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Abstract: We provide a counterexample to show that the genfarm of entropy

S(p)=2g(pi) is not always stable against small variation obbability distribution

(Lesche stability) even i§y is concave function on [0,1] and analytic on JOQ{ir conclusion

is that the stability of such a generic functionakds more hypotheses on the property of the

functiong, or in other words, the stability of entropy canhe discussed at this formal stage.

If a physical quantity observable is continuousction of the characteristic variables
of motion such as time, configuration, velocity,eagy, probability distribution etc., this
guantity, and of course its mathematical definitishould undergo smooth variation for the
system in smooth motion. Such a condition can berned to as experimental robustness or
observability and can be used to examine the vglwh mathematical. An example of such
guantity is the entropy which is characteristic psbbabilistic uncertainty in stochastic
dynamics and considered as continuous function robability distribution. From this
consideration, the mathematical definition of Slanmentropy, Renyi entropy and Tsallis
entropy has been reviewed in [1] and [2], in whilsl robustness was called stability against
small perturbation of probability or subsequentgsthe stability after Lesche who initialized
the discussion by defining a restrictive uniforrmtouity criterion [1]. That stability criterion
was afterwards used to examine many other quaniitidduding the kappa-entropy [3], the

stretched exponential entropy [3], the quantum greuatropy [3], the incomplete entropy



[4][5] and the escort expectation [6], and has alsen extended to a generic forms of entropy

S(p) =Zg(pi) in [7] where the authors advocated for the sitgbibf such a formal

definition if g is analytic and concave function of probabilitgtdbutionp;. This conclusion

would be important and very useful if it was weluhded. However, we found that a key
argument, the calculation from Eq.(2.10) to Eq1%2.of [7], would contain some mistakes.
As a matter of fact, keeping the Taylor expansioremropy only to first order in these
equations leads to vanishing entropy variation bengalids the pretended proof of stable
Sp). Although this conclusion can be saved by keephey term of second order in the
expansion, the omission of higher order terms cahaqustified. In this letter, we provide a
counterexample in order to show that the genenatlosion drawn in [7] does not hold. The
stability of entropy in that generic form may neea®re restrictions on the entropic

functional expression.

Lemma 1. Let f be a function continuous on an interyalb], g a function continuous
defined onf ([a,b]) andc]a,bl.
We suppose that:
i) f is of classC? on ]a,b], increasing orja,b ,Jconcave orja,c hnd convex offic,b ]
i) g isof classC? on]f(a), f(b)], concave or f(a), f (b )jncreasing orf f (a), f(c )]

decreasing ofif (c), f(b )]
Thengo f is concave oiia,b .]
Proof
a) Let x, yO[a,c] anda [0 [01] We have

f(ax+@1-a)y) = af (X)+ - a) f(y) becausef is concave offia,c ,]

and

o(f (ax+ @-a)y))= g(af (X) + @-a) f (y)) becausey is increasing ofi f (a), f (c )]
On the other hand,

glaf () + @-a) f(y)) = ag(f (x))+ @-a)g(f (y)) becausey is concave oii f (a), f (b )]
It follows that,
o(f (ax+ @-a)y))= ag(f () + @-a)g(f (v)).

We deduced thus,



(go fNax+ @-a)y)z alge f)(x)+ @-a)(g- f)y)
Consequentlyg o f is concave ofia,c pr equivalently(go f)''< 0 on]a,c]
b) Let x, yO[c,b] anda O [01] We have

f(ax+ (1—a)y)s af (X)+ (L—-a)f(y) becausef is convex oric,b ]
and
glaf () + @-a) f (y)) < g(f (ax+ - a)y)) becausey is decreasing opf (c), f(b )]
On the other hand,
gaf () + @-a) f(y)) = ag(f (x))+ @-a)g(f (y)) becauseg is concave oifif (a), f (b )]
It follows that,
o(f (ax+ @-a)y))z ag(f () + €-)g(f ()

We deduce thus

(go fNax+ @-a)y)z alge f)(x)+ @-a)(g- f)y)

Consequentlygo f is concave ofic,b pr equivalently(g o f)"s 0 onJc,b].

c) By a) (gof)'<0 on Jac], and b) (gof)"<0 on [c,b], we conclude that

(go f)"sO on]a,b]. Thusgo f is concave oiia,b .]

Lemma 2. Let h be the function defined on [0]1] by

h(©) =0 andh(x):sin( j if x#0.
1-Inx
h[lzj 1
Then h is concave and verifieim X =—.
X — +00 (1) 2
h -
X
Proof
Let f be the function defined on [01] by
f(0)=0andf(x)= if x£0,
1-Inx

and g be the function defined of®, 7 By g(x) =sinx.

We have:



f is continuous on [0]] f is of classC? on ]01]. For allx 101} f'(X) :L>O,

x(1-1n x)?
thus f is increasing on [01] and we conclude tH4[01]) =[ f (0), f )] =[0, 7.

n 1+Inx

For all xOJ01], f"(X)=— 5, thus f "is negative or[o, 1[ and f "is positive on
X €

(1-1nx)

F ,1} , consequentlyf is concave or|io, E} and f is convex or{1 ,1} :
e e e

On the other handg is of classC? on [0,7], g is concave on[0,7 ,]increasing on

{O,LT} ={f 0), f(}ﬂ and decreasing OEE, ﬂ} ={f[1j f (1)] From lemma 1Lh=go f
2 e 2 e

is concave on [0]].
Finally, lim

b

h

><N‘,_\
o

==, because we have

7 N\
X |k
N—

N

() infioe)_*{reams
x2)_  \1-Ini/x*)) _ " \1+2Inx)_ 7 1+Inx

[1) o T - ( T j w1+2Inx 7T
h = sin —— sin
X 1-In(1/ X) 1+Inx

Thus lemma 2 is proved.

Lemma 3. Let g be a function continuous on [01] witlp(0) =g@ = &nd g is of class
C? on ]01] withg''< Oon ]01].

The entropy associated with is defined onE, = U[O,l]n by

nON®

Op=(p,- pa)OE;, S(p)=Zn‘,g(pi)-

i=1

max *

i) ForallnON", sup{S( p), pO0,1]", > p, :1} exists and will be denoted K,

i=1

i)  ForallnON", S, .. =ng(1j.
‘ n

Proof



i) Let nON", the functionS, defined on[0,1]" by : for all x=(x,,---,x,)0[0,1]",

S(x) :Zn:g(xi) is continuous orj0,1]" and {XD[O,l]”,ZXi = 1} is a compact 0f0,1]"
i=1

i=1

thus S, ., exists.

i) Let nON", we maximize the functios, with respectz p =1.
i=1

Using the Lagrange multiplier method, we consitlerfunction®,, defined on0,1]" by :
Op=(p,,---, p,)0[0,4]", ¢n(p)=Zg(pi)—a(z P —1}
i=1 i=1

S :Sn(p(o)) where p®© :(pl(o), P, prﬁo))D[O,l]n and satisfiesd p/® =1 for all
i=1

i _aq)” © )=
i0{12,-,n}, o (p@)=o0.
. 0P
On the other hand, for alld{12,---,n}, aX” (p)=g'(p)-a.

Becauseg 'is strictly decreasing on ]01], leX be the unique element of ]01] such that
g'(x) =a, we have
0P,

0i 0{12,---,n}, K(pim))zo - p@=x

Thus, Y p/» =1 implies thatx = £
n

i=1

ConsequentlyS, . = S, (p(o) ) => g(pi(o) ) = ng(pl(o) ) = ng(ij .
i=1 n
Thus lemma 3 is proved.
Definition 4.
A function S defined onA= U{pD[O,l]”,Z P, =1} is stable (Lesche stability) if and only
i=1

nON’

if



N
Oe>0, Co>0, ONON’, Op, p'D{pD[O,l]N,Z P =1},
i=1

S(p)—S(p")

N ,max

<&.

IID—D'||1<5:‘

Proposition 5.
Let h be the function defined on [01] by

h«»:Oamﬂmm:sm( jifxio

1-Inx
Thenh is concaveh is of classC” on ]01], continuous on 0 atd0)=h@) = .0

We consider the functio® defined onA= U{pD[O,l]”,z p, :1} by
i=1

nON’

OnON", Op=(py,-, p,)0[0,1]" with Z p =1, S(p)=ig(pi)'

Then s is not Lesche stable.
Proof

n-1h(1/n?)

By lemma 2, we can findN, ON" such that for aln> N,, ——
n h@/n)

1
>,
4
For £=%>0, for all > 0, there isN = ma{E(gjﬂ, NOJDN*, let p, p' defined by

p:(pi )i:].,-~-,N’ pi :51i

o o 1 1 1
p_(pi)i:j_’...’N’ pl_l_ﬁ"'vy pi —F if i >1.
We have

N W :
zpizzpi =1
i=1 i=1

il — 1 1 1| (1 1

||p—p||1—1—(1—ﬁ+mj+;0—m—Z(N—stﬁ<5,

and



1 1) & 1
h()-h 1- = +—— h(0)-h ——
S(p)-S(p)| _ ‘(1) (1 N+N2j+;( © (szj‘
| _

SN ,max ‘ Nh(;j

ConsequentlyS is not Lesche stable.

In summary, a counterexample is given to show tthatentropyS(p) = ZQ(pi) 5

not always stable or robust evengfis concave function on [0,1] and analytic on ]0Ip

our opinion, the stability of such a generic forientropy needs more hypotheses on the
property of the functiog, or the stability of entropy cannot be discusgetiia formal stage.

We would like to indicate in passing that the preésmunterexample can also be used
to review the conclusion of [3] about the stabilifya generic definition of entropy, given by

Eq.(6) of [3] based on maximum entropy principleagent). In fact, if one replaces the
Bi

function J'dtf () in that equation byg(p, 9r f(t) by g*(t) which satisfies the properties of
0

f(t), then the functiorB() defined in Eq.(18) of [3] has a limit value bfinstead of zero as
obtained in [3]. Note however that the eventudlfai of establishing stability for this formal
entropy has nothing to do with the validity of tlifinition which we esteem on the contrary
a logical and useful proposal based on maxent.st&glity problem can be addressed after
an entropy is derived from this definition, as bagn done in [3] for several functional. This

same statement also applies to the definition,ggeg by mimicking the second law entropy

for reversible process, of a variational entromfléxl varentropy)dS = dx —dx for any single



random variable[8]. Varentropy has been shown to be maximizedheydistributions used

to derive it's functional [8]. For this purposecdincides with the entropy of Eq.(6) in [3].
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