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Modular Integrals in Minimal Super Liouville Gravity

V. Belavin!

Laboratoire de Physique Théorique et Astroparticules
Université Montpellier 11
PI1. E. Bataillon, 34095 Montpellier, France

Abstract The four-point integral of the minimal super Liouville gravity on the sphere
is evaluated numerically. The integration procedure is based on the effective elliptic param-
eterization of the moduli space. The analysis is performed for a few different gravitational
four-point amplitudes. The results agree with the analytic results recently obtained using
the Higher super Liouville equations of motion.

1 Introduction

The continuum formulation of the noncritical string theory is equivalent to 2D quantum grav-
ity coupled to some critical matter, i.e., the matter described by a conformal field theory
M. Simple reaction of conformal theories to the scaling of the metric leads to the universal
form of the effective action of the generated gravity, which is called the Liouville gravity
(LG) [1]. Because of the peculiarities of two-dimensional metric geometry, many technical
simplifications immediately come into play. Thus, LG is perhaps the simplest example of
quantum gravity, but it nevertheless shares the same basic questions of interpretation and
can hence be considered useful and worth studying. The problem of choosing observables
correctly and the problem of calculating the corresponding correlation functions are of pri-
mary importance in any quantum theory. The field of LG has experienced considerable
progress in recent years. Recently discovered higher equations of motion (HEM) [2] in LFT
have allowed reaching the four-point level in calculating the correlation functions in LG [3, 4].
The results were tested against the calculation in the framework of the relatively indepen-
dent approach to 2D quantum gravity usually called the matrix models (see, e.g., [5] and the
references therein). Moreover, a deeper understanding of the correspondence between these
two approaches was achieved based on these results [6], although the complete picture of the
relations between these techniques is still missing.

In the context of string theory applications, the construction of 2D quantum gravity in
superspace is one of the most interesting questions. The first possible generalization is N=1
supersymmetry. Here, essential progress was also achieved recently. The study was motivated
by a series of works concerned with super LFT in which the profound understanding of
the properties of the conformal blocks (which are the basic elements of any CFT [7]) was
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achieved. This allowed “taking oftf” the necessity of treating the correlations involving only
special degenerate [8] excitations. Another important result was the discovery of the HEM
in super LFT [9]. All these results have served as a good starting point for a more profound
study of super Liouville gravity (SLG). In [10], the structure of the physical fields in the
Neveu-Schwarz (NS) sector of SLG was clarified, and the general expression for the n-
point correlation numbers on the sphere in terms of integrals over moduli space was written
explicitly. Then the super HEM in the N=1 super LFT and the analysis of the structure of
the super ground ring (and its logarithmic counterpart) allowed deriving the explicit analytic
expressions for the four-point correlators. Because little is now known for the supersymmetric
matrix model, there are no independent results analogous to those obtained in [10]. In this
situation, more checks of the validity of these results would seem desirable. This paper is
devoted to directly calculating the four-point correlation numbers in SMLG.

The paper is organized as follows. To make the presentation self-contained, we collect all
necessary information related to the subject in Sec. 2 and Sec. 3. The remaining part of the
paper deals with evaluating the four-point integrals numerically. In Sec. 4, we consider two
examples of the four-point integral. We reduce the expressions to a number of integrals over
the fundamental region of the modular group, and the integrands represent the products of
the various correlation functions both in the matter and in the Liouville sectors. The elliptic
transformation is the subject of Sec. 5. The numerical results are presented in Sec. 6. Some
useful details omitted from the main text are given in Appendix A.

2  Minimal Super Liouville Gravity

In the framework of the so-called DDK approach [11-13], SLG is represented as a tensor
product of superconformal matter (SM), super Liouville, and super ghost systems

Asra = Asm + Ast + Asc (1)
with the interaction via the relation for the central charge parameters
csm + ¢sL+ csq =0 (2)

and also due to the construction of the physical fields.
The superconformal algebra is

A

(L, L] = (10— 110) Ly + §<n3 — )8,

¢ 1
{Gra Gs} = 2Lr+s + 5 (72 - Z) 67“,—57 (3)

1
[Lna Gr} = (En - T) Gn—f—ra

where ]
r,s € Z+ 3 for the NS sector,

r.s €7 for the R sector.



The SLFT central charge is
8SL =1+ 2Q27 (4)

where the “background charge” parameter () is related to the SLFT basic quantum param-
eter b

Q=>b"1+0b (5)

The fields belong to the highest-weight representations of the superconformal algebra. The
basic fields of interest in this paper belong to the primary supermultiplet (V,,Y,, Y., W,)
with the bottom component V, having the conformal dimension

L a@—a)
AL =Y, (6
where a is a continuous (complex) parameter, and the other components of the primary
supermultiplet being

Ya = GEl/QV(M Ya = 651/2%7 Wa = Ggl/QGgl/Q%' (7)

Here and hereafter, we use the superscripts M, L, and G to specify the matter, Liouville, and
ghost sectors of the superconformal generators. The generators without sector superscripts
are related to the total super Virasoro algebra.

At certain special values of the parameter a = a,,,, one singular vector appears at the
level mn/2 in the Verma module over V,, .= = V., [8]. Here,

Amn = Q/Q - /\m,na (8)
where (m,n) is a pair of positive integers (m —n € 27Z) and

b1 b
A = % 9)

The basic super Liouville operator product expansion [14] (for the sake of brevity we
write A = Ag/oyip and A; = A))

Vi, (#)Va, (0) = (10)

/

dP | _ A_a,—A 94iP ~Q/2+iP
/ E (ZL':L‘) e (CILQ/,GQ [VQ/2+iP<O)]ee + (C?l/’@ [VQ/Q‘HP(O)} oo)

This OPE is continuous and involves integration over the “momentum” P. In (10), [V,] . ..

denotes the contribution of the primary field V,, and its “even” and “odd” superconformal

descendants to the operator product expansion. As usual, the prime on the integral indicates

possible discrete terms; in this study, we consider only the region b where such extra terms

do not appear and the integral can be understood literally. All other OPEs of two arbitrary
local fields in SLFT can be derived from (10). The basic structure constants CCCL%QQHP and



CZHP i (10) were evaluated using the bootstrap technique in [15-17] and have the explicit

form (here a denotes a; + as + a3)
CQ-as _ <7r,wy (—) 6152)(Q_a)/b Tr(b)Yns(2a1)Tns(2a2) Tns(2a3)
e 2 2Tns(a — Q) Yns(ar42-3) Tns(azis—1)Tns(azy1-2) (

@Q*ag — (77'”7 (@) blbz)(Q_a)/b iTR(b)TNs(2@1)TNS(26L2)TNS(2(13)
e 2 Tr(a — Q)Yr(a112-3)Tr(a213-1)Tr(a341-2)

where we use the convenient notation in [17] for the special functions

Tas(x) =Ty (5 ) T (33 i Q) ,

11)

2 2
x+b x+bt
(5 (2)

expressed in terms of the “upsilon” function Y, which is the standard element in the Liouville
field theory (see [18,19]).

Because of central charge balance condition (2), the central charge of the matter sector
is given in terms of the same basic parameter b:

(12)

Cem = 1 — 2¢°, (13)

where ¢ = b1 —b. We let (P4, Xas Xas Vo) denote the primary multiplet in the matter sector
with the dimension of the bottom component ®, being given by

AM _ a(q—oz) (14)

« 2 °
The super ghost system (see, e.g., [20-22]) is described by the free super conformal field
theory with the central charge cs¢ = —10. The fermionic part of the SG system involves two

anticommuting fields (b, ¢) of spins (2, —1), and the bosonic part involves two bosonic fields
(B,7) of spins (3/2,—1/2). The formal fields (see [10]) of the form §(y(0)) of dimension 1/2
are essential in constructing the gravitational amplitudes.

3 Physical Fields and the Correlation Numbers

The physical fields form a space of cohomology classes with respect to the nilpotent BRST
charge Q,

1 1 1
Q= Z : {L%% + §L§n] Com: + Z : [G}YHL + §G§} V-rt = 7 Co- (15)

In this work, we deal with the correlators of physical fields of the two types

Wa(z,2) = Ua(2, 2) - e(2)e(2) - 6(7(2))0(7(2)), (16)



and

. - 1_ 1 I

Wa2) = (% + 362, ) (G + 365, JUule2) e, (1D
where

Uu(z,2) = Pu_p(z, 2)Va(z, 2) (18)

Here the parameter a can take generic values. The general form of the n-point correlation
numbers on the sphere for these observables [10] is

L(ay, - ,a,) = Z]i/dQZZ-<C_¥_1/2G_1/2Uai(ZZ-)WQB(Z;),)WaQ(ZQ)Wa1(21>>. (19)

An additional “discrete” physical state arises when the representation in the matter sector
is degenerate, B
(O)m,n(za 2) - Hm,nHm,nq)m,n(Za 2>Vm,n(27 2)- (20)

The operators H,,, are composed of the super Virasoro generators and are defined uniquely
modulo exact terms. Moreover, if we introduce the logarithmic counterparts of the discrete
states Oy, p,

Q' = HopnHyp @ Vi (21)
then we have the important relations [10]
QQO0,,,, = BnnWm (22)
and
G_12G 12U = B,,},000),,,, mod Q, (23)

where B,,,, are the coefficients arising in the higher equations of motion of SLFT [9]. For
four points, relation (23) allows reducing the moduli integral in general expression (19) to
boundary integrals if one of the fields is degenerate, i.e., a; = a,, —,. The explicit result is

(see [10])

Iy(Qpm,—p, a1, a2, a3) = KN (A, —n {Z Z q,,s al —|—2mn)\mn}HN a;), (24)

1=1 rse(m,n) i=1

where
qv(ﬂz?’ )( ) ‘a_ L] Q/2’Re_ m,n (25)
and the fusion set is (m,n) ={l—m:2:m —1,1—n:2:n —1}. The coefficient is
AN R |
— o2y (- 4 = boo ! %
rn(aen)] ol =

and the “leg” factors are

v = frn (D) (- e (-2



4 Direct Calculation

Here, we verify analytic result (24). The space of parameters (ay, az, as, and also b) is rather
big to present a comprehensive analysis. In what follows, we focus on the two examples
where one of the fields is either W, or Wy,. Moreover, we restrict ourself to considering
the most symmetric situation of four identical fields Z,(a) = I4(a, a, a,a). In the four-point
case (19) reduces to

L4(0) = [ (G 12 G U Wal0) (1) W) (28)
The analytic results following from expression (24) are
Zi(b) = pNH O 0), (29)
where
2D (b) = 120% - 1]. (30)
For the second integral, we have
Ta(20) = %N4(2b)2(1’3)(b) (31)
and
»13)(b) = g{\&szﬁ — 1|+ 36> — 1| + |b* — 1] — 3b* — 1} (32)

Let us consider the integral Z,(b). Taking into account that we deal with the unit oper-
ators in the matter sector in this case, we have

G_12G 12U, = Wy,
Wiy, = Vi cco(7)0(7), (33)

- _ 1_ 1
W, — (eh_@g e /2) (eh_ﬂ;g +las, /2> V.
Taking the explicit form of the correlation functions in the ghost sector into account,
(C(0)C(1)) =0,
(C(0)C(1)C(o0)) =
(0(7(0))o(v(1))) =

we conclude that the only nonzero contribution comes from the term in W,, which is pro-
portional to cc,

1, (34)
1

T,(0) = / (Wi (2) Vi (0)Wh(1)Vh(00)). (35)



In the same way, we have

G_1/9G 15Uz = GMILGMIL DV,

—1/27-1/2

Wy = @y Vay ccd(7)6(7), (36)

~ _ 1_ 1
Wop, = (GI\_A{?IE + §G§1/2> (GI\_/I;IE + EGg_1/2> Oy Vo, ce,

for the second integral, and taking (34) into account, we obtain

We now use the symmetry of the integrals under modular transformations to reduce
the integration from the whole complex plane to the fundamental domain. The modular
subgroup of projective transformations divides the complex plane into six regions. The
fundamental region is defined as G ={Rex < 1/2; |1 —z| < 1}. The other five regions
are mapped to the fundamental one using one of the transformations A, B, AB, BA, ABA,
where A: z — 1/z and B: z — 1 — 2. Combining the projective transformations of the fields
and the corresponding change of variables in the integrals, we reduce the integration to the
fundamental region. We note that the Jacobian of the transformation exactly cancels the
transformation of the fields because their total conformal dimension is 1. Then,

-2 | sz(<Wb<z>w<o>wb<1>%<oo>> W)V OV (1) Wi(s0))+
+<Wb<z>wb<o>vb<1m<oo>>), (38)

where the factor 2 in front of the integral takes the equivalent projective images into account.



The expression for the second integral is rather bulky:
72 =2 [ | () B0 B 1) 00) Vi)V OV Vi
F(Wp(2) W (0) Py (1) Pp(00)) (Var(2) Vap(0) Vap (1) Vas (00

0y ()3 (0)y (1) W (50)) (Vi (2) Vi (0) Vi (1) Vi (00 )
)

))
))

+(<xb<z>¢>b<o>xb<1><bb<oo>><Y2b< Vi (0) Vo (1) Va0
+(x6(2)x5(0) Py (1) Py (00) ) (Yap(2) Yoy (0) Vay (1) Vap (00))

0 (2) B3 (0)Bn (1) x(50)) (Vi (2) Vi (0) Vi (1) Vi (00 )
)

+(<>zb<z>¢>b<o>>zb<1>q>b<oo>><Y2b< Vi (0)Yap (1) Vi (0
(002 T0(0)B(1)P(00)) {Yan () Yas (0) Vs (1) V()

+(X5(2)P5(0) Py (1) x5(00) ) (Yo (2) Vap (0) Vap (1) Yo (00

—i—((@b(z)q)b(O)q)b(l)CDb(oo»<ng( )Vap (0)Wap (1) Vay(00))
(P (2) Py (0) Py (1) Py (00)) (Wap (2) Wap (0) Vo (1) Vap(00))
(@ () (04 (1) 4 (00)) (W (2) Vs (0) Vi (1) W 0 )]

We now use the conformal block decomposition of the correlation functions. It is useful
to introduce a compact notation. For a while, we omit some arguments that are easily

reconstructed in the final expressions. In the matter sector,

(D(2)B(0)D(1)P(00)) = | AL (),
(T(2)@(0) (1)@ (00)) = e AL (2) 2,
(W(2)T(0)D(1)®(00)) = cx| A (2) 2,
(T(2)2(0)D(1)T(c0)) = e AP ()%

(40)

Here, the index & = +,0, — corresponds to the three channels in the degenerate OPE of the
field @, (and also of its super partners), and we assume summation with respect to k. The



coeflicients ¢y, are related to the basic structure constants (see [10]):

Y(1/2 + b%/2)y(—1/2 + 5b%/2)
y(—=1/2 + 3b2/2)v(1/2 + 3b2/2)’
co=—C2(b) = —1, (42)
v(20%)y(=1/2 + b°/2)7*(1/2 4+ b?/2)
A3 (02)y(—=1 4+ b2)y(—1/2 + 3b%/2)

cp =C3(b) =

(41)

c.=C2(b) = —

(43)

In (40), Afc") denotes the conformal blocks appearing in the k£ channel for the given corre-
lation function. Here and hereafter, the normalization is chosen such that all but the basic
combinations ¢, are absorbed inside the conformal blocks. In Appendix A, we recapitulate
some details and explicit constructions concerning conformal blocks. In the Liouville sector,

VAV OV (L)Y R/—wl (P, )2,

(W (2)V ()W (1) R/—wl (P, 2),
(W ()W (0)V(1)V(s0)) = R / B (P BE (P2, (44)
W)V OV (1)W (o)) = R / & PBO P )

Because the correlation functions do not contain the degenerate fields in the Liouville sector,
the index [ here assumes summation of the “even” and of the “odd” conformal blocks in
accordance with general OPE (10). Again, the normalization leaves only two basic combi-
nations outside the conformal blocks,

RT’()(P) — (CaQéQJriP(CgQ’éinP,

R (P) = @%Hm@gf—zp’ (45)
where we separate the factor R for convenience (it is independent of P) and the parameter
a is related to the external conformal dimension (i. e. either b or 2b). All other correlation

functions in (39) are already not independent. They are expressed in terms of the same
ingredients as in (40) and (44). For example,



and

(Y (:)V(0)Y (1)V(o0)) = R / 4 (PYBO(P,2)BY(P.2).
¥ ()P (O)V(1)V / a2 (P BOP,2)BO (P, ), (47)
Y ()V(O0)V(1)Y =R / —r(P)BY(P,2)B® (P, 7).

The remaining six correlation functions not written explicitly are obtained from (46) and (47)
by complex conjugation. Using the introduced notation, we can rewrite the integrals under
consideration in the compact forms

b):272/Gd22/i Zrl [ (P, 2) + |BO(P ,z)y2+|B§3>(P,z)\2] (48)

and
7,(2b) = 2R / 4?2 / %chrl(P) {|A;1>(Z)B,<°>(P, 2)+ AP BY(P, 2)|?
+ AP (2)B(P,2) + AP (2) B (P, 2)* + |AY (2) BV (P, 2) + AL (2) B (P, zﬂ. (49)

Bulky expression (39) has a remarkably compact and clear structure in terms of the conformal
blocks. We again note that in (48) and (49), we respectively assume the different values of
external conformal dimensions in the Liouville sector A, and Ao.

5 The Modular Integral

It turns out efficient [23] to use elliptic transformations in the integration. We use the
standard map

B Z,K(l —x)
T = K@) (50)

where the complete elliptic integral of the first kind is

K@):% 0 % (51)

and y? = t(1 — t)(1 — xt). It can be verified that

dz = m2(1 — 2)03(q)dr, (52)

10



where

and

Integral (48) becomes

— 2 4
b)—27r'R/_ 47TE r(P {/] 1 —2)05(

/]z (1—2)65(q

- an2

n=—oo

where F = {|7] > 1; |Re7| < 1/2}. Similarly, for (49), we have

2() 27T2R/ Z Cle

/| (1 - 28 (g) (AP () BO(P, 2) + AP (2)BO (P, 2)) P2

We now define the conformal blocks more explicitly,

AD(z) =

AW

(2
A(Q)(

A®(z) =

FY(0,2), AP (2) = Fol(b,2), AP () = Fos(20, 2),
= FN0,2), AV (2) = Fib,2), AV (z) = (20, 2),
= F}0,2), AP (2) = Fpl(b2), AP (z) = Fai(20, 2),

FM(0, 2), Afﬁ)(z) = FM(b,2), AP(2) = F)¥(2b, 2).

(P 2)|*d*r

PP, 2)] 2d27+/ 2(1 — 2)03(q) BV (P, 2) Pd*r

(53)

(54)

(55)

(56)

Here, the first argument of the symmetric conformal blocks defines the internal conformal
dimension. The first lower index corresponds to one of the four basic types of conformal
blocks we consider with respect to the set of external fields (see Appendix A); the second
index is 0 if the corresponding block with the given internal conformal dimension is “even”

and 1 if it is “odd”.

In the Liouville sector,

By (2) = Fyy(P,z), B (2) = Fyi(P, ),
Bi(2) = Fli(P,2), B{"(2) = Fiy(P,2),
B (2) = Fy(P,z), B (2) = Fyi(P,2),
B (2) = Fii(P,z), B (2) = F3(P, 2).

11
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For the first integral, the complicated expressions for the Liouville structure constants
give

bQ

L\ (@/0—9)
D) @ T2 + ) (59)

R = (mw(

The special function T(x) is the standard element of the LFT (see [19] for the definition
and properties). Explicitly,

@/b-1)
R = (wv(%)bl‘w) 74(§)b_4b2><
dt [3(1 — 0?2 6sinh®((1 — b%)t/(4D))
exXP { /0 7[ % sh(i/(20)) sinh(bt/?)] } (60)

where we use “shift” relations (see [19]) for the last upsilon function to extract the additional
factor (7(?))4. This allows improving the accuracy of the comparison with the analytic
result, which contains the same factor with a singularity at b = 1. The P dependent parts
are

(P) = P2Y,(b+iP)T,(Q/2 £ iP) 1)
O R Qa1 iP/2) Y Q)4 £ iP/2) Y2 (b + Q/4 £ iP/2)Y2(3Q/A £ iP/2)
n(P) = AP?Yy(b £ iP)Yy(Q/2 + iP) 62)

T2(3b/2 — Q/4 £ iP/2)Yi(b/2 + Q/4 £iP/2)Y2(1/2/b+ Q/4 + iP/2)’

where we again use the shift relations to move the arguments of all upsilon functions inside
the strip [0, Q] where the standard integral representation is applicable and we use the
notation Yyp(z £ y) = To(x +y)Lo(x — y)

ro(P) = P? exp { /0 N % {(5 —2 2;5[9 e, (63)
QCOS(%>(COS}1(( il )+ 2cosh((1+b )t) + cosh((?’ b )t)) — (:os(Pt)(cosh((1 i )t) +1)—6
smh(t/(Qb)) smh(bt/Z) ] }’

r1(P) = 4P* exp { [ 222)2 _t+ (64)
2 cos(%)(?) cosh(= ) )+ cosh(?’(1 )t)) — cos(Pt)(cosh( = ) )+ 1) — 6} }
smh(t/(2b)) sinh(bt/2) '

For the second integral, we analogously find the explicit expressions

(Q/b-8)
R=(mn () e+ o

2
dt [3(1 —b%)%e™t  6sinh?((1 — b?)t/(4b))
eXp{ /0 ?{ o2 sinh(t/(Qb))sinh(bt/Q)]} (65)

12



and

< dt 5 — 18 4 37b*)e !
7’0(P>_P2€Xp{/0 7|:—( 2b2 ) + (66)

2COS(%)(COSh( (1= 7b Y + 2 cosh (U 1+b 1Y+ cosh(B=2t 5b ) — cos(Pt)(cosh((1 s )y 4 1) — 6} }
smh(t/(2b)) smh(bt/Z) ’

< dt 5 — 260 + 37b*)e!

2COS(%)(COSh(M) + 2 cosh(U=2t ) + Cosh((l%bb?)t)) - COS(Pt)(COSh((1 L M 41)—6
s1nh(t/(2b)) sinh (bt /2) } }

The conformal blocks can be evaluated effectively using a numerical algorithm based
on the recurrence relations developed in [14,24-28]. We do not use the elliptic recursion
to construct the necessary conformal blocks here. It turns out that to attain a convincing
accuracy of the results, we need to know a very few first terms in the z- (as well as g-)
expansion of the conformal blocks. This information can be obtained directly starting from
the very definition of the conformal blocks in terms of the chain vectors (see Appendix A).
Nevertheless, the elliptic representation and especially the form of the prefactor (i.e., the A
asymptotic of the conformal blocks; see [24]) is very useful. It allows verifying the explicit
expressions for the correlation functions by checking the crossing symmetry requirement, and
in particular, fixing up all the signs, which is difficult to do starting from general principles.

6 Numerics

With (55) and (57), calculating reduces to numerically integrating several integrals of the
general form

/F (1 — 2)0 () Fpl2) PP, (63)

where Fp(z) is some Liouville conformal block like in (55) or some more complicated com-
posite expression like in (57). The integrand can be developed as a double power series in ¢
and ¢ in accordance with the general expansion

2(1 — 2)02(q) Fp(z) = (16q) Zb (69)

where « and the coefficients b, are defined by the concrete choice of the function Fp(z). In
each term, we can integrate in 75 = Im 7 explicitly with the result in terms of the function

(16)2A 1/2 .
)/ cos(m(r—1)z)e ™VI== A+ gy - (70)

(A1) = | d*r16¢* g = ——L
(A,r1) /FTI al” q"q TOALT

13



For (55), we have the sum of six integrals of form (68), and we obtain the series
—WRZ( 16+A10 +A26 +A2o)+A36)+A30> (71)
where in the last sum

00 L
AL — /0 TQ(P)dPZ b (P (P)D (P?/2+ Q*/8 — 1/2,k, L — k) ,

o0

7o dPZb“ V(P (P22 4+ Q*/8 — 1/2,k, L — k),

/ dPZb“ WNPYD (P?/2+ Q%/8,k, L — k),

0

8

/ dPZb2") (P)® (P*/2+ Q*/8, kL — k) | (72)

0

/ ri( )dPZ b PPV (P)D (P22 + Q)8 —1,k, L — k),

0

/ dPZb?"’ PWP)(P)® (P?/2+ Q)8 — 1/2,k, L — k) .

[e=]

Each term in (72) is suppressed by a factor maxg |q|2L, and the series in L converges very
rapidly in practice. We found that it suffices to sum up to L = 4 to reach the three- to
four-digit precision (see Table 1). In the case (1,3), we numerically integrate in the same
way although we now have 18 integrals of form (68). In this case summing up to L = 4
we were able to reach the two- to three-digit precision (see Table 2). In Figs. 1 and 2, the
results of numerically evaluating integrals (29) and (31) are shown as circles while the lines
correspond to the exact result.
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b | SED(B) num. | SED(b) exact
0.999 0.9959 0.9960
0.95 0.8049 0.8050
0.85 0.4450 0.4450
0.80 0.2799 0.2800
1/v2 0.0001 0
0.65 0.1555 0.1550
0.60 0.2877 0.2800

Table 1: Numerical data for S0V (b) at p = 1.

b | I () num. | T3 (b) exact
0.71 0.0309 0.0246
0.69 -0.1377 -0.1434
0.67 -0.3030 -0.3066
0.65 -0.4623 -0.4650
0.63 -0.6159 -0.6186
0.61 -0.7644 -0.7674
0.59 -0.9096 -0.9114
0.57 -0.9699 -0.9747
0.55 -0.9060 -0.9075
0.53 -0.8409 -0.8427
0.51 -0.7791 -0.7803
0.49 -0.7197 -0.7203
0.47 -0.6621 -0.6627
0.45 -0.6069 -0.6075
0.43 -0.3342 -0.3282
0.41 -0.0384 -0.0258
0.39 0.1827 0.2622

Table 2: Numerical data for 33 (b) at p = 1.
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Figure 1: Direct numerical evaluation of reduced integral (29) (circles) versus the exact
formula (continuous line).
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Figure 2: Direct numerical evaluation of reduced integral (31) (circles) versus the exact
formula (continuous line).
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Appendix A. Conformal Blocks and the Chain Vectors
For definiteness, we use the notation for the Liouville sector, though the results concerning
the conformal block are universal (i.e., are independent of the sector). Schematically, the
contribution of the given conformal family in the four basic OPE can be written as

Vi(2)Va(0) = 28741782 % 2NN,

N
Wi(2)Va(0) = 2421722712 § N Ny
N
Vi(2)Wa(0) = 252182712 5N ) (73)
N

Wi(2)Wa(0) = 2221221 § N[N
N

—
—_— —
e~ — ——

where the so-called chain vectors |N),|N),|N),|N) (with positive integer or half-integer
N) are the Nth-level descendent contribution of the intermediate state with the confor-
mal dimension A appearing in the given operator product expansion. The chain vectors
are completely determined by the superconformal symmetry. Namely, the superconformal
constraints lead to the recurrence relations

GrlN) 12 = [N = k), (74)
Gp|N)jy = [A+2kA; — Ay + N — k][N — k)12
for K > 0. And
Gk@n = [N = k)1g + 280051 2|N = k)1a, (75)

—
—_— —_~—— P

GrlN)yy = [A +2kA; — (Ay+1/2) + N — K|IN — k)1, — 289051 2|N — k),

for £ > 0. The normalization of the chain vectors chosen in this text is determined by the
requirements

—~
—~ —
—~ — —

0)=1, [0)=1, [0)=—-1, [0)=(A—-A;—Ay). (76)
Relations (74) and (75) are equivalent to the linear problem for the coefficients determin-

ing the chain vectors in terms of the Virasoro basis vectors of the same level. These systems
can be solved numerically up to a rather high level.

17



The necessary s-channel superconformal blocks are defined via the expansions

.,Itep < Zl 33 A Z> = ZA7A17A2 Z ZN12<N|N>34, (77)
2 4 NezZ,7/2

fep < Zl ZS A Z) = ZA_Al_AZ_l/2 Z ZN12</_N/’N>34, (78)
2 4 N€eZ,Z/2

Jrep ( gl ZB A Z> = ZA_Al_AZ_l Z ZN12<N|N>34, (79)
2 4 NeZ,Z/2

Feo ( Zl 23 A Z> = ATl N N (N[N ). (80)
2 4 NeZ,Z/2

In the main text, we use the brief notation

a a

Q
Q

FOO(A,Z):]:Q( 4 a A z), FOl(A,z):}"O( 4 a A z), (81)
Fm(A,z):fe(Z “la z) Fll(A,z):jfo(z “|a z) (82)
FQO(A,Z)Zfe(Z “|a z) Fgl(A,z):f()(g “|a z) (83)
Fgo(A,z):fe(Z Z A z), Fgl(A,z):f()(Z Z A z) (84)
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