V Belavin 
  
Modular Integrals in Minimal Super Liouville Gravity

come    

Modular Integrals in Minimal Super Liouville Gravity

Introduction

The continuum formulation of the noncritical string theory is equivalent to 2D quantum gravity coupled to some critical matter, i.e., the matter described by a conformal field theory M c . Simple reaction of conformal theories to the scaling of the metric leads to the universal form of the effective action of the generated gravity, which is called the Liouville gravity (LG) [START_REF] Polyakov | Quantum geometry of fermionic strings[END_REF]. Because of the peculiarities of two-dimensional metric geometry, many technical simplifications immediately come into play. Thus, LG is perhaps the simplest example of quantum gravity, but it nevertheless shares the same basic questions of interpretation and can hence be considered useful and worth studying. The problem of choosing observables correctly and the problem of calculating the corresponding correlation functions are of primary importance in any quantum theory. The field of LG has experienced considerable progress in recent years. Recently discovered higher equations of motion (HEM) [START_REF] Al | Higher equations of motion in Liouville field theory[END_REF] in LFT have allowed reaching the four-point level in calculating the correlation functions in LG [START_REF] Belavin | Integrals over moduli spaces, ground ring, and fourpoint function in minimal Liouville gravity[END_REF][START_REF] Belavin | Moduli integrals and ground ring in minimal Liouville gravity[END_REF]. The results were tested against the calculation in the framework of the relatively independent approach to 2D quantum gravity usually called the matrix models (see, e.g., [START_REF] Ginsparg | Lectures on 2-D gravity and 2-D string theory[END_REF] and the references therein). Moreover, a deeper understanding of the correspondence between these two approaches was achieved based on these results [START_REF] Belavin | On Correlation Numbers in 2D Minimal Gravity and Matrix Models[END_REF], although the complete picture of the relations between these techniques is still missing.

In the context of string theory applications, the construction of 2D quantum gravity in superspace is one of the most interesting questions. The first possible generalization is N =1 supersymmetry. Here, essential progress was also achieved recently. The study was motivated by a series of works concerned with super LFT in which the profound understanding of the properties of the conformal blocks (which are the basic elements of any CFT [START_REF] Belavin | Infinite conformal symmetry in twodimensional quantum field theory[END_REF]) was 1 achieved. This allowed "taking off" the necessity of treating the correlations involving only special degenerate [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF] excitations. Another important result was the discovery of the HEM in super LFT [START_REF] Belavin | Higher equations of motion in Super Liouville field theory[END_REF]. All these results have served as a good starting point for a more profound study of super Liouville gravity (SLG). In [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF], the structure of the physical fields in the Neveu-Schwarz (NS) sector of SLG was clarified, and the general expression for the npoint correlation numbers on the sphere in terms of integrals over moduli space was written explicitly. Then the super HEM in the N =1 super LFT and the analysis of the structure of the super ground ring (and its logarithmic counterpart) allowed deriving the explicit analytic expressions for the four-point correlators. Because little is now known for the supersymmetric matrix model, there are no independent results analogous to those obtained in [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF]. In this situation, more checks of the validity of these results would seem desirable. This paper is devoted to directly calculating the four-point correlation numbers in SMLG.

The paper is organized as follows. To make the presentation self-contained, we collect all necessary information related to the subject in Sec. 2 and Sec. 3. The remaining part of the paper deals with evaluating the four-point integrals numerically. In Sec. 4, we consider two examples of the four-point integral. We reduce the expressions to a number of integrals over the fundamental region of the modular group, and the integrands represent the products of the various correlation functions both in the matter and in the Liouville sectors. The elliptic transformation is the subject of Sec. 5. The numerical results are presented in Sec. 6. Some useful details omitted from the main text are given in Appendix A.

Minimal Super Liouville Gravity

In the framework of the so-called DDK approach [START_REF] David | Conformal Field theories coupled to 2-D gravity in the conformal gauge[END_REF][START_REF] Distler | Conformal Field theory and 2-D quantum gravity or who's afraid of Joseph Liouville?[END_REF][START_REF] Distler | Superliouville Theory as a Two-Dimensional, Superconformal Supergravity Theory[END_REF], SLG is represented as a tensor product of superconformal matter (SM), super Liouville, and super ghost systems

A SLG = A SM + A SL + A SG (1) 
with the interaction via the relation for the central charge parameters

c SM + c SL + c SG = 0 (2) 
and also due to the construction of the physical fields. The superconformal algebra is

[L n , L m ] = (n -m)L n+m + ĉ 8 (n 3 -n)δ n,-m , {G r , G s } = 2L r+s + ĉ 2 r 2 - 1 4 δ r,-s , [L n , G r ] = 1 2 n -r G n+r , (3) 
where r, s ∈ Z + 1 2 for the NS sector, r, s ∈ Z for the R sector.

The SLFT central charge is

c SL = 1 + 2Q 2 , (4) 
where the "background charge" parameter Q is related to the SLFT basic quantum param-

eter b Q = b -1 + b (5) 
The fields belong to the highest-weight representations of the superconformal algebra. The basic fields of interest in this paper belong to the primary supermultiplet (V a , Y a , Ȳa , W a ) with the bottom component V a having the conformal dimension

∆ L a = a(Q -a) 2 , ( 6 
)
where a is a continuous (complex) parameter, and the other components of the primary supermultiplet being

Y a = G L -1/2 V a , Ȳa = ḠL -1/2 V a , W a = ḠL -1/2 G L -1/2 V a . (7) 
Here and hereafter, we use the superscripts M, L, and G to specify the matter, Liouville, and ghost sectors of the superconformal generators. The generators without sector superscripts are related to the total super Virasoro algebra.

At certain special values of the parameter a = a m,n , one singular vector appears at the level mn/2 in the Verma module over V am,n = V m,n [START_REF] Kac | Infinite-dimensional Lie algebras[END_REF]. Here,

a m,n = Q/2 -λ m,n , (8) 
where (m, n) is a pair of positive integers (m -n ∈ 2Z) and

λ m,n = mb -1 + nb 2 . (9) 
The basic super Liouville operator product expansion [START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory. I. NS[END_REF] (for the sake of brevity we write ∆ = ∆ Q/2+iP and ∆

i = ∆ a i ) V a 1 (x)V a 2 (0) = (10) ′ dP 4π (xx) ∆-∆ 1 -∆ 2 C Q/2+iP a 1 ,a 2 V Q/2+iP (0) ee + CQ/2+iP a 1 ,a 2 V Q/2+iP (0) oo
This OPE is continuous and involves integration over the "momentum" P . In [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF], [V p ] ee,oo denotes the contribution of the primary field V p and its "even" and "odd" superconformal descendants to the operator product expansion. As usual, the prime on the integral indicates possible discrete terms; in this study, we consider only the region b where such extra terms do not appear and the integral can be understood literally. All other OPEs of two arbitrary local fields in SLFT can be derived from [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF]. The basic structure constants

C Q/2+iP a 1 a 2 and 3 CQ/2+iP a 1 ,a 2
in (10) were evaluated using the bootstrap technique in [START_REF] Poghossian | Structure Constants in the N=1 Super-Liouville Field Theory[END_REF][START_REF] Rashkov | Three point correlation functions in N=1 super Liouville theory[END_REF][START_REF] Fukuda | Super-Liouville theory with boundary[END_REF] and have the explicit form (here a denotes a 1 + a 2 + a 3 )

C Q-a 3 a 1 a 2 = πµγ Qb 2 b 1-b 2 (Q-a)/b Υ R (b)Υ NS (2a 1 )Υ NS (2a 2 )Υ NS (2a 3 ) 2Υ NS (a -Q)Υ NS (a 1+2-3 )Υ NS (a 2+3-1 )Υ NS (a 3+1-2 ) , CQ-a 3 a 1 a 2 = -πµγ Qb 2 b 1-b 2 (Q-a)/b iΥ R (b)Υ NS (2a 1 )Υ NS (2a 2 )Υ NS (2a 3 ) Υ R (a -Q)Υ R (a 1+2-3 )Υ R (a 2+3-1 )Υ R (a 3+1-2 ) , (11) 
where we use the convenient notation in [START_REF] Fukuda | Super-Liouville theory with boundary[END_REF] for the special functions

Υ NS (x) = Υ b x 2 Υ b x + Q 2 , Υ R (x) = Υ b x + b 2 Υ b x + b -1 2 (12)
expressed in terms of the "upsilon" function Υ b , which is the standard element in the Liouville field theory (see [START_REF] Dorn | On correlation functions for non-critical strings with c < 1 but d > 1[END_REF][START_REF] Zamolodchikov | Conformal bootstrap in Liouville field theory[END_REF]).

Because of central charge balance condition (2), the central charge of the matter sector is given in terms of the same basic parameter b:

c SM = 1 -2q 2 , (13) 
where q = b -1 -b. We let (Φ α , χ α , χα , Ψ α ) denote the primary multiplet in the matter sector with the dimension of the bottom component Φ a being given by

∆ M α = α(q -α) 2 . ( 14 
)
The super ghost system (see, e.g., [START_REF] Polchinski | String theory. Vol. 2: Superstring theory and beyond[END_REF][START_REF] Verlinde | Lectures On String Perturbation Theory[END_REF][START_REF] Friedan | A Tentative theory of large distance physics[END_REF]) is described by the free super conformal field theory with the central charge c SG = -10. The fermionic part of the SG system involves two anticommuting fields (b, c) of spins (2, -1), and the bosonic part involves two bosonic fields (β, γ) of spins (3/2, -1/2). The formal fields (see [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF]) of the form δ(γ(0)) of dimension 1/2 are essential in constructing the gravitational amplitudes.

Physical Fields and the Correlation Numbers

The physical fields form a space of cohomology classes with respect to the nilpotent BRST charge Q,

Q = m : L M+L m + 1 2 L g m c -m : + r : G M+L r + 1 2 G g r γ -r : - 1 4 c 0 . (15) 
In this work, we deal with the correlators of physical fields of the two types

W a (z, z) = U a (z, z) • c(z)c(z) • δ(γ(z))δ(γ(z)), (16) 
and

Wa (z, z) = ḠM+L -1/2 + 1 2 Ḡg -1/2 G M+L -1/2 + 1 2 G g -1/2 U a (z, z) • c(z)c(z), (17) 
where

U a (z, z) = Φ a-b (z, z)V a (z, z) (18) 
Here the parameter a can take generic values. The general form of the n-point correlation numbers on the sphere for these observables [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF] is

I n (a 1 , • • • , a n ) = n i=4 d 2 z i Ḡ-1/2 G -1/2 U a i (z i ) Wa 3 (z 3 ) W a 2 (z 2 ) W a 1 (z 1 ) . ( 19 
)
An additional "discrete" physical state arises when the representation in the matter sector is degenerate,

O m,n (z, z) = Hm,n H m,n Φ m,n (z, z)V m,n (z, z). ( 20 
)
The operators H m,n are composed of the super Virasoro generators and are defined uniquely modulo exact terms. Moreover, if we introduce the logarithmic counterparts of the discrete states

O m,n , O ′ m,n = Hm,n H m,n Φ m,n V ′ m,n , (21) 
then we have the important relations

[10] QQO ′ m,n = B m,n Wm,-n (22) 
and

Ḡ-1/2 G -1/2 U m,-n = B -1 m,n ∂∂O ′ m,n mod Q, ( 23 
)
where B m,n are the coefficients arising in the higher equations of motion of SLFT [START_REF] Belavin | Higher equations of motion in Super Liouville field theory[END_REF]. For four points, relation [START_REF] Al | Gravitational Yang-Lee model: Four point function[END_REF] allows reducing the moduli integral in general expression [START_REF] Zamolodchikov | Conformal bootstrap in Liouville field theory[END_REF] to boundary integrals if one of the fields is degenerate, i.e., a i = a m,-n . The explicit result is (see [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF])

I 4 (a m,-n , a 1 , a 2 , a 3 ) = κN (a m,-n ) 3 i=1 r,s∈(m,n) q (m,n) r,s (a i ) + 2mnλ m,n 3 i=1 N (a i ), (24) 
where

q (m,n) r,s (a) = |a -λ r,s -Q/2| Re -λ m,n (25) 
and the fusion set is (m

, n) = {1 -m : 2 : m -1, 1 -n : 2 : n -1}. The coefficient is κ = -2µ -1 b -2 πµγ 1 2 + b 2 2 2+b -2 γ b -2 2 - 1 2 , ( 26 
)
and the "leg" factors are

N (a) = πµγ 1 2 + b 2 2 -a/b γ ab - b 2 2 + 1 2 γ a b - b -2 2 + 1 2 1/2 . ( 27 
)
4 Direct Calculation

Here, we verify analytic result [START_REF] Hadasz | Elliptic recurrence representation of the N=1 Neveu-Schwarz blocks[END_REF]. The space of parameters (a 1 , a 2 , a 3 , and also b) is rather big to present a comprehensive analysis. In what follows, we focus on the two examples where one of the fields is either W b or W 2b . Moreover, we restrict ourself to considering the most symmetric situation of four identical fields I 4 (a) = I 4 (a, a, a, a). In the four-point case [START_REF] Zamolodchikov | Conformal bootstrap in Liouville field theory[END_REF] reduces to

I 4 (a) = d 2 z Ḡ-1/2 G -1/2 U a (z)W a (0) Wa (1) W a (∞) . (28) 
The analytic results following from expression [START_REF] Hadasz | Elliptic recurrence representation of the N=1 Neveu-Schwarz blocks[END_REF] are

I 4 (b) = κ b N 4 (b)Σ (1,1) (b), (29) 
where

Σ (1,1) (b) = |2b 2 -1|. ( 30 
)
For the second integral, we have

I 4 (2b) = κ b N 4 (2b)Σ (1,3) (b) (31) 
and

Σ (1,3) (b) = 3 2 |5b 2 -1| + |3b 2 -1| + |b 2 -1| -3b 2 -1 . ( 32 
)
Let us consider the integral I 4 (b). Taking into account that we deal with the unit operators in the matter sector in this case, we have

Ḡ-1/2 G -1/2 U b = W b , W b = V b cc δ(γ)δ(γ), (33) 
Wb = ḠM+L -1/2 + 1 2 Ḡg -1/2 G M+L -1/2 + 1 2 G g -1/2 V b cc.
Taking the explicit form of the correlation functions in the ghost sector into account,

C(0)C(1) = 0, C(0)C(1)C(∞) = 1, (34) δ(γ(0))δ(γ(1)) = 1,
we conclude that the only nonzero contribution comes from the term in Wb , which is proportional to cc,

I 4 (b) = d 2 z W b (z)V b (0)W b (1)V b (∞) . (35) 
In the same way, we have

Ḡ-1/2 G -1/2 U 2b = ḠM+L -1/2 G M+L -1/2 Φ b V 2b , W 2b = Φ b V 2b cc δ(γ)δ(γ), (36) 
W2b = ḠM+L -1/2 + 1 2 Ḡg -1/2 G M+L -1/2 + 1 2 G g -1/2 Φ b V 2b cc,
for the second integral, and taking (34) into account, we obtain

I 4 (2b) = d 2 z Ψ b (z)Φ b (0)Ψ b (1)Φ b (∞) V 2b (z)V 2b (0)V 2b (1)V 2b (∞) , + χ b (z)Φ b (0)χ b (1)Φ b (∞) Ȳ2b (z)V 2b (0) Ȳ2b (1)V 2b (∞) , (37) 
+ χb (z)Φ b (0) χb (1)Φ b (∞) Y 2b (z)V 2b (0)Y 2b (1)V 2b (∞) , + Φ b (z)Φ b (0)Φ b (1)Φ b (∞) W 2b (z)V 2b (0)W 2b (1)V 2b (∞) .
We now use the symmetry of the integrals under modular transformations to reduce the integration from the whole complex plane to the fundamental domain. The modular subgroup of projective transformations divides the complex plane into six regions. The fundamental region is defined as G ={Re x < 1/2; |1 -x| < 1}. The other five regions are mapped to the fundamental one using one of the transformations A, B, AB, BA, ABA, where A: z → 1/z and B: z → 1 -z. Combining the projective transformations of the fields and the corresponding change of variables in the integrals, we reduce the integration to the fundamental region. We note that the Jacobian of the transformation exactly cancels the transformation of the fields because their total conformal dimension is 1. Then,

I 4 (b) = 2 G d 2 z W b (z)V b (0)W b (1)V b (∞) + W b (z)V b (0)V b (1)W b (∞) + + W b (z)W b (0)V b (1)V b (∞) , ( 38 
)
where the factor 2 in front of the integral takes the equivalent projective images into account.

The expression for the second integral is rather bulky:

I 4 (2b) = 2 G d 2 z Ψ b (z)Φ b (0)Ψ b (1)Φ b (∞) V 2b (z)V 2b (0)V 2b (1)V 2b (∞) + Ψ b (z)Ψ b (0)Φ b (1)Φ b (∞) V 2b (z)V 2b (0)V 2b (1)V 2b (∞) + Ψ b (z)Φ b (0)Φ b (1)Ψ b (∞) V 2b (z)V 2b (0)V 2b (1)V 2b (∞) + χ b (z)Φ b (0)χ b (1)Φ b (∞) Ȳ2b (z)V 2b (0) Ȳ2b (1)V 2b (∞) + χ b (z)χ b (0)Φ b (1)Φ b (∞) Ȳ2b (z) Ȳ2b (0)V 2b (1)V 2b (∞) + χ b (z)Φ b (0)Φ b (1)χ b (∞) Ȳ2b (z)V 2b (0)V 2b (1) Ȳ2b (∞) (39) + χb (z)Φ b (0) χb (1)Φ b (∞) Y 2b (z)V 2b (0)Y 2b (1)V 2b (∞) + χb (z) χb (0)Φ b (1)Φ b (∞) Y 2b (z)Y 2b (0)V 2b (1)V 2b (∞) + χb (z)Φ b (0)Φ b (1) χb (∞) Y 2b (z)V 2b (0)V 2b (1)Y 2b (∞) + Φ b (z)Φ b (0)Φ b (1)Φ b (∞) W 2b (z)V 2b (0)W 2b (1)V 2b (∞) + Φ b (z)Φ b (0)Φ b (1)Φ b (∞) W 2b (z)W 2b (0)V 2b (1)V 2b (∞) + Φ b (z)Φ b (0)Φ b (1)Φ b (∞) W 2b (z)V 2b (0)V 2b (1)W 2b (∞) .
We now use the conformal block decomposition of the correlation functions. It is useful to introduce a compact notation. For a while, we omit some arguments that are easily reconstructed in the final expressions. In the matter sector,

Φ(z)Φ(0)Φ(1)Φ(∞) = c k |A (0) k (z)| 2 , Ψ(z)Φ(0)Ψ(1)Φ(∞) = c k |A (1) k (z)| 2 , Ψ(z)Ψ(0)Φ(1)Φ(∞) = c k |A (2) k (z)| 2 , ( 40 
) Ψ(z)Φ(0)Φ(1)Ψ(∞) = c k |A (3) k (z)| 2 .
Here, the index k = +, 0, -corresponds to the three channels in the degenerate OPE of the field Φ b (and also of its super partners), and we assume summation with respect to k. The coefficients c k are related to the basic structure constants (see [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF]):

c + = C 2 + (b) = γ(1/2 + b 2 /2)γ(-1/2 + 5b 2 /2) γ(-1/2 + 3b 2 /2)γ(1/2 + 3b 2 /2) , (41) 
c 0 = -C2 0 (b) = -1, (42) 
c -= C 2 -(b) = - γ(2b 2 )γ(-1/2 + b 2 /2)γ 2 (1/2 + b 2 /2) b 4 γ 3 (b 2 )γ(-1 + b 2 )γ(-1/2 + 3b 2 /2) . (43) 
In (40), A

denotes the conformal blocks appearing in the k channel for the given correlation function. Here and hereafter, the normalization is chosen such that all but the basic combinations c k are absorbed inside the conformal blocks. In Appendix A, we recapitulate some details and explicit constructions concerning conformal blocks. In the Liouville sector,

V (z)V (0)V (1)V (∞) = R dP 4π r l (P )|B (0) l (P, z)| 2 , W (z)V (0)W (1)V (∞) = R dP 4π r l (P )|B (1) 
l (P, z)| 2 , W (z)W (0)V (1)V (∞) = R dP 4π r l (P )|B (2) 
l (P, z)| 2 , (44) 
W (z)V (0)V (1)W (∞) = R dP 4π r l (P )|B (3) 
l (P, z)| 2 .
Because the correlation functions do not contain the degenerate fields in the Liouville sector, the index l here assumes summation of the "even" and of the "odd" conformal blocks in accordance with general OPE [START_REF] Belavin | Four-point function in Super Liouville Gravity[END_REF]. Again, the normalization leaves only two basic combinations outside the conformal blocks,

Rr 0 (P ) = C Q/2+iP a,a C Q/2-iP a,a , Rr 1 (P ) = CQ/2+iP a,a CQ/2-iP a,a , (45) 
where we separate the factor R for convenience (it is independent of P ) and the parameter a is related to the external conformal dimension (i. e. either b or 2b). All other correlation functions in (39) are already not independent. They are expressed in terms of the same ingredients as in ( 40) and (44). For example,

χ(z)Φ(0)χ(1)Φ(∞) = c k A (1) 
k (z)A (0) k (z), χ(z)χ(0)Φ(1)Φ(∞) = c k A (2) k (z)A (0) k (z), (46) 
χ(z)Φ(0)Φ(1)χ(∞) = c k A (3) k (z)A (0) k (z),
and

r 0 (P ) = P 2 exp ∞ 0 dt t - (5 -18b 2 + 37b 4 )e -t 2b 2 + (66) 2 cos( P t 2 )(cosh( (1-7b 2 )t 4b ) + 2 cosh( (1+b 2 )t 4b ) + cosh( (3-5b 2 )t 4b
)) -cos(P t)(cosh( (1-b 2 )t 2b ) + 1) -6 sinh(t/(2b)) sinh(bt/2) ,

r 1 (P ) = 4P 2 exp ∞ 0 dt t - (5 -26b 2 + 37b 4 )e -t 2b 2 + (67) 2 cos( P t 2 )(cosh( (3-7b 2 )t 4b ) + 2 cosh( (1-b 2 )t 4b ) + cosh( (1-5b 2 )t 4b
)) -cos(P t)(cosh( (1-b 2 )t 2b ) + 1) -6 sinh(t/(2b)) sinh(bt/2) .

The conformal blocks can be evaluated effectively using a numerical algorithm based on the recurrence relations developed in [START_REF] Belavin | Bootstrap in Supersymmetric Liouville Field Theory. I. NS[END_REF][START_REF] Hadasz | Elliptic recurrence representation of the N=1 Neveu-Schwarz blocks[END_REF][START_REF] Hadasz | Recursion representation of the Neveu-Schwarz superconformal block[END_REF][START_REF] Belavin | N=1 SUSY Conformal Block Recursive Relations[END_REF][START_REF] Belavin | On the N=1 super Liouville four-point functions[END_REF][START_REF] Chorazkiewicz | Braiding and fusion properties of the Neveu-Schwarz superconformal blocks[END_REF]. We do not use the elliptic recursion to construct the necessary conformal blocks here. It turns out that to attain a convincing accuracy of the results, we need to know a very few first terms in the x-(as well as q-) expansion of the conformal blocks. This information can be obtained directly starting from the very definition of the conformal blocks in terms of the chain vectors (see Appendix A). Nevertheless, the elliptic representation and especially the form of the prefactor (i.e., the ∆ asymptotic of the conformal blocks; see [START_REF] Hadasz | Elliptic recurrence representation of the N=1 Neveu-Schwarz blocks[END_REF]) is very useful. It allows verifying the explicit expressions for the correlation functions by checking the crossing symmetry requirement, and in particular, fixing up all the signs, which is difficult to do starting from general principles.

Numerics

With (55) and (57), calculating reduces to numerically integrating several integrals of the general form

F |z(1 -z)θ 4 3 (q)F P (z)| 2 d 2 τ, (68) 
where F P (z) is some Liouville conformal block like in (55) or some more complicated composite expression like in (57). The integrand can be developed as a double power series in q and q in accordance with the general expansion

z(1 -z)θ 4 3 (q)F P (z) = (16q) α ∞ r=0 b r (P )q r , (69) 
where α and the coefficients b r are defined by the concrete choice of the function F P (z). In each term, we can integrate in τ 2 = Im τ explicitly with the result in terms of the function

Φ(A, r, l) = F d 2 τ |16q| 2A q r ql = (16) 2A π(2A + r + l) 1/2 -1/2 cos(π(r -l)x)e -π √ 1-x 2 (2A+r+l) dx. (70)
For (55), we have the sum of six integrals of form (68), and we obtain the series

I 4 (b) = πR ∞ L=0 A (1,e) L + A (1,o) L + A (2,e) L + A (2,o) L + A (3,e) L + A (3,o) L , (71) 
where in the last sum

A (1,e) L = ∞ 0 r 2 (P )dP L k=0 b (1,e) k (P )b (1,e) L-k (P )Φ P 2 /2 + Q 2 /8 -1/2, k, L -k , A (1,o) L = ∞ 0 r 1 (P )dP L k=0 b (1,o) k (P )b (1,o) L-k (P )Φ P 2 /2 + Q 2 /8, k, L -k , A (2,e) L = ∞ 0 r 2 (P )dP L k=0 b (2,e) k (P )b (2,e) L-k (P )Φ P 2 /2 + Q 2 /8 -1/2, k, L -k , A (2,o) L = ∞ 0 r 1 (P )dP L k=0 b (2,o) k (P )b (2,o) L-k (P )Φ P 2 /2 + Q 2 /8, k, L -k , (72) 
A (3,e) L = ∞ 0 r 1 (P )dP L k=0 b (3,e) k (P )b (3,e) 
L-k (P )Φ P

2 /2 + Q 2 /8 -1, k, L -k , A (3,o) 
L = ∞ 0 r 2 (P )dP L k=0 b (3,o) k (P )b (3,o) L-k (P )Φ P 2 /2 + Q 2 /8 -1/2, k, L -k .
Each term in (72) is suppressed by a factor max F |q| 2L , and the series in L converges very rapidly in practice. We found that it suffices to sum up to L = 4 to reach the three-to four-digit precision (see Table 1). In the case (1, 3), we numerically integrate in the same way although we now have 18 integrals of form (68). In this case summing up to L = 4 we were able to reach the two-to three-digit precision (see Table 2). In Figs. 1 and2, the results of numerically evaluating integrals (29) and (31) are shown as circles while the lines correspond to the exact result.
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In the main text, we use the brief notation F 00 (∆, z) = F e a a a a ∆ z , F 01 (∆, z) = F 0 a a a a ∆ z , (81) 

F 10 (∆, z) = F e â â a a ∆ z , F 11 (∆, z) = F 0 â â a a ∆ z , (82) 
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 131 Figure 1: Direct numerical evaluation of reduced integral (29) (circles) versus the exact formula (continuous line).
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 242212424122 Figure 2: Direct numerical evaluation of reduced integral (31) (circles) versus the exact formula (continuous line).
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 20 ∆, z) = F e â a â a ∆ z , F 21 (∆, z) = F 0 30 (∆, z) = F e â a a â ∆ z , F 31 (∆, z) = F 0 â a a â ∆ z .(84)
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The remaining six correlation functions not written explicitly are obtained from ( 46) and (47) by complex conjugation. Using the introduced notation, we can rewrite the integrals under consideration in the compact forms

and

Bulky expression (39) has a remarkably compact and clear structure in terms of the conformal blocks. We again note that in (48) and (49), we respectively assume the different values of external conformal dimensions in the Liouville sector ∆ b and ∆ 2b .

The Modular Integral

It turns out efficient [START_REF] Al | Gravitational Yang-Lee model: Four point function[END_REF] to use elliptic transformations in the integration. We use the standard map

where the complete elliptic integral of the first kind is

and

where q = e iπτ (53) and

Integral (48) becomes

where

Similarly, for (49), we have

We now define the conformal blocks more explicitly,

Here, the first argument of the symmetric conformal blocks defines the internal conformal dimension. The first lower index corresponds to one of the four basic types of conformal blocks we consider with respect to the set of external fields (see Appendix A); the second index is 0 if the corresponding block with the given internal conformal dimension is "even" and 1 if it is "odd". In the Liouville sector,

1 (z) = F L 30 (P, z).
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For the first integral, the complicated expressions for the Liouville structure constants give

The special function Υ b (x) is the standard element of the LFT (see [START_REF] Zamolodchikov | Conformal bootstrap in Liouville field theory[END_REF] for the definition and properties). Explicitly,

where we use "shift" relations (see [START_REF] Zamolodchikov | Conformal bootstrap in Liouville field theory[END_REF]) for the last upsilon function to extract the additional factor (γ( bQ 2 )) 4 . This allows improving the accuracy of the comparison with the analytic result, which contains the same factor with a singularity at b = 1. The P dependent parts are

where we again use the shift relations to move the arguments of all upsilon functions inside the strip [0, Q] where the standard integral representation is applicable and we use the notation

.

For the second integral, we analogously find the explicit expressions

Appendix A. Conformal Blocks and the Chain Vectors For definiteness, we use the notation for the Liouville sector, though the results concerning the conformal block are universal (i.e., are independent of the sector). Schematically, the contribution of the given conformal family in the four basic OPE can be written as

where the so-called chain vectors 

for k > 0. The normalization of the chain vectors chosen in this text is determined by the requirements

Relations (74) and (75) are equivalent to the linear problem for the coefficients determining the chain vectors in terms of the Virasoro basis vectors of the same level. These systems can be solved numerically up to a rather high level.