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Abstract: We provide a counterexample to show that the generic form of entropy 

∑=
i

ipgpS )()(  is not always stable against small variation of probability distribution 

(Lesche stability) even if g  is concave function on [0,1] and analytic on ]0,1]. Our conclusion 

is that the stability of such a generic functional needs more hypotheses on the property of the 

function g, or in other words, the stability of entropy cannot be discussed at this formal stage. 

 

 

 If a physical quantity observable is continuous function of the characteristic variables 

of motion such as time, configuration, velocity, energy, probability distribution etc., this 

quantity, and of course its mathematical definition, should undergo smooth variation for the 

system in smooth motion. Such a condition can be referred to as experimental robustness or 

observability and can be used to examine the validity of mathematical. An example of such 

quantity is the entropy which is characteristic of probabilistic uncertainty in stochastic 

dynamics and considered as continuous function of probability distribution. From this 

consideration, the mathematical definition of Shannon entropy, Renyi entropy and Tsallis 

entropy has been reviewed in [1] and [2], in which the robustness was called stability against 

small perturbation of probability or subsequently Lesche stability after Lesche who initialized 

the discussion by defining a restrictive uniform continuity criterion [1]. That stability criterion 

was afterwards used to examine many other quantities including the kappa-entropy [3], the 

stretched exponential entropy [3], the quantum group entropy [3], the incomplete entropy 
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[4][5] and the escort expectation [6], and has also been extended to a generic forms of entropy 

∑=
i

ipgpS )()(  in [7] where the authors advocated for the stability of such a formal 

definition if g  is analytic and concave function of probability distribution pi. This conclusion 

would be important and very useful if it was well founded. However, we found that a key 

argument, the calculation from Eq.(2.10) to Eq. (2.15) of [7],  would contain some mistakes. 

As a matter of fact, keeping the Taylor expansion of entropy only to first order in these 

equations leads to vanishing entropy variation hence invalids the pretended proof of stable 

S(p). Although this conclusion can be saved by keeping the term of second order in the 

expansion, the omission of higher order terms cannot be justified. In this letter, we provide a 

counterexample in order to show that the general conclusion drawn in [7] does not hold. The 

stability of entropy in that generic form may needs more restrictions on the entropic 

functional expression.  

 

Lemma 1. Let f  be a function continuous on an interval ],[ ba , g  a function continuous 

defined on ( )],[ baf  and [,] bac ∈ . 

We suppose that: 

i) f  is of class 2C  on ],] ba , increasing on ],[ ba , concave on ],[ ca  and convex on ],[ bc ; 

ii)  g  is of class 2C  on )](),(] bfaf , concave on )](),([ bfaf  increasing on )](),([ cfaf , 

decreasing on )](),([ bfcf . 

Then fg o  is concave on ],[ ba . 

Proof 

a) Let ],[, cayx ∈  and ]1,0[∈α . We have 

( ) )()1()()1( yfxfyxf αααα −+≥−+  because f  is concave on ],[ ca , 

and 

( )( ) ( ))()1()()1( yfxfgyxfg αααα −+≥−+  because g  is increasing on )](),([ cfaf . 

On the other hand,  

( ) ( ) ( ))()1()()()1()( yfgxfgyfxfg αααα −+≥−+  because g  is concave on )](),([ bfaf  

It follows that,  

( )( ) ( ) ( ))()1()()1( yfgxfgyxfg αααα −+≥−+ . 

We deduced thus, 
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( )( ) ( )( ) ( )( )yfgxfgyxfg ooo )1()1( αααα −+≥−+  

Consequently, fg o  is concave on ],[ ca  or equivalently ( ) 0'' ≤fg o  on ],] ca  

b) Let ],[, bcyx ∈  and ]1,0[∈α . We have 

( ) )()1()()1( yfxfyxf αααα −+≤−+  because f  is convex on ],[ bc , 

and 

( ) ( )( )yxfgyfxfg )1()()1()( αααα −+≤−+  because g  is decreasing on )](),([ bfcf , 

On the other hand,  

( ) ( ) ( ))()1()()()1()( yfgxfgyfxfg αααα −+≥−+  because g  is concave on )](),([ bfaf , 

It follows that,  

( )( ) ( ) ( ))()1()()1( yfgxfgyxfg αααα −+≥−+  

We deduce thus 

( )( ) ( )( ) ( )( )yfgxfgyxfg ooo )1()1( αααα −+≥−+  

Consequently, fg o  is concave on ],[ bc  or equivalently ( ) 0'' ≤fg o  on ],[ bc . 

c) By a) ( ) 0'' ≤fg o  on ],] ca , and b) ( ) 0'' ≤fg o  on ],[ bc , we conclude that 

( ) 0'' ≤fg o  on ],] ba . Thus fg o  is concave on ],[ ba . 

 

Lemma 2. Let h  be the function defined on ]1,0[  by 

0)0( =h  and 








−
=

x
xh

ln1
sin)(

π
 if 0≠x . 

Then h  is concave and verifies 
2

1

1

1

lim
2

=


















+∞→

x
h

x
h

x
. 

Proof 

Let f  be the function defined on ]1,0[  by 

0)0( =f  and 
x

xf
ln1

)(
−

= π
 if 0≠x , 

and g  be the function defined on ],0[ π  by xxg sin)( = . 

We have: 
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f  is continuous on ]1,0[ , f  is of class 2C  on ]1,0] . For all ]1,0]∈x , 
( )

0
ln1

)('
2

>
−

=
xx

xf
π

, 

thus f  is increasing on ]1,0[  and we conclude that ( ) ],0[)]1(),0([]1,0[ π== fff . 

For all ]1,0]∈x , 
( )32 ln1

ln1
)(''

x

x

x
xf

−
+= π

, thus ''f  is negative on 






e

1
,0  and ''f  is positive on 







1,

e

1
, consequently, f  is concave on 






e

1
,0  and f  is convex on 





1,

e

1
. 

On the other hand, g  is of class 2C  on ],0[ π , g  is concave on ],0[ π , increasing on 
















=






e

1
),0(

2
,0 ff
π

 and decreasing on 














=





)1(,

e

1
,

2
ffππ

. From lemma 1, fgh o=  

is concave on ]1,0[ . 

Finally, 
2

1

1

1

lim
2

=


















+∞→

x
h

x
h

x
, because we have 

( )
π

π
π

π

π

π
x

x

x

x

x

x

x
h

x
h

ln1

ln21

ln1
sin

ln21
sin

)/1ln(1
sin

/1ln1
sin

1

1
22 +

+
≈










+










+=










−










−
=



















∞
. 

Thus lemma 2 is proved. 

 

Lemma 3. Let g  be a function continuous on ]1,0[  with 0)1()0( == gg  and g  is of class 

2C  on ]1,0]  with 0'' <g  on ]1,0] . 

The entropy associated with g  is defined on U
∗∈

=
Nn

n
fE [0,1]  by  

( ) ,,,1 fn Eppp ∈=∀ L  ∑
=

=
n

i
ipgpS

1

)()( . 

i) For all ∗∈ Nn , 






 =∈ ∑

=

1,[0,1]),(sup
1

n

i
i

n pppS  exists and will be denoted by max,nS . 

ii) For all ∗∈ Nn , 






=
n

ngS n

1
max, . 

Proof 
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i) Let ∗∈ Nn , the function nS  defined on n[0,1]  by : for all ( ) n
nxxx [0,1],,1 ∈= L , 

∑
=

=
n

i
ixgxS

1

)()(  is continuous on n[0,1]  and 






 =∈ ∑

=

1,[0,1]
1

n

i
i

n xx  is a compact of n[0,1]  

thus max,nS  exists. 

ii) Let ∗∈ Nn , we maximize the function nS  with respect 1
1

=∑
=

n

i
ip . 

Using the Lagrange multiplier method, we consider the function nΦ  defined on n[0,1]  by :  

( ) n
nppp [0,1],,1 ∈=∀ L , 







 −−=Φ ∑∑
==

1)()(
11

n

i
i

n

i
in ppgp α . 

( ))0(
max, pSS nn =  where ( ) n

npppp [0,1],,, )0()0(
2

)0(
1

)0( ∈= L  and satisfies 1
1

)0( =∑
=

n

i
ip  for all 

{ }ni ,,2,1 L∈ , ( ) 0)0( =
∂
Φ∂

p
xi

n . 

On the other hand, for all { }ni ,,2,1 L∈ , ( ) α−=
∂
Φ∂

)(' i
i

n pgp
x

. 

Because 'g  is strictly decreasing on ]1,0] , let x  be the unique element of ]1,0]  such that 

α=)(' xg , we have 

{ }ni ,,2,1 L∈∀ , ( ) xpp
x ii

i

n =⇔=
∂
Φ∂ )0()0( 0  

Thus, 1
1

)0( =∑
=

n

i
ip  implies that 

n
x

1= . 

Consequently, ( ) ( ) ( ) 






==== ∑
= n

ngpngpgpSS
n

i
inn

1)0(
1

1

)0()0(
max, . 

Thus lemma 3 is proved. 

 

Definition 4. 

A function S  defined on U
*

1,[0,1]
1N∈ = 






 =∈= ∑

n

n

i
i

n ppA  is stable (Lesche stability) if and only 

if 
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0>∀ε , 0>∃δ , *N∈∀N , 






 =∈∈∀ ∑

=

1,[0,1]',
1

N

i
i

N pppp , 

εδ <−
⇒<−

max,
1

)'()(
'

NS

pSpS
pp . 

 

Proposition 5. 

Let h  be the function defined on ]1,0[  by 

0)0( =h  and 








−
=

x
xh

ln1
sin)(

π
 if 0≠x . 

Then h  is concave, h  is of class ∞C  on ]1,0] , continuous on 0  and 0)1()0( == hh . 

We consider the function S  defined on U
*

1,[0,1]
1N∈ = 






 =∈= ∑

n

n

i
i

n ppA  by  

*N∈∀n , ( ) n
nppp [0,1],,1 ∈=∀ L  with 1

1

=∑
=

n

i
ip , ∑

=

=
n

i
ipgpS

1

)()( . 

Then S  is not Lesche stable. 

Proof 

By lemma 2, we can find *
0 N∈N  such that for all 0Nn ≥ , 

( )
4

1

)/1(

/11 2

>−
nh

nh

n

n
. 

For 0
8

1 >=ε , for all 0>δ , there is *
0,1

2
max N∈







 +






= NEN
δ

, let ', pp  defined by  

( ) Niipp ,,1L== , iip 1δ=   

( ) Niipp ,,1
''

L== , 
2

'
1

11
1

NN
p +−= , 

2

' 1

N
pi =  if 1>i .  

We have 

1
1

'

1

==∑∑
==

W

i
i

N

i
i pp , 

δ<≤






 −=−+






 +−−=− ∑
= NNNNNN

pp
N

i

211
2

1
0

11
11'

2
2

221
, 

and 
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ε>≥
















−
≥

















−+






 +−
=

















−−






 +−−
=

























−+






 +−−
=−

∑
=

4

1
1

1
)1(

1

1
)1(

11
1

1

1
)1(

11
1

1

1
)0(

11
1)1(

)'()(

2

22

22

2
22

max,

N
Nh

N
hN

N
Nh

N
hN

NN
h

N
Nh

N
hN

NN
h

N
Nh

N
hh

NN
hh

S

pSpS

N

i

N

 

 

Consequently, S  is not Lesche stable. 

In summary, a counterexample is given to show that the entropy ∑=
i

ipgpS )()(  is 

not always stable or robust even if g  is concave function on [0,1] and analytic on ]1,0]. To 

our opinion, the stability of such a generic form of entropy needs more hypotheses on the 

property of the function g, or the stability of entropy cannot be discussed at this formal stage.  

We would like to indicate in passing that the present counterexample can also be used 

to review the conclusion of [3] about the stability of a generic definition of entropy, given by 

Eq.(6) of [3] based on maximum entropy principle (maxent). In fact, if one replaces the 

function )(1

0

tfdt
ip

−
∫ in that equation by )( ipg or f(t) by g'-1(t) which satisfies the properties of 

f(t), then the function B(•) defined in Eq.(18) of [3] has a limit value of 1 instead of zero as 

obtained in [3]. Note however that the eventual failure of establishing stability for this formal 

entropy has nothing to do with the validity of that definition which we esteem on the contrary 

a logical and useful proposal based on maxent. The stability problem can be addressed after 

an entropy is derived from this definition, as has been done in [3] for several functional. This 

same statement also applies to the definition, proposed by mimicking the second law entropy 

for reversible process, of a variational entropy (called varentropy) dxxddS −=  for any single 
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random variable x[8]. Varentropy has been shown to be maximized by the distributions used 

to derive it's functional [8]. For this purpose, it coincides with the entropy of Eq.(6) in [3]. 
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