) .

Proposition 5 . 8 (-1 r r r + 1 d < 1 .

 5811 Füredi and Kahn). Let r and m be integers such that 1 ≤ r < m and let d be a positive integer satisfying the inequalitym m Then dim B m (1, r) ≤ d. If dim B m (1, r) ≤ d,then, by Lemma 5.6, dim B m ( r) ≤ d, thus, by Proposition 4.7, kur B m ( r) ≤ d, and thus, by Proposition 5.2, (ℵ d-1 , r, ℵ 0 ) → m. In particular, we obtain the relation (ℵ 109 , 4, ℵ 0 ) → 257 ,

  6 that dim B m ( k -1) = m -j + 1, thus, by Proposition 4.7, kur B m ( k -1) ≤ m -j + 1, and thus, by Proposition 5.2, the relation (ℵ m-j , k -1, ℵ 0 ) → m holds. Interesting values are obtained for k = 5 and m ∈ {10, 11}, giving respectively the relations (ℵ 7 , 4, ℵ 0 ) → 10 and (ℵ 8 , 4, ℵ 0 ) → 11 . For k = 6 and m ∈ {12, 13, 14}, we obtain, respectively, (ℵ 9 , 5, ℵ 0 ) → 12 , (ℵ 10 , 5, ℵ 0 ) → 13 , (ℵ 11 , 5, ℵ 0 ) → 14 .

Table 1 .

 1 Small values of E(n, 4)

	.4)

Table 1

 1 

the behavior of the function E on r := 4 and (relatively) small values of n. The given values of n are minimal for the corresponding values of E(n, 4): for example, E(171, 4) = 128 while E(172, 4) = 256. The value n := 172 is the first one for which Proposition 5.7 gives a nontrivial large free set result.

In particular, we deduce from Proposition 5.7 the following relations:

(ℵ 210 , 4, ℵ 0 ) → 32,768 ;

(ℵ 214 , 4, ℵ 0 ) → 65,536 .
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