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1) INTRODUCTION:

As a matter of fact, the solution space of many systems of ordinary differential (OD) or partial
differential (PD) equations in engineering or mathematical physics ”can/cannot” be parametrized
by a certain number of arbitrary functions behaving like ”potentials”. In view of the explicit ex-
amples to be met later on, it must be noticed that the parametrizing operator, though often of the
first order, may be, on the contrary, of arbitrarily large order. Among the well known examples, we
recall that a classical OD control system is parametrizable if and only if it is controllable (Kalman
test of 1969 in [9]). Among PD systems, the electromagnetic (EM) field, solution of the first set of
4 Maxwell equations, admits a well known first order parametrization by means of the 4-potential

while the EM induction, solution of the second set of 4 Maxwell equations (in vacuum), also admits
a first order parametrization by means of the so-called 4-pseudopotential. On the contrary, it is
now known that, contrary to the EM situation, the set of 10 second order linearized Einstein equa-
tions (in vacuum) cannot be parametrized and cannot therefore be considered as field equations
(see [18,24] for more details; see also [30] and http://wwwb.math.rwth-aachen.de/OreModules for
a computer algebra solution). One among the best interesting and useful cases is concerned with
continuum mechanics where the first order stress equations (in vacuum) admits a rather simple
second order parametrization by means of the single Airy function in dimension 2 and it is not so
well known (!) that a much more complicated second order parametrization can be achieved in
dimension n ≥ 2 by means of n2(n2 − 1)/12 arbitrary functions.

It is now known that all the above problems are only very particular cases of a much more

sophisticated (!) and general situation involving the formal theory of systems of PD equations
pioneered by D.C. Spencer in 1970 [26] (jet theory, diagram chasing, differential sequences,...)(see
[22,23] for more details) and differential modules in the framework of ”algebraic analysis” pioneered
about at the same time by V.P. Palamodov [17] for the constant coefficients case, M. Kashiwara [10]
and B. Malgrange [15] for the variable coefficients case (see [23,24] for more details and also consult
Zentralblatt Zbl 1079.93001 for a review). The corresponding duality theory, that is at the heart of
all the previous examples and will be a central tool in this paper, highly depends on (hard) homo-

logical algebra techniques (localization, resolutions, extension modules,...) which cannot be avoided.

The purpose of this paper is to apply these techniques in a way as simple and self-contained as
possible in order to give a positive and explicit answer concerning the possibility to exhibit a first

order parametrization of the stress/couple-stress equations met in the study of Cosserat media. At
the same time, as a corollary of the homological test, we shall give for the first time the reason for
which the compatibility conditions (CC) for the deformation tensor in classical elasticity theory
are second order while the corresponding CC for Cosserat fields [11] are only first order and explain
why this order is equal to the order of the corresponding parametrization.

At the end of the paper, we shall give hints in order to explain why, though the ”fields” and
their CC in classical and Cosserat elasticity theories look like completely different at first sight,
therefore providing different presentations of the corresponding field equations, nevertheless the
possibility to obtain a parametrization in one framework necessarily implies the possibility to have
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a parametrization in the other framework and vice-versa. Though striking it may look like in such
an engineering background, this totally not evident result, which was not known up to now, is one
of the simplest consequences of a delicate theorem of homological algebra (see [25], Th 7.22, p 212).
In particular the reader must look at the first section below with care, even though it does not seem

to have anything to do with Cosserat media.

2) MOTIVATIONS:

In the middle of the last century, commutative algebra, namely the study of modules over
rings, was facing a very subtle problem, the resolution of which led to the modern but difficult
homological algebra with sequences and diagrams. Roughly, one can say that the problem was
essentially to study properties of finitely generated modules not depending on the ”presentation”
of these modules by means of generators and relations. This very hard step” is based on homo-
logical/cohomological methods like the so-called ”extension” modules which cannot therefore be
avoided [1,7,16,25].

EXAMPLE 2.1: In order to sketch this problem, let us present two simple examples. In the
first case with standard notations, everybody will understand at once that integrating the second
order OD equation ÿ = 0 with m = n = 1 is equivalent to integrating the system of two first
order OD equations ẏ1 − y2 = 0, ẏ2 = 0. However, even with m = n = 2 and the same two
unknowns u, v in both cases, it is not evident at all that integrating the second order PD equation
d12u − d22v − u = 0 is equivalent to integrating the system of two fourth order PD equations
d1122u− d1222v − d22v − u = 0, d1112u− d1122v − d11u = 0 (exercise !).

As before, using now rings of ”differential operators” instead of polynomial rings led to dif-

ferential modules and to the challenge of adding the word ”differential” in front of concepts of
commutative algebra. Accordingly, not only one needs properties not depending on the presenta-
tion as we just explained but also properties not depending on the coordinate system as it becomes
clear from any application to mathematical or engineering physics where tensors and exterior forms
are always to be met like in the space-time formulation of electromagnetism. Unhappily, no one of
the previous techniques for OD or PD equations could work !.

By chance, the intrinsic study of systems of OD or PD equations has been pioneered in a totally
independent way by D. C. Spencer and collaborators after 1960 [26], using jet theory and diagram
chasing in order to relate differential properties of the equations to algebraic properties of their
symbol, a technique superseding the ”leading term” approach of Janet in 1920 [8] or Gröbner in
1940 [6] but quite poorly known by the mathematical community, even today.

Accordingly, it was another challenge to unify the ”purely differential” approach of Spencer
with the ”purely algebraic” approach of commutative algebra, having in mind the necessity to use
the previous homological algebraic results in this new framework. This sophisticated mixture of
differential geometry and homological algebra, now called ”algebraic analysis”, has been achieved
after 1970 by V. P. Palamodov for the constant coefficient case [17], then by M. Kashiwara [10]
and B. Malgrange [15] for the variable coefficient case.

Let k be field of characteristic zero and χ = (χ1, ..., χn) be indeterminates over k. We introduce
the ring A = k[χ1, ..., χn] of polynomials with coefficients in k. When a given system of linear PD
equations of order q is given, it defines by residue a differential module M over the underlying
ring D of differential operators. More precisely, let us introduce n commuting derivatives d1, ..., dn

for which k should be a field of constants and define the ring D = k[d] = k[d1, ..., dn] of differ-
ential operators with coefficients in k. Then D and A are isomorphic by di ↔ χi. However, the
(non-commutative) situation for a differential field K with subfield of constants k escapes from the
previous (commutative) approach and must be treated ”by its own”. For this, let µ = (µ1, ..., µn)
be a multi-index with length | µ |= µ1+...+µn. We set µ+1i = (µ1, ..., µi−1, µi+1, µi+1, ..., µn) and
we say that µ is of class i if µ1 = ... = µi−1 = 0, µi 6= 0. Accordingly, any operator P = aµdµ ∈ D
acts on the unknowns yk for k = 1, ...,m as we may set dµy

k = yk
µ with yk

0 = yk and introduce the
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jet coordinates yq = {yk
µ | k = 1, ...,m; 0 ≤| µ |≤ q}. It follows that, if a system of PD equations

can be written in the form Φτ ≡ aτµ
k yk

µ = 0 with a ∈ K, we may introduce the filtred differential
module M = Dy/DΦ. Then we define the (formal) prolongation of Φτ with respect to di to be
diΦ

τ ≡ aτµ
k yk

µ+1i
+ ∂ia

τµ
k yk

µ and induce maps di : M →M : ȳk
µ → ȳk

µ+1i
by residue.

First of all, we sketch the technique of ”localization” in the case of OD equations, comparing
to the situation met in classical control theory where n = 1. For this, setting as usual d = d1 =
d/dt = dot, we may introduce (formal) unknowns y1, ..., ym and set Dy = Dy1 + ...+Dym ≃ Dm.
If we have a given system Φ = 0 of OD equations of order q, a basic question in control theory is
to decide whether the control system is ”controllable” or not. It is not our purpose to discuss here
about such a question (see [23,24] for more details) but we just want to state the final formal test
in terms of a property of the differential module M = Dy/DΦ. Care must be taken that in the
sequel, for simplicity and unless needed, we shall not always put a ”bar” on the residual image of
y in the canonical projection Dy → M . We explain our goal on an example.

EXAMPLE 2.2: With m = 3 and a constant parameter a, we consider the first order system
Φ1 ≡ ẏ1 − ay2 − ẏ3 = 0,Φ2 ≡ y1 − ẏ2 + ẏ3 = 0. Any engineer should want to apply Laplace
transform ŷ(s) =

∫ ∞

0
esty(t)dt to this system. However, using the integration by part formula∫ ∞

0
estẏ(t)dt = [esty(t)]∞0 − sŷ(s) we should eventually need to know y(0) though the Kalman test

of controllability is purely formal as it only deals with ranks of matrices [9]. Since a long time
we had in mind that setting y(0) = 0 was not the right way and that Laplace transform could be
superseded by another purely formal technique. For this, let us replace ”formally” d by the purely
algebraic symbol χ whenever it appears and obtain the system of linear equations :

χy1 − ay2 − χy3 = 0, 1y1 − χy2 + χy3 = 0 ⇒ y1 =
χ(χ+ a)

χ2 − a
y3, y2 =

χ(χ+ 1)

χ2 − a
y3

but we could have adopted a different choice for the only arbitrary unknown. At this step there
are only two possibilities :
•a 6= 0, 1 ⇒no ”simplification” may occur and, getting rid of the common denominator, we get an
algebraic parametrization leading to a differential parametrization as follows:

y1 = χ(χ+ a)z, y2 = χ(χ+ 1)z, y3 = (χ2 − a)z ⇒ y1 = z̈ + aż, y2 = z̈ + ż, y3 = z̈ − az

•a = 0 or a = 1 ⇒ a ”simplification” may occur and no parametrization can be found. For exam-
ple, with a = 0, setting z = y1 − y3 we get χz = 0 that is to say ż = 0.

Recapitulating, we discover that a control system is controllable if and only if one cannot get
any autonomous element satisfying an OD equation by itself. For understanding such a result in
an algebraic manner, let M be a module over an integral domain A containing 1. A subset S ⊂ A
is called a multiplicative subset if 1 ∈ S and ∀s, t ∈ S ⇒ st ∈ S. Moreover, we shall need/use the
Ore condition on S and A, namely aS ∩ sA 6= ∅, ∀a ∈ A, s ∈ S.

DEFINITION 2.3: S−1A = {s−1a|s ∈ S, a ∈ A/ ∼} with s−1a ∼ t−1b ⇔ ∃u, v ∈ A, us = vt ∈
S, ua = vb.

Next, for any module M over A, we define S−1M = S−1A⊗AM and tS(M) = {x ∈ M | ∃s ∈
S, sx = 0} in the exact sequence 0 → tS(M) →M → S−1M where the last morphism is x→ 1−1x.

EXAMPLE 2.4: S = A − {0} ⇒ S−1A = Q(A) field of fractions of A and we introduce the
torsion submodule tS(M) = t(M) = {x ∈M | ∃0 6= a ∈ A, ax = 0} of M .

In the case of a torsion-free module, reducing to the same denominator as in the control exam-
ple, we obtain the following classical proposition amounting to exhibit a parametrization [23,25].
However, the reader must notice that it is unusefull in actual practice as one needs a test (like the
Kalman test) for checking the torsion-free condition. This will be the hard part of the job !.
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PROPOSITION 2.5: When M is finitely generated and t(M) = 0, from the inclusion M ⊂
Q(A)⊗AM , we deduce that there exists a finitely generated free module F with M ⊂ F .

EXAMPLE 2.6: In 2-dimensional classical elasticity, let us consider the well known stress equa-
tions:

∂1σ
11 + ∂2σ

21 = 0, ∂1σ
12 + ∂2σ

22 = 0

where we must keep in mind that the stress tensor density is symmetric, that is σ12 = σ21. Re-
placing ∂i by χi, we may localize and obtain:

χ1σ
11 + χ2σ

21 = 0, χ1σ
12 + χ2σ

22 = 0

Reducing the fractions to the same denominator, we get:

σ11 = −
χ2

χ1

σ21 = −
(χ2)

2

χ1χ2

σ12, σ22 = −
χ1

χ2

σ12 = −
(χ1)

2

χ1χ2

σ12

and obtain therefore the subvector space over Q(χ1, χ2):

σ11 = (χ2)
2φ, σ12 = σ21 = −χ1χ2φ, σ

22 = (χ1)
2φ

a result providing at once the well known parametrization by the Airy function:

σ11 = ∂22φ, σ
12 = σ21 = −∂12φ, σ22 = ∂11φ

It may be interesting to compare this purely formal approach to the standard analytic aproach
presented in any textbook along the following way. From the first stress equation and Stokes
identity for the curl, there exists a function ϕ such that σ11 = ∂2ϕ, σ

21 = −∂1ϕ. Similarly, from
the second stress equation, there exists a function ψ such that σ22 = ∂1ψ, σ

12 = −∂2ψ. Finally,
from the symmetry of the stress, there exists a function φ such that ϕ = ∂2φ, ψ = ∂1φ and we
find back the same parametrization of course. The reader must notice that, in this example, one
can check that the parametrization does work but no geometric inside can be achieved in arbitrary
dimension n ≥ 2 even though exactly the same procedure can be applied.

EXERCISE 2.7: Apply similarly the localization technique in the case of the two sets of Maxwell
equations and compare to the standard analytic approach to be found in any textbook.

The extension of the above results to the non-commutative case D = K[d] where K is a differ-
ential field with n commuting derivations ∂1, ..., ∂n can be achieved but is more delicate [ 23].

EXERCISE 2.8: When a = a(t) in Example 1.6, we let the reader prove that the controllability
condition is now the Ricatti inequality ȧ+a2−a 6= 0 in a coherent way with the constant coefficient
case already considered.

Taking into account the works of Janet and Spencer, the study of systems of PD equations cannot
be achieved without understanding involution and we now explain this concept. For this, changing
linearly the derivations if necessary, we may successively solve the maximum number of equations
with respect to the jets of order q and class n, class (n − 1),..., class 1. At each order, a certain
number of jets called principal can therefore be expressed by means of the other jets called para-

metric. Moreover, for each equation of order q and class i, d1, ..., di are called multiplicative while
di+1, ..., dn are called nonmultiplicative and d1, ..., dn are nonmultiplicative for all the remaining
equations of order ≤ q − 1.

DEFINITION 2.9: The system is said to be involutive if each prolongation with respect to a
nonmultiplicative derivation is a linear combination of prolongations with respect to the multi-
plicative ones. Using Spencer cohomology, one can prove that such a definition is in fact intrinsic
[22,23,26].
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EXAMPLE 2.10: The system y11 = 0, y13 − y2 = 0 is not involutive. Effecting the permutation
(1, 2, 3) → (3, 2, 1), we get the new system y33 = 0, y13 − y2 = 0. As d1y33 − d3(y13 − y2) = y23 and
d1y23 − d2(y13 − y2) = y22, the new system y33 = 0, y23 = 0, y22 = 0, y13 − y2 = 0 is involutive with
1 equation of class 3, 2 equations of class 2 and 1 equation of class 1.

EXAMPLE 2.11: The Killing system yj
i + yi

j = 0 is not involutive but the first prolongation

yj
i + yi

j = 0, yk
ij = 0 is involutive. This is the reason for which the Riemann tensor is a first order

expression in the metric and Christoffel symbols and thus second order in the metric alone (for
more details, see [22], p 249-258).

APPLICATION 2.12: t(M) = M if and only if the number of equations of class n is m. Oth-
erwise there is a strict inclusion t(M) ⊂M .

PROPOSITION 2.13: ([22,26]) The following recipe (already used in the example at the begin-
ning of this section) will allow to bring an involutive system of order q to an equivalent (isomorphic
modules) involutive system of order 1 with no zero order equations called Spencer form:
1) Use all parametric jets up to order q as new unknowns.
2) Make one prolongation.
3) Substitute the new unknowns.

3) GROUP FOUNDATION OF MECHANICS:

This section, which is a summary of results already obtained in [21,22], is provided for fixing the
notations and the techniques leading to various (linearized) differential sequences. All the results
presented are local ones. A corresponding non-linear does exist but is out of the scope of this paper
[12,21].
Let X be a manifold of dimension n with local coordinates x = (x1, ..., xn) and latin indices
i, j = 1, ..., n. We denote by T = T (X) the tangent bundle to X and by T ∗ = T ∗(X) the cotangent
bundle to X while ∧rT ∗ is the bundle of r-forms on X . Also, we denote by Jq(T ) the q-jet bundle

of T , that is to say the vector bundle over X having the same transition rules as a vector field and
its derivatives up to order q under any change of local coordinates on X . Let now G be a Lie group
of dimension p with identity e, local coordinates a = (a1, ..., ap) and greek index τ . We denote by
G = Te(G) the corresponding Lie algebra with vectors denoted by the greek letters λ. As usual,
we shall identify a map a : X → G called gauging of G over X , with its graph X → X ×G which
is a section of a trivial principal bundle, and, similarly, use the same notation for a bundle and its
sheaf of (local) sections as the background will always tell the right choice. In particular, when
differential operators are involved, the sectional point of view must automatically be used. Such a
convention allows to greatly simplify the notations at the expense of a slight abuse of language.

DEFINITION 3.1: A Lie group of transformations of a manifold X is a lie group G with an
action of G on X better defined by its graph X × G → X × X : (x, a) → (x, y = ax = f(x, a))
with the properties that a(bx) = (ab)x and ex = x, ∀x ∈ X, ∀a, b ∈ G.

It is sometimes useful to distinguish the source x from the target y by introducing a copy Y of
X with local coordinates y = (y1, ..., yn). Such groups of transformations have first been studied
by S. Lie in 1880. Among basic examples when n = 1 we may quote the affine group y = ax + b
and the projective group y = (ax+ b)/(cx+ d) of transformations of the real line. When n = 3 we
may quote the group of rigid motions y = ax+ b where now a is an orthogonal 3× 3 matrix and b
is a vector. Such a group is known to preserve the euclidean metric ω = (ωij = ωji) and thus the
quadratic form ds2 = (dx1)2 + (dx2)2 + (dx3)2 = ωijdxidxj . When n = 4 we may quote the con-

formal group of space-time with 15 parameters (4 translations, 6 rotations, 1 dilatation, 4 elations)
preserving the Minkowski metric ω or the quadratic form ds2 = (dx1)2 + (dx2)2 + (dx3)2 − c2(dt)2

up to a function factor, where now c is the speed of light and t the time. Among the subgroups,
we may consider the Weyl group with 11 parameters preserving ω up to a constant factor and the
Poincaré group with 10 parameters preserving ω.
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Only ten years later, in 1890, S. Lie discovered that the Lie groups of transformations were
only examples of a wider class of groups of transformations, first called infinite groups but now
called Lie pseudogroups.

DEFINITION 3.2: A Lie pseudogroup Γ of transformations of a manifold X is a group of
transformations y = f(x) solutions of a (in general nonlinear) system of PD equations, also called
system of finite Lie equations.

Setting now y = x+ tξ(x) + ... and passing to the limit for t→ 0, that is to say linearizing the
defining system of finite Lie equations around the q-jet of the identity y = x, we get a linear sys-
tem Rq ⊂ Jq(T ) for vector fields, also called system of infinitesemal Lie equations, with solutions
Θ ⊂ T satisfying [Θ,Θ] ⊂ Θ. It can be proved, for the same testing type reasons, that such a sys-
tem may be endowed with a Lie algebra bracket on sections ξq : (x) → (x, ξk(x), ξk

i (x), ξk
ij(x), ...)

that we shall quickly define (see [22] for more details and compare to [12]). Such a bracket
on sections transforms Rq into a Lie algebroid and we have [Rq, Rq] ⊂ Rq. Let us first de-
fine by bilinearity {jq+1(ξ), jq+1(η)} = jq([ξ, η]), ∀ξ, η ∈ T . Introducing the Spencer operator

D : Rq+1 → T ∗ ⊗ Rq : ξq+1 → j1(ξq) − ξq+1 with local components (∂iξ
k − ξk

i , ∂iξ
k
j − ξk

ij , ...), we
obtain the following general formula at order q:

[ξq, ηq] = {ξq+1, ηq+1} + i(ξ)Dηq+1 − i(η)Dξq+1, ∀ξq, ηq ∈ Rq

where i() is the interior multiplication of a 1-form by a vector, and we let the reader check that
such a definition no longer depends on the ”lifts” ξq+1, ηq+1 over ξq, ηq.

EXAMPLE 3.3: (Affine transformations) n = 1, q = 2, X = R3

With evident notations, the system of finite Lie equations is defined by the single second order
linear OD equation yxx = 0. Similarly, the sections of R2 are defined by ξxx(x) = 0. Accordingly,
the components of [ξ2, η2] at order zero, one and two are defined by the totally unusual successive
formulas:

[ξ, η] = ξ∂xη − η∂xξ

([ξ1, η1])x = ξ∂xηx − η∂xξx

([ξ2, η2])xx = ξxηxx − ηxξxx + ξ∂xηxx − η∂xξxx

It follows that ξxx = 0, ηxx = 0 ⇒ ([ξ2, η2])xx = 0 and thus [R2, R2] ⊂ R2.

EXAMPLE 3.4: (Projective transformations) n = 1, q = 3, X = R3

The system of finite Lie equations is defined by the single third order nonlinear OD equation
(yxxx/yx) − 3

2
(yxx/yx)

2
= 0 and the sections of R3 are defined by ξxxx(x) = 0. The formulas for

the bracket of Lie algebroid [R3, R3] ⊂ R3 can be derived similarly but involve many more terms.

EXAMPLE 3.5: (Volume preserving transformations) n arbitrary, q = 1, X = Rn

The only non-linear finite Lie equation is ∂(y1, ..., yn)/∂(x1, ..., xn) = det(yk
i ) = 1 and the sections

of R1 are defined by the single relation ξi
i = 0. Accordingly, we obtain:

([ξ1, η1])
k
i = ξr

i η
k
r − ηr

i ξ
k
r + ξr∂rη

k
i − ηr∂rξ

k
i

When summing on k and i, the first two terms disappear (as in Example 3.3 !) and we get therefore
[R1, R1] ⊂ R1. We invite the reader to compare this result with the usual way on solutions where
one defines Θ as the kernel of the Lie derivative L(ξ)ω of the (volume) n-form ω = dx1 ∧ ... ∧ dxn

with respect to ξ and then uses the well known formula [L(ξ),L(η)]ω = L([ξ, η])ω, ∀ξ, η ∈ T in
order to obtain [Θ,Θ] ⊂ Θ.

Introducing a basis of ∧rT ∗ made by the dxI = dxi1 ∧ ...∧dxir with I = (i1 < ... < ir), we may
define the exterior derivative d : ∧rT ∗ → ∧r+1T ∗ by setting ω = ωIdx

I → dω = ∂iωIdx
i ∧dxI and

one easily checks d2 = d ◦ d = 0. This is sufficient in order to define the (canonical linear) gauge

sequence:

∧0T ∗ ⊗ G
d
→ ∧1T ∗ ⊗ G

d
→ ∧2T ∗ ⊗ G
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which is just the tensor product by G of a part of the Poincaré sequence for the exterior derivative.

However, there are other differential sequences to be found in the literature and that we did not
speak about, namely the Janet sequence, which is for sure the best known differential sequence,
and the Spencer sequence. For short, if E,F, ... denote vector bundles over X , we use the same
letters for the corresponding sets (sheaves to be exact) of sections and such an interpretation must
be used whenever operators are involved. Starting from a vector bundle E (for example T ) and a
linear differential operator D : E → F : ξ → η, if we want to solve the linear system with second
member Dξ = η even locally, one needs ”compatibility conditions” (CC) in the form D1η = 0.
Denoting now F by F0, we may therefore look for an operator D1 : F0 → F1 : η → ζ and so on.
Under the assumption that D is involutive (!), the french mathematician M. Janet has proved in
1920 that such a chain of operators ends after n steps and we obtain the (canonical linear) Janet

sequence, namely [8,22]:

0 → Θ → E
D
→ F0

D1→ F1

D2→ ...
Dn→ Fn → 0

where, apart from the first operator which is of order q, the n operators following it are first order
and involutive. The (canonical linear) Spencer sequence is the Janet sequence for the first order
Spencer form, namely:

0 → Θ
jq

→ C0

D1→ C1

D2→ ...
Dn→ Cn → 0

where C0 = Rq and the first order involutive operators Di are induced by the Spencer operator.
It follows that we only have at our disposal for any application where group theory seems to be
involved, three linear differential sequences, namely the Janet sequence, the Spencer sequence and
the gauge sequence. As these sequences are made by quite different operators, the use of one

excludes the use of the others.

In order to escape from this dilemna and for the sake of clarifying the key idea of the broth-
ers Cosserat by using these new mathematical tools, we shall explain, in a way as elementary as
possible while using only the linear framework, why the Janet sequence and the gauge sequence

cannot be used in continuum mechanics. By this way we hope to convince the reader about the
need to use another differential sequence, namely the SPENCER SEQUENCE, though striking it
could be. Also we shall use very illuminating examples in order to illustrate our comments.
First of all we exhibit the isomoprphism existing between the linear gauge sequence and the linear
Spencer sequence. For this, if now G acts on X with a basis ξτ = {ξk

τ∂k} of infinitesimal generators,
we may introduce the map:

∧0T ∗ ⊗ G → Jq(T ) : λτ (x) → λτ (x)∂µξ
k
τ (x)

It is known [21 ,p. 308] that this map becomes injective for q large enough and we may call Rq its
image for such a q. It follows from its definition that Rq ≃ Rq+1 is a system of infinitesimal Lie
equations of finite type and we get for the Spencer operator (care to the notation) [22,26]:

D : Rq+1 → T ∗ ⊗Rq : ξq+1 → (∂iξ
k
µ − ξk

µ+1i
= ∂iλ

τ (x)∂µξ
k
τ (x))

Accordingly, the linear gauge sequence is isomorphic to the linear Spencer sequence:

0 → Θ → ∧0T ∗ ⊗ Rq
D
→ ∧1T ∗ ⊗Rq

D
→ ∧2T ∗ ⊗Rq

the three isomorphisms being induced by the (local) isomorphism X × G → Rq just described
above. It is essential to notice that, though the linear Spencer sequence and the isomorphisms
crucially depend on the action, by a kind of ”miracle” the linear gauge sequence no longer depends
on the action (look at the kernel of the first ”d”).
This result proves that the linear Spencer sequence generalizes the linear gauge sequence, with the
major gain that it can be used even for Lie pseudogroups of transformations that are not coming
from Lie groups of transformations.

REMARK 3.6: When n = 3 and we deal with the Lie group of rigid motions, though surpris-
ing it may look like, the formal adjoint of the (first) Spencer operator is exactly describing the
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so-called stress and couple-stress equations found by the brothers Cosserat as we shall explain
below. Though this result is in perfect agreement with the piezzoelectric or photoelastic coupling
of elasticity and electromagnetism [23], it CONTRADICTS gauge theory where the lagrangians
are functions on ∧2T ∗ ⊗ G and NOT on T ∗ ⊗ G as above [29].

Let us consider a (finite) volume
∫

V
dV in R3 limited by a (closed) surface S =

∫
S
dS and let

us introduce the outside unit normal (pseudo) vector ~n = (nj) on S. Let us now suppose that the

surface element dS is acted on by the outside with a force d~F = ~σdS and a couple d~C = ~µdS,
where both ~σ and ~µ linearly depend on ~n through the stress tensor density σ = (σij) and the
couple-stress tensor density µ = (µr,ij = −µr,ji). It must be noticed that, using the standard
Cauchy tetrahedral device, there is no reason ”a-priori” to suppose that the stress tensor is sym-
metric. We also suppose that the volume element dV is acted on by (see later on for the sign) a

force −~fdV and a momentum −~mdV with ~f = (f j) and ~m = (mij = −mji).
Our purpose is now to study the equilibrium of the corresponding torsor fields with respect to an
arbitrary cartesian frame 0x1x2x3.
The equilibrium of forces is satisfied if we have the relation:

∫
S

~σdS −

∫
V

~fdV = 0 ⇒

∫
S

σijnidS −

∫
V

f jdV = 0

Using Stokes formula, this is equivalent to the well known stress equations:

∂iσ
ij = f j

This result shows that the surface density of forces ~σ is equivalent, from the point of view of force
equilibrium, to a volume density of forces ~f and this interpretation explains the sign adopted.
Finally, the equilibrium of forces being satisfied, it is known that the equilibrium of momenta
is also satisfied if it is satisfied with respect to an arbitrarily chosen cartesian frame. Hence, in-
troducing the vector ~r = (x1, x2, x3), the equilibrium of momenta is satisfied if we have the relation:

∫
S

(~µ+ ~r ∧ ~σ)dS −

∫
V

(~m+ ~r ∧ ~f)dV = 0

Projecting onto the axis Ox3, we obtain:

∫
S

(µr,12 + x1σr2 − x2σr1)nrdS −

∫
V

(m12 + x1f2 − x2f1)dV = 0

Using again Stokes formula and the previous stress equations, we obtain the couple-stress equations:

∂rµ
r,ij + σij − σji = mij

This result shows that the surface density of forces ~σ and couples ~µ is equivalent, from the point
of view of torsor equilibrium, to a volume density of forces ~f and to a volume density of momenta
~m, provided the preceding stress and couple-stress equations are satisfied, and this interpretation
explains the sign adopted.
The combination of the stress and couple-stress equations have first been exhibited by E. and F.
Cosserat in 1909 [4,5,p137] without any static equilibrium experimental background and we now
explain the key argument leading to the same equations just from group theoretical arguments.
Of course, most of the engineering continua such as steel, concrete, glass, wate,... have the specific
”constitutive laws” µ = 0,m = 0 and we obtain therefore σij = σji, that is the stress tensor is
symmetric, a situation not always encountered in liquid crystals.

First of all, for the reader not familiar with the Spencer operator, we exhibit a similar result
in a quite simpler 1-dimensional situation that will allow to recapitulate all the previous results..

EXAMPLE 3.7: Let us consider the Lie group of affine transformations of the real line defined
by the group action y = a1x+ a2. The corresponding 2-dimensional Lie group G has coordinates
a = (a1, a2) and the group composition law is ab = (a1, a2)(b1, b2) = (a1b1, a1b2 + a2) with inverse
law a−1 = (1/a1,−a2/a1). A basis of infinitesimal generators of the action may be obtained with
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ξ1 = x ∂
∂x
, ξ2 = ∂

∂x
and we have [ξ1, ξ2] = −ξ2. As the exterior derivative is a linear involutive first

order homogeneous operator, both with its formal adjoint, it could not have anything to do with
the stress and couple-stress equations previously exhibited.
Let us now deal with the Spencer sequence instead of the gauge sequence in this framework.
First of all, we may consider the above Lie group of transformations as a Lie pseudogroup defined
by the second order system of finite Lie equations yxx = 0. The corresponding system R2 ⊂ J2(T )
of infinitesimal Lie equations is ξxx = 0 and the isomorphism between the gauge sequence and the
Spencer sequence is induced by the map:

(λ1(x), λ2(x)) → (ξ(x) = xλ1(x) + λ2(x), ξx(x) = λ1(x), ξxx(x) = 0)

The only two non-zero components of the Spencer operator become:

∂xξ(x) − ξx(x) = x∂xλ
1(x) + ∂xλ

2(x), ∂xξx(x) − 0 = ∂xξx(x) = ∂xλ
1(x)

Equating to zero these two components amounts to have:

∂xλ
1 = 0 , ∂xλ

2 = 0

Accordingly, gauging λ just amounts to choose an arbitrary section of R2.
The final touch, that could not be in the mind of any reader even on this very simple example, is to
work out the formal adjoint of the Spencer operator. For this, multiplying the first component by
a test function σ(x), the second by a test function µ(x), then summing and integrating by parts,
we get the following operator with second members (f,m):

∂xσ = f , ∂xµ+ σ = m

The comparison with the previous mechanical results needs no comment.

Taking into account this example, we now study the foundation of elasticity theory and we
restrict the study to 2-dimensional (infinitesimal) elasticity for simplicity as the general situation
has already been treated elsewhere and we just want to explain why the only founding problem of

elasticity is the choice of an underlying Lie pseudogroup and an adapted differential sequence.

1)The gauge sequence cannot be used:
Looking at the book [5] written by E. and F. Cosserat, it seems at first sight that they just construct
the first operator of the gauge sequence for n = 1 ([5], p 7), n = 2 ([5], p 66), n = 3 ([5], p 123) and
finally n = 4 ([5], p 189) in the linearized framework. This is not true indeed because, according
to the comment previously done, the adjoint operator is a divergence like operator, a situation not
met in the couple-stress equations which is a linear operator with constant coefficients, but not
of divergence type. In fact, a carefull study of the book proves that somewhere the action of the

group on the space is used, but this is well hidden among many very technical formulas (Compare
[5], p 136 with [21] p 295).

2)The Janet sequence cannot be used:
This result is even more striking because all texbooks of elasticity use it along the same scheme
that we now describe. Indeed, after gauging the translation by defining the ”displacement vector”
ξ = (ξ1(x), ξ2(x)) of the body, from the initial point x = (x1, x2) to the point y = x + ξ(x),
one introduces the (small) ”deformation tensor” ǫ = 1/2L(ξ)ω as one half the Lie derivative with
respect to ξ of the euclidean metric ω, namely, in our case, the three components only (care):

ǫ = (ǫ11 = ∂1ξ
1, ǫ12 = ǫ21 = 1/2(∂1ξ

2 + ∂2ξ
1), ǫ22 = ∂2ξ

2)

From the mathematical point of view, one uses to consider the Lie operator Dξ = L(ξ)ω : T → S2T
∗

(symmetric tensors), sometimes called Killing operator, through the formula:

(Dξ)ij ≡ ωrj∂iξ
r + ωir∂jξ

r + ξr∂rωij = Ωij = 2ǫij

One may check at once the only generating ”compatibility condition” D1ǫ = 0, namely:

∂11ǫ22 + ∂22ǫ11 − 2∂12ǫ12 = 0
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which is nothing else than the Riemann tensor of a metric, linearized at ω.
However, the main experimental reason for introducing the first operator of this type of Janet
sequence is the fact that the deformation is made from the displacement and first derivatives but
must be invariant under any rigid motion. In the general case it must therefore have (n + n2) −
(n + n(n − 1)/2) = n(n + 1)/2 components, that is 3 when n = 2, and this is the reason why
introducing the deformation tensor ǫ. For most finite element computations, the action density
(local free energy) w is a (in general quadratic) function of ǫ and people use to define the stress
by the formula σij = ∂w/∂ǫij which is not correct because w only depends on ǫ11, ǫ12, ǫ22 when
n = 2 as the deformation tensor is symmetric by construction. Finally, textbooks escape from this
trouble by deciding that the stress should be symmetric and this is a vicious circle because we have
proved it was not an assumption but an experimental result depending on specific constitutive
laws. Accordingly, when n = 2, we should have σijǫij = σ11ǫ11 + (2σ12)ǫ12 + σ22ǫ22. Hence, even
if we find the correct stress equations with this convenient duality keeping the factor ”2”, we have
no way to get the stress and couple-stress equations together.

3)Only the Spencer sequence can be used:
Let us construct the formal adjoint of the Spencer operator by multiplying all the (2 × 2) + 2 = 6
linearly independent nonzero components by corresponding test functions. For simplifying the
summation, we shall raise and lower the indices by means of the (constant) euclidean metric, set-
ting in particular ξi = ωirξ

r and ξi,j = ωirξ
r
j . The only nonzero first jets coming from the 2 × 2

skewsymmetric infinitesimal rotation matrix of first jets are now ξ1,2 = −ξ2,1 while the second or-
der jets are zero because isometries are linear transformations. We obtain in the present situation:

σ11∂1ξ1 + σ12(∂1ξ2 − ξ1,2) + σ21(∂2ξ1 − ξ2,1) + σ22∂2ξ2 + µr,12∂rξ1,2

Integrating by parts and changing the sign, we just need to look at the coefficients of ξ1, ξ2 and
ξ1,2, namely:

ξ1 −→ ∂1σ
11 + ∂2σ

21 = f1

ξ2 −→ ∂1σ
12 + ∂2σ

22 = f2

ξ1,2 −→ ∂rµ
r,12 + σ12 − σ21 = m12

in order to get the adjoint operator ad(D) : ∧n−1T ∗ ⊗R∗
1 → ∧nT ∗ ⊗R∗

1 : (σ, µ) → (f,m) relating
for the first time the torsor framework to the Lie coalgebroid R∗

1 (see the beginning of section 3).
These equations are exactly the three stress and couple-stress equations of 2-dimensional Cosserat
elasticity. In the n-dimensional case, a similar calculation, left to the reader as an exercise of
indices, should produce exactly the n(n+ 1)/2 stress and couple-stress equations in general. It is
now possible to enlarge the group in order to get more equations, that is as many equations as the

number of group parameters. Using the conformal group of space-time, the 4 elations give rise to
4 nonzero second order jets only which allow to exhibit the 4 Maxwell equations for the induction
( ~H, ~D) along lines only sketched by H. Weyl in [20] because the needed mathematics were not
available before 1970. But, as we already said, this is another story !.

REMARK 3.8: It becomes now clear that the dim(∧2T ∗ ⊗ G) = (n(n − 1)/2)(n(n + 1)/2) =
n2(n2 − 1)/4 first order compatibility conditions for the Cosserat fields [3,4,5,11,27] (the so-called
torsion and curvature of E. Cartan [2]) are described by the second (first order) Spencer operator
in the Spencer sequence while the n2(n2 − 1)/12 second order compatibility conditions for the de-
formation tensor (the so-called Riemann curvature) are described by the second operator D1 in the
Janet sequence (see [22], Example 10, p 249-258). Accordingly, the torsion+curvature of Cartan

is not at all the generalization of the curvature of Riemann, contrary to what is still claimed in
mathematical physics today.

4) PARAMETRIZATION:

The main tool in this last section will be duality theory, namely the systematic use of the formal

adjoint of an operator. For this, if E is a vector bundle, we introduce its dual E∗ to be the vector
bundle with inverse transition matrix (for example T ∗ is the dual of T ). The formal adjoint of an
operator D : E → F is the operator ad(D) : ∧nT ∗ ⊗ F ∗ → ∧nT ∗ ⊗ E∗ defined by the relation:
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< λ,Dξ >=< ad(D)λ, ξ > +dω

where λ is a test vector density and ω ∈ ∧n−1T ∗ comes from Stokes formula of integration by
part. Any operator can be considered as the formal adjoint of another operator because we have
the identity ad(ad(D)) = D. Also, if P,Q ∈ D and P = aµdµ, then ad(P ) =

∑
(−1)|µ|dµa

µ and
ad(PQ) = ad(Q)ad(P ).

DEFINITION 4.1: We now define N from ad(D) exactly as we already defined M from D, that
is N = Dλ/Dad(D)λ. Of course N highly depends on the presentation of M .

The following nontrivial theorem, first obtained in [18], provides a purely formal test for decid-
ing about the existence of a parametrization and exhibiting one. At the same time it establishes a
link with the two previous sections and is already implemented on the computer algebra package
http://wwwb.math.rwth-aachen.de/OreModules.

THEOREM 4.2: A test for checking that a given differential module M is torsion-free proceeds
in 5 steps:
1) Write the defining system as the kernel of an operator D.
2) Construct its formal adjoint ad(D).
3) Work out generating CC for ad(D) as an operator ad(D−1).
4) Construct ad(ad(D−1)) = D−1.
5) Work out generating CC for D−1 as an operator D′.
Then M is torsion-free if and only if D and D′ have the same solutions (both provide M).

REMARK 4.3: We have ad(D ◦ D−1) = ad(D−1) ◦ ad(D) ≡ 0 and thus D◦D−1 ≡ 0. Accordingly
D ranges among the CC of D−1, a result symbolically written as D ≤ D′, and M is torsion-free if
and only if D = D′. In that case, with a slight abuse of language, the kernel of D is parametrized by
the image of D−1. Otherwise, any CC in D′ but not in D provides a torsion element of M and D−1

provides a parametrization of the system determined by M/t(M) or, equivalently, M ′ = M/t(M)
is the torsion-free module determined by D′.

For the reader aware of homological algebra, the following rather ”magic” corollary depends on
difficult technical though classical results of homological algebra ([1] but the best ”basic” references
are [7], Lemma 3.8, p 147; [16], Theorem 9, p 133; [25], Corollary 6.18, p 186).

COROLLARY 4.4: The differential module ext1D(N,D) = t(M) does not depend on the presen-
tation of N .

EXAMPLE 4.5: As a first striking result, that does not seem to have been noticed by mechani-
cians up till now, let us consider the situation of classical elasticity theory where D is the Killing
operator for the euclidean metric, namely Dξ = L(ξ)ω and D1 the corresponding CC, namely the
linearized Riemann curvature with n2(n2 − 1)/12 components. In that case, as it is well known
that the Poincaré sequence for the exterior derivative is self-adjoint up to sign (for n = 3 the
adjoints of grad, curl, div are respectively div, curl, grad) then the first extension module does not

depend on the differential sequence used and therefore vanishes. Accordingly, ad(D) generates the
CC of ad(D1). Hence, in order to parametrize the stress equations, that is ad(D), one just needs
to compute ad(D1). For n = 2, we get:

φ(∂11ǫ22 + ∂22ǫ11 − 2∂12ǫ12) = ∂22φǫ11 − 2∂12φǫ12 + ∂11φǫ22 + ∂1(...) + ∂2(...)

and recover ... the parametrization by means of the Airy function in a rather unexpected way.
Exhibiting a parametrization for n ≥ 3 thus becomes a straightforward exercise of computer alge-
bra, the number of (pseudo)-potentials being n2(n2 − 1)/12 along the last remark of the preceding
section.

EXAMPLE 4.6: Contrary to the preceding situation, the second order Einstein operator D
in General Relativity has n/(n + 1)/2 components and is self-adjoint as it comes from Hilbert
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variational calculus of the scalar Riemann density. The corresponding CC are the well known
n divergence conditions and the adjoint D−1 is therefore the Killing operator for the Minkowski
metric. According to the previous example, its CC D′ is thus the linearized Riemann curvature
with n2(n2−1)/12 components. It follows that D ≤ D′ strictly when n ≥ 4 and no parametrization
can be found in that case.

EXAMPLE 4.7: We finally treat the case of Cosserat equations. For this, instead of using
the Janet sequence as before, we now use the Spencer sequence which is isomorphic to the gauge
sequence though with quite different operators. However, according to the general theorems of
homological algebra, the existence of a parametrization does not depend on the differential se-
quence used and therefore follows again, like in the first example of this section, from the fact
that the Poincaré sequence is self-adjoint up to the sign. In the present situation, we have
Cr = ∧rT ∗ ⊗ R1 ≃ ∧rT ∗ ⊗ G with dim(G) = n(n + 1)/2. As we have shown in the last section
that the Cosserat equations were just ad(D1), their first order parametrization is thus described
by ad(D2) and needs dim(C2) = n2(n2 − 1)/4 (pseudo)-potentials according to the last remark of
the preceding section. We provide the details when n = 2 but we know at once that we must use
3 (pseudo)-potentials only. The case n = 3 could be treated similarly and is left to the reader as
an exercise.
The Spencer operator D1 is described by the equations:

∂1ξ1 = A11, ∂1ξ2 − ξ1,2 = A12, ∂2ξ1 − ξ2,1 = A21, ∂2ξ2 = A22, ∂1ξ1,2 = B1, ∂2ξ1,2 = B2

because R1 is defined by the equations ξ1,1 = 0, ξ1,2 + ξ2,1 = 0, ξ2,2 = 0.
Accordingly the 3 CC describing the Spencer operator D2 are:

∂2A11 − ∂1A21 +B1 = 0, ∂2A12 − ∂1A22 +B2 = 0, ∂2B1 − ∂1B2 = 0

Multiplying these equations respectively by φ1, φ2, φ3, then summing and integrating by part, we
get ad(D2) and the desired first order parametrization in the form:

σ1,1 = −∂2φ
1, σ1,2 = −∂2φ

2, σ2,1 = ∂1φ
1, σ2,2 = ∂1φ

2, µ1,12 = −∂2φ
3 + φ1, µ2,12 = ∂1φ

3 + φ2

as announced previously. It is important to notice that such a parametrization, which could also
be obtined by localization, is coherent with the classical one already obtained by localization in
Example 2.6 and which can be recovered if we cancel the couple-stress.

5) CONCLUSION:

We have already proved in our book ”Lie Pseudogroups and Mechanics” (1988) that the group
foundation of elasticity pioneered by E. and F. Cosserat (1909) was just described by adding to
the non-linear Spencer sequence (1972) a convenient variational calculus. As a crucial conclu-
sion and similarly to classical elasticity, even if the initial framework is non-linear, the resulting
stress/couple-stress equations are linear. Accordingly, in order to parametrize these equations,
one just needs to refer to infinitesimal Lie equations and the three corresponding canonical linear

differential sequences that can be constructed, namely the gauge sequence, the Janet sequence and
the Spencer sequence, though only the last one is useful.
The main result of this paper, coming from unavoidable arguments of homological algebra, is that
the Cosserat equations are just described by the formal adjoint of the first Spencer operator while
their parametrization is provided by the formal adjoint of the second Spencer operator. This result
finally explains why the parametrization of the stress/couple-stress equations is first order while
the parametrization of the classical stress is second order as it comes from dualizing the Janet
sequence.
We are happy to to pay such a tribute to E. and F. Cosserat on the occasion of this anniversary
and hope it will give a new impulse for generalizing their work.
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