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Koç University

34450, Sarıyer, İstanbul, TURKEY
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Abstract

We study the effects of different pricing strategies available to a production-inventory system

with capacitated supply, which operates in a fluctuating demand environment. The demand

depends on the environment and on the offered price. For such systems, three plausible pricing

strategies are investigated: Static pricing, where only one price is used at all times, environment-

dependent pricing, where price changes with the environment, and dynamic pricing, where price

depends on both the current environment and the stock level. The objective is to find an optimal

replenishment and pricing policy under each of these strategies. This paper presents some

structural properties of optimal replenishment policies, and a numerical study which compares

the performances of these three pricing strategies.

1 Introduction

Dynamic pricing concerns the adjustment of prices to charge customers over time in order to

maximize total revenues. It is by now a well-established strategy in service industries where typical

examples include airline, hotel and electric utilities management. These examples involve cases

where the resources are perishable and non-renewable. Recent overviews of this class of problems

can be found in the review articles of McGill and Van Ryzin [20] and Bitran and Caldentey [2].

An important distinction of the above mentioned service industries where dynamic pricing

applications are already relatively mature is that their services cannot be provided in advance and

stored. In recent years, there has been an increasing interest in dynamic pricing policies in industries

where the sellers have the capability to store inventory. A recent review by Chan et al. [6] presents

several dynamic pricing examples from different industrial practices and emphasizes the need for
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employing pricing as a strategic tool. This motivates the need to assess the potential benefits that

can be expected from dynamic pricing strategies in retail and production operations. Our focus

in this paper is on coordinated replenishment and pricing strategies for a production/inventory

system that produces and sells a product with a long life cycle. In this class of problems, a seller

faces a stochastic and price sensitive demand and can replenish inventory with limited production

capacity. The objective of the seller is to find a dynamic pricing and production policy to match

the demand and the inventory in order to maximize his/her total profit.

Our model of the production/inventory system is based on a framework sometimes referred to

as the make-to-stock queue. In this framework, the production capacity of the supply system is

modeled by a single server which processes items one-by-one. While simplified, this framework is

known to yield useful insights in a number of interesting problems involving capacity/inventory

interactions. Buzacott and Shanthikumar [3] and Zipkin [32] comprise detailed expositions of such

models. On the inventory side, we assume lost sales. A purchase can only take place if the product

is available in stock at the time of demand arrival. Finally, on the demand side, we model the

potential demand of customers as a Poisson process whose rate can fluctuate over time. The actual

realized demand (i.e., purchase) depends not only on the current potential demand rate but also

on the price offered and on product availability.

For a system operating in this environment, there are three plausible pricing strategies: Static

Pricing (SP), where a single price is used at all times, Environment-Dependent Pricing (EDP),

where the price is allowed to change when the demand environment fluctuates, and Dynamic

Pricing (DP), where the price depends on both the current environment and the stock level. In

this paper, we use a Markov Decision Process framework to model this system as a make-to-stock

queue operating under each of these strategies. Using this framework, we first show that optimal

replenishment policies are environment-dependent base-stock level policies for the three pricing

strategies. For the DP strategy, we show that optimal dynamic prices are non-increasing in the

inventory level in each environment. For the SP and EDP strategies, we show that, under certain

conditions, optimal base-stock levels have a natural ordering in terms of the demand rates and

prices. We also compare the performances of these three strategies by an extensive numerical

study.

This paper focuses on a quantitative comparison of the three different pricing policies. However,

there may be other more qualitative considerations that play a role in the selection of a pricing

policy. Static pricing represents the traditional pricing since the price remains fixed over time,
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regardless of the changes in the environment and in the stock level. This type of policy is easy

to implement. In addition, consumers may prefer the transparency of a known price that is not

subject to any changes. At the other extreme, there is dynamic pricing that leads to frequent

price changes, since even a change in the stock level may trigger a change in price. Therefore,

dynamic pricing may create negative consumer reactions. Moreover, its implementation requires

sophisticated information systems that can accurately track sales and inventory data in real time,

and can be extremely difficult especially if price changes require a physical operation such as a

label change. Environment-dependent pricing, on the other hand, allows the price to change only

with the fluctuations in the potential demand rate which may be relatively infrequent. Hence, the

associated system changes the prices, but not as frequently as the one with the dynamic pricing

does. As a result, this policy is somewhere in between static and dynamic policies regarding the

implementation problems. One of the main objectives of this paper is to assess the magnitude of

the additional profit that may be gained by more complicated policies in order to help the policy

selection decision.

The paper is structured as follows. In Section 2, we provide a review of the related literature.

Section 3 presents the model and the problem formulation. Section 4 establishes certain structural

properties of the optimal dynamic and static policies. Section 5 comprises the numerical study.

Finally, the conclusions are presented in Section 6.

2 Literature Review

Pricing models and integrated pricing and production decisions have been studied since 1960s, and

the excellent reviews of Yano and Gilbert [29], Chan et al. [6], and Elmaghraby and Keskinocak

[11] provide a summary of the research papers on this area by focusing on different aspects of the

problem. Our literature review focuses on the papers that consider stochastic demand, and multiple

replenishments over the planning horizon.

Most of the earlier papers consider periodic-review models. Zabel [30] studies first the mul-

tiplicative demand case for a single-period problem with convex production and linear inventory

holding costs, and lost sales. He demonstrates that there is a unique optimal policy for every initial

stock level. Zabel [31] then extends those results to the multi-period problem with both additive

and multiplicative demand cases. He finds that the firm should produce when the initial inventory

is below a critical level, and that the price is a decreasing function of the inventory. Thowsen
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[28] studies the case of price-sensitive nonstationary demand consisting of a general function of

price with an additive stochastic component. The unit production cost is linear, inventory holding

and shortage costs are convex, and backlogging, partial-backlogging and lost sales assumptions are

considered along with the assumption of deteriorating inventory with a deterministic fraction. He

conjectures that a period-dependent base-stock list price (y, p) policy, similar to critical number

inventory policies, is optimal, and specifies the conditions for its optimality. Federgruen and Hech-

ing [12] examine a periodic review model where both the replenishment quantity and the price

are decided at the beginning of each period. The demand is stochastic and the excess demand is

backlogged. For a concave revenue function, convex inventory holding costs, and linear produc-

tion costs, it is shown that a base-stock list price policy (y∗t , p∗t ) is optimal for both average and

discounted profit criteria in finite or infinite horizon. In a given period, if the inventory level is

below the base stock level, it is increased to the base stock level and the list price is charged. If

the inventory level is above the base stock level, then nothing is ordered and a price discount is

offered. In addition, the optimal price is a non-increasing function of the initial inventory level.

Their results also extend to the case with production capacity limits. They conduct a numerical

study based on data collected from a women’s apparel retailer. In particular, they exhibit the

magnitude of the benefits of dynamic pricing under limited replenishment opportunities in a finite

horizon context.

A number of papers consider the periodic review model with fixed ordering costs (in addition to

variable ordering costs). Thomas [27] considers a finite horizon model with price-sensitive random

demand with backordering and proposes a variant of the well-known (s, S) policy that also includes

a price parameter. He conjectures the optimality of this relatively simple (s, S, p) policy. This

conjecture is proven in Chen and Simchi-Levi [9] for additive demand functions in a finite horizon

setting. Chen and Simchi-Levi also show the optimality of a slightly more complicated policy for

general demand functions. The optimality proof is extended to the more challenging infinite horizon

case in Chen and Simchi-Levi [10]. Feng and Chen [14] generalize the setting of Chen and Simchi-

Levi and provide an alternative optimality proof as well as a computational procedure for calculating

the optimal policy. There is also some recent work on the corresponding continuous review model.

Feng and Chen [15] present results on optimal policy structure for a continuous review system with

a Poisson demand process. Chen and Simchi-Levi [8] generalize the optimal policy structure to

a compound-renewal demand process. Chen et al. [7] also consider a continuous review model

where the (price-sensitive) demand is modeled by a Brownian motion. They analyze particular
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replenishment policies under different pricing structures. They show through a combination of

analytical results and numerical examples that the joint optimization of both decisions may result

in significant profit improvement over the traditional way of performing sequential optimization.

Moreover, they also find that dynamic pricing results in a limited profit improvement over static

pricing when both methods are optimally applied.

An important characteristic of a production/inventory system is the limited production capacity

that induces endogenous and random lead times. Only a few of the above papers explicitly model

capacity constraints or lead times. In the periodic review case, Federgruen and Heching [12] discuss

these extensions to their basic model but their main focus is on the uncapacitated zero-lead time

case. In a recent paper, Chan et al. [5] consider a multi-period horizon with limited capacity,

lost sales (in case of stockout) and the possibility of discretionary sales (stock reservation for the

future). Their computational results indicate that the benefit of dynamic pricing tends to increase

as the capacity becomes more constrained and as the demand seasonality increases.

Li [19] seems to be the only paper whose focus is a production/inventory system modeled

as a make-to-stock queue with joint pricing and replenishment considerations. He considers a

continuous review model with price-sensitive demand where the cumulative production and demand

are modeled by Poisson processes with controllable intensities. The demand is a continuous function

of the price. When there is demand in excess, sales are lost. The production and holding costs are

linear and the demand intensity is controlled through the price. When the prices are set dynamically

over time, Li shows that a base-stock policy is optimal. Moreover, it is shown that the optimal

price is a non-increasing function of the inventory level. Caldentey and Wein [4] consider a related

problem for a make-to-stock queue but in their model price is modeled as an exogenous stochastic

process, and the decision is admission rather than pricing.

One important motivation for using dynamic pricing may be the adjustment of prices to ran-

domly changing demand environments. The pricing papers mentioned above do not explicitly model

random fluctuations in the mean demand rate. A widely-used approach to capture the effect of

a fluctuating environment is defining the demand process to be driven by an exogenous Markov

chain. The resulting demand process is called a Markov-modulated demand process. A number of

papers investigate the effect of such demand processes on inventory systems without pricing con-

siderations. Feldman [13] and Kalpakam and Arivarignan [17] are examples that investigate (s, S)

inventory systems with Markov-modulated demand. Song and Zipkin [26] present an inventory

model that includes a fluctuating demand environment where the demand is a Markov-modulated

5



Poisson process. The other components of the model are: a fixed or stochastic order lead time,

inventory holding and backorder costs, and a positive discount rate. They show that without a fixed

ordering cost, a world state-dependent base-stock policy is optimal and with a fixed ordering cost

a world state-dependent (s, S) policy is optimal. We use the Markov-modulated, price-sensitive

Poisson demand to model the demand process in this study, and the demand process we use is

similar to the one used by Song and Zipkin [26] except that we include price sensitivity. A number

of papers (for example Beyer and Sethi [1], Sethi and Cheng [25], Özekici and Parlar [21]) consider

similar models and prove the optimality of state-dependent base-stock policies in the absence of

setup costs and the optimality of state-dependent (s, S)-type policies when there are fixed setup

costs. It is important to note again that none of these papers considers pricing decisions, capacity

limitations and endogenous lead times.

To our knowledge Li [19] is the only paper that investigates dynamic pricing for a produc-

tion/inventory system in a continuous review setting. This paper presents structural results on

the optimal policy but does not attempt to assess the performance of dynamic pricing. We extend

the model and the findings of Li in two major ways. First, we use a Markov-modulated demand

process (with controllable intensities) instead of a Poisson demand process and present new struc-

tural results on the optimal dynamic pricing policy in this setting. To this end, we also present

alternative simple proofs of some of the intermediate properties in Li using the value iteration tech-

nique of dynamic programming as well as generalizing the results therein to a Markov-Modulated

Poisson demand process. Second, in addition to dynamic pricing, we also investigate environment-

dependent and static policies for a Markov-Modulated Poisson demand model. This leads us to an

objective assessment of the potential benefits of each of these policies.

3 Model formulation

Consider a supplier who produces a single part at a single facility. The processing time is ex-

ponentially distributed with mean 1/µ and the completed items are placed in a finished goods

inventory. The unit variable production cost is c and the stock level is X(t) at time t, where

X(t) ∈ IN = {0, 1, ...}. We denote by h the induced inventory holding cost per unit time and h is

assumed to be a convex function of the stock level.

The exogenous environment state representing the demand fluctuations evolves according to

a continuous-time Markov Chain with state space E = {1, · · · , N} and transition rates qej from
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state e to state j 6= e. We assume that this Markov chain is recurrent to avoid technicalities.

The customers decide to whether to purchase an item or not depending on the price p and on

the state of the exogenous environment e. More precisely, the demands occur according to a

Markov Modulated Poisson process (MMPP) with rate λe(p). For all environment states, the set

of allowable prices P is identical and it might be either discrete (finite or countably infinite) or

continuous (uncountably infinite). When P is continuous, it is assumed to be a compact subset

of the set of non-negative real numbers IR+. In this setting, the underlying process is Markovian,

and we employ a Markov decision process framework to find optimal control policies for different

pricing strategies. In addition, the analysis can be restricted to stationary Markovian policies since

the optimal policy is known to belong to this class (Puterman [23]). Therefore the current state of

the system is exhaustively described, independent of time t, by the state variable (x, e) with x the

stock level and e the environment state and (x, e) belongs to the state space IN× E.

In our framework, we assume that the decision makers always observe the state of the envi-

ronment, which may not be possible in all settings. Whenever the environment changes are not

observable, the system will realize a change in the environment through observing the demand for

a while. The transition rates between environments are typically small when compared to the other

transition rates, namely the production and demand rates. Hence, the decision makers will deduce

and adjust to an environmental change in a relatively short time period. In any case, our results

can be considered as an upper bound on the actual gain of the system.

For a fixed environment e, we impose several mild assumptions on the demand function. First,

we assume that λe(p) is decreasing in p and we denote by pe(λ) its inverse. One can then alter-

natively view the rate λ as the decision variable, which is more convenient to work with from an

analytical perspective. Thus the set of allowable demand rates is Le = λe(P) in environment e. We

also assume that when the set of prices P is continuous, pe is a continuous function of λ. Second,

λe(p) is bounded by Λe, the potential demand rate in environment e, so that λe(p) ≤ Λe for all p

and for all e. This reasonable assumption is necessary to uniformize the Markov decision process.

Third, the revenue rate re(λ) = λpe(λ) is bounded.

In this section, we present three models for the three different pricing strategies, namely static,

environment-dependent and dynamic. We will represent our models as a combination of certain

dynamic programming (DP) operators, where each operator corresponds to a certain event. Then

we establish the structure of optimal policies by verifying that these operators satisfy certain

properties. This methodology falls into the so-called event-based DP framework introduced by
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Koole [18]. The models for static and environment-dependent pricing use the same set of operators,

whereas the model for dynamic pricing differs in the pricing operator. Hence, the results for the

first two models follow from the same type of arguments, while the dynamic-pricing model requires

additional consideration.

3.1 Static Pricing problem

In the SP problem, the decision maker has to choose a price p in P for the whole horizon, as well

as a replenishment decision in each state (x, e), in order to maximize the average profit over an

infinite horizon. The problem can be viewed in two steps.

In the first step, an optimal replenishment policy is identified for a given price p, which deter-

mines an arrival rate for each environment, λe = λe(p). Hence, a single price p may specify different

arrival rates in different environments, which are denoted by λ = (λ1, ..., λN ). Once p or λ are

fixed, this problem can be formulated as a Markov Decision Process (MDP). We define the state of

the system (x, e) where x is the inventory level and e the environment. We let vsp(x, e;λ) be the

relative value function of being in state (x, e) and gsp(λ) (or gsp(p)) denote the optimal average

profit. Since the transition rate out of any state is finite, we use uniformization [24] and normal-

ization (µ +
∑

Λe +
∑

e

∑
j 6=e qej = 1) to transform the continuous-time MDP into an equivalent

discrete-time MDP. Then the optimality equations are as follows:

vsp(x, e; λ) + gsp(λ) = −h(x) + µT 1vsp(x, e;λ) + T 2vsp(x, e; λ) + T λevsp(x, e; λ),

where the operators T 1, T 2 and T λ for any real-valued function f(x, e) are defined as:

T 1f(x, e) = max{f(x, e), f(x + 1, e)− c}, (1)

T 2f(x, e) =
∑

j 6=e

qejf(x, j) + (
∑

i 6=e

Λi +
∑

i6=e

∑

j 6=i

qij)f(x, e), (2)

T λf(x, e) =





re(λ) + λf(x− 1, e) + (Λe − λ)f(x, e) : if x > 0

Λef(x, e) : if x = 0.

The operators T 1, T 2 and T λ respectively correspond to the production decision, the environment

fluctuations as well as fictitious transitions, and the demand arrival. We also define the operator

T sp such that vsp + gsp(λ) = T spvsp.

The second step is then to find an optimal static price p maximizing gsp(p) (or equivalently

gsp(λ)). There might be several optimal prices and we denote by psp a generic optimal static price.
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We define the overall optimal average profit gsp of the SP problem as:

gsp = max
p

gsp(p) = gsp(psp).

3.2 Environment-dependent pricing problem

The setting of the EDP problem is very close to the SP problem except that the decision maker

has to choose a price pe in P for each environment e.

This problem can be viewed in two steps as well. In the first step, an optimal replenishment

policy is identified for a given price vector p = (p1, ..., pN ) where pe denotes the offered price in

environment e. We denote by λ = (λ1, ..., λN ) the equivalent demand vector, where λe = λe(pe).

Again, we can formulate the first step as an MDP. Let vedp(x, e; λ) be the relative value function

and gedp(λ) be the optimal average profit. Optimality equations are the same as in Section 3.1:

vedp(x, e;λ) + gedp(λ) = −h(x) + µT 1vedp(x, e; λ) + T 2vedp(x, e; λ) + T λevedp(x, e; λ),

where the operator T edp is defined as: vedp + gedp(λ) = T edpvedp.

The second step is to find an optimal price vector pedp = (pedp
1 , ..., pedp

N ), in the set of price

vectors PN , maximizing gedp(p). There might be several optimal price vectors, and we denote by

pedp a generic optimal price vector. We finally define the overall optimal average profit gedp by:

gedp = max
p

gedp(p) = gedp(pedp).

The MDP models for static and environment-dependent pricing use the same set of operators.

Hence, when we prove certain properties of operators T 1, T 2, and T λ, optimal policies of both

static and environment-dependent models will have the same structure. The difference between

the two models stems from the second step, where optimal prices are determined. Static pricing

searches for a single price, whereas environment-dependent pricing needs to specify N prices, one

for each environment.

3.3 Dynamic pricing problem

The DP problem is an extension of the model in Li [19] who analyzes a similar system operating

in a non-fluctuating demand environment. Here, in addition to the demand environment, the price

also depends on the inventory level and the decision maker has to set a price for each state (x, e).

This problem is different from the SP and EDP problem in the following way: Since both optimal
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replenishment and pricing policies depend on the current inventory level as well as the environment,

both policies are determined as a result of an MDP.

We let vdp(x, e) be the relative value function of being in state (x, e) and gdp denote the optimal

average profit. The optimality equations are the same as in Section 3.1 except that the operator

T λ is replaced by operator the T :

vdp(x, e) + gdp = −h(x) + µT 1vdp(x, e) + T 2vdp(x, e) + Tvdp(x, e),

where the operator T corresponds to the demand rate decision (equivalently pricing decision) and

is defined as:

Tf(x, e) = max
λ∈Le

{
T λf(x, e)

}
.

Then, similarly to SP and EDP strategies, we define the operator T dp such that vdp +gdp = T dpvdp.

As we mentioned earlier, the pricing operator for the dynamic pricing problem is different than

the one in static and environment-dependent pricing problems. Operator T depends on operator

T λ, however it chooses the arrival rate which maximizes the value obtained from the operator T λ

in each state (x, e). Hence, the results for this problem will call for further investigation of the

operator T .

In each state (x, e), there might be several optimal arrival demand rates and we denote by

L(x, e) the set of optimal arrival rates:

L(x, e) = arg max
λ

T λvdp(x, e).

The equivalent set of optimal prices P(x, e), in state (x, e), is then the image of L(x, e) by the

function pe(λ). Note that L(x, e) and P(x, e) contain at least one element. This is obvious when

P is discrete, and when P is compact, it follows from the fact T λf(x, e) is a continuous function,

with respect to λ, defined on a compact set. We denote by pdp(x, e) a generic optimal price in state

(x, e).

4 Characterizing the structure of optimal policies

In this section, we characterize the structure of optimal policies for the three pricing policies

outlined in Section 3. We first show that for the three pricing strategies, there exists an optimal

replenishment policy which can be defined as an environment-dependent base-stock policy. Then

we will specialize on the DP strategy for which optimal prices are proven to be monotone in the
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inventory level. Finally, we consider the EDP and SP strategies to show that the environment-

dependent base-stock levels are monotone in the environment, under certain conditions on the

fluctuating environment process.

In this paper, we assume that the holding costs h(x) as well as the production costs c do not

change with the environment. However, it is easy to show that our results will still be valid when the

assumptions of the model are generalized to include an environment-dependent inventory holding

cost function (he(x)) and unit production cost (ce) as long as he(x) is convex and nondecreasing in

x for all e.

4.1 Optimal replenishment policy

We will use the MDP formulations to prove that there exists an optimal environment-dependent

base-stock policy under each of the pricing strategies. We first present the definition of an environment-

dependent base-stock policy:

Definition 1 A replenishment policy which operates in a fluctuating demand environment is an

environment-dependent base-stock policy if, for each environment state e, there exists a threshold,

se ≥ 0, such that the system produces if and only if the current inventory level is below this threshold.

Now we will argue that pricing strategy φ yields to an optimal environment-dependent base-stock

policy, if the value function vφ is concave in the inventory level x for each environment e. Define

the operator ∆f as ∆f(x, e) = f(x + 1, e) − f(x, e), so that ∆vφ(x, e) represents the benefit of

having an extra unit of item in the inventory in environment e. Moreover, from equation 1, it is

optimal not to produce an item in state x if ∆vφ(x, e) < c. The concavity of a function f(x, e),

on the other hand, is equivalent to have ∆f(x + 1, e) ≤ ∆f(x, e) for all (x, e). Hence, concavity

of vφ implies that the benefit of an extra item in the inventory is non-increasing in x for each

environment e. Then, whenever this benefit drops below a certain value, more specifically below

the production cost c, it will remain below c, which guarantees the existence of a base stock level

in each environment e. Our next result shows that the operators of the pricing strategies preserve

concavity.

Lemma 1 For all pricing strategies φ = sp, edp, dp, if f(x, e) is concave with respect to x, then

T φf is also concave with respect to x.

A proof for Lemma 1 is given in Appendix A. Lemma 1 implies by the value iteration principle

that the optimal value function vφ is concave for all φ = sp, edp, dp. As discussed above, the

11



concavity of the optimal value function and equation (1) imply the existence of an optimal base-

stock level in each environment e denoted by sφ
e . Hence we have our main result on optimal

replenishment policies.

Theorem 1 For all pricing strategies φ = sp, edp, dp, the optimal replenishment policy is an

environment-dependent base stock policy.

4.2 Monotonicity of dynamic prices

In this subsection, we consider only the DP strategy. Consider the situation when the inventory

level increases: Then, the potential holding costs also increase. Hence, the system would like to sell

the items faster, which can be achieved by decreasing the prices charged. This intuition holds for

optimal pricing policies with a DP strategy, which is the main result of this subsection (its proof

can be found in Appendix B):

Theorem 2 Let x < y, p(x, e) ∈ P(x, e) and p(y, e) ∈ P(y, e). Then p(x, e) ≥ p(y, e).

Let us now assume that the revenue rate function, re, is strictly concave. Under this reasonable

assumption, we can deduce some additional properties when the set of prices is continuous. Let

p∗e be the unique price that maximizes re. p∗e represents the optimal price of a problem without

inventory holding costs. Alternatively, as in Li [19], p∗e can be interpreted as the optimal price in

the corresponding deterministic problem (where there is no need to carry any inventory).

Corollary 1 If the set of prices P is compact and the revenue rate re is strictly concave, we have

the following properties. For all (x, e) ∈ IN×E:

C.1 There exists a unique optimal price p(x, e).

C.2 If x ≤ sdp
e , p(x, e) ≥ p∗e. Otherwise p(x, e) ≤ p∗e.

A proof for Corollary 1 is given in Appendix C. Corollary 1 states that the optimal dynamic

price is higher than p∗e the optimal price in the corresponding deterministic system unless the

current inventory level is above the current base stock level. When there is a single environment

(i.e. stationary Poisson demand), the optimal dynamic price is always greater than or equal to p∗e

which coincides with the result of Li [19]. Another interesting point to note is that, similarly to

Federgruen and Heching [12], a price discount (with respect to the optimal deterministic price) is

offered whenever the inventory level is above the base stock level. Moreover, as a consequence of
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Corollary 1, the price set at the base-stock level sdp
e , in environment e, should be approximately

equal to p∗e, i.e. p(sdp
e , e) ≈ p∗e.

4.3 Monotonicity of optimal base-stock levels

In this subsection, we show the monotonicity of optimal base-stock levels under certain conditions

on the environment process for only SP and EDP strategies. We label the environments such that

environment e represents a worse economical environment than environment e + 1 does, so that

the environment labels increase as the economy in the corresponding environment improves. Then,

we can view environment 1 as the worst possible economical environment, and environment N as

the best. With this interpretation, it is natural to assume that both the demand and revenue

rates have an increasing order with respect to the environment labels; so that λ1 ≤ · · · ≤ λN and

λ1p1 ≤ · · · ≤ λNpN . Here we note that under the SP strategy the order of demand rates implies

the order of revenue rates, and vice versa.

Now we consider the meaning of transitions between the environments in this setting: For

example the transition from an environment e with e < N − 1 to environment N is more drastic

when compared to the transition from environment N − 1 to environment N . Intuitively, more

drastic changes in the state of the environment are rarer since they can occur as a result of more

extraordinary events. The following condition is nothing but the mathematical statement of this

intuition:

Condition 1

a. For all e, and for all j ≤ e− 1: qej ≥ qe+1,j.

b. For all e, and for all j ≥ e + 2: qe+1,j ≥ qej.

In this setting, i.e., when both the demand and the revenue rates are in increasing order of envi-

ronment labels, Condition 1 guarantees the following conclusion on the optimal value functions:

Lemma 2 Assume that Condition 1 holds. For pricing strategies φ = sp, edp, if ∆f(x, e + 1) ≥
∆f(x, e) for all x and for all e = 1, ..., N − 1, then T φ∆f(x, e + 1) ≥ T φ∆f(x, e).

A proof for Lemma 2 is given in Appendix D. Lemma 2 states that if the expected benefit of

an additional product on inventory is more beneficial in state e + 1 than in state e, then operators

T edp and T sp preserve this relation. Hence, Lemma 2, together with Theorem 1, establishes the
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monotonicity of optimal base-stock levels for SP and EDP strategies through the value iteration

principle.

Theorem 3 Assume that Condition 1 holds. Then, for pricing strategies φ = sp, edp, the optimal

base stock levels in each environment e, sφ
e , have the same ordering with the environment labels,

i.e., for all e = 1, ..., N − 1, sφ
e ≤ sφ

e+1.

Remark 1 Condition 1 is directly satisfied when the environment is represented by a birth-and-

death process, since qej = 0 for j 6= e − 1 and j 6= e + 1. Therefore, the base stock levels in

each environment e for SP and EDP strategies, i.e., sedp
e and ssp

e , have the same ordering with

the environment labels without any further conditions on the transition rates. In particular, a

system with only two environments is a special case of a birth-and-death process, so Condition 1 is

automatically satisfied for systems operating in an environment with two states. Then, if λ1 ≤ λ2

and λ1p1 ≤ λ2p2, sφ
1 ≤ sφ

2 for φ = sp, edp.

5 Numerical results

In this section, we compare and contrast the properties of five strategies that are summarized in

Table 1. The SP, EDP and DP strategies have already been defined in Section 3. The Static (S)

strategy and the Static Base-stock (SB) strategy both follow a base-stock replenishment policy

with a single base-stock level, independent of the environment state. In the (S) strategy, there is a

single price for all the states of the system whereas, in the (SB) strategy, there is a specific price

for each environment state.

We first present the details of the set-up of the numerical experiments. Then we briefly inves-

tigate the single-environment system, after which we concentrate on the two-environment case.

5.1 Set-up of the numerical experiments

We consider the linear demand function which is frequently used in the pricing literature. Let p be

the price offered. Then we define the linear demand function, and its associated revenue rate by:

λlin(p) = Λe(1− ap) , p ∈ [0, 1/a], (3)

rlin(p) = Λep(1− ap), (4)

where a is a positive real number. We note that rlin is maximized at plin = (2a)−1, regardless of

the potential demand rate Λe. In our numerical study, we also considered the exponential demand
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function: λexp(p) = Λee
−ap. However, here we only report the results for the linear demand

function, since our main conclusions are similar for both functions. Finally, we assume a standard

linear holding cost function: h(x) = hx.

Since we use the long-run average criterion, we restrict our attention to the recurrent states of

the Markov chain generated by an optimal policy. Let Rφ be the set of recurrent states when the

optimal policy is employed under pricing strategy φ. The base stock levels in each environment can

be different from each other, so define s̄φ = maxe∈E{sφ
e} as the maximum base stock level. Then,

Rφ = {(x, e) : 0 ≤ x ≤ s̄φ, 1 ≤ e ≤ N}.

Now, we can also define the minimum and maximum dynamic prices in environment e, by pdp
e

=

pdp(s̄dp, e) and p̄dp
e = pdp(1, e), respectively, by Theorem 2.

For a given problem, let gφ be the optimal average profit using strategy φ (φ = s, sb, sp, edp, dp).

Notice that gs ≤ gsb ≤ gedp ≤ gdp and gs ≤ gsp ≤ gedp ≤ gdp. The computational procedure to

evaluate gs, gsb, gsp, gedp and gdp and their associated policies is summarized in Appendix E. We

then define the relative Profit Gain for using policy φ instead of policy φ′, PGφ,φ′ , by

PGφ,φ′ =
gφ − gφ′

gφ′ .

5.2 Single-environment system

In this section, we assume the system operates in a single environment with potential demand rate

Λ. The structure of the optimal policy was investigated by Li [19] but no numerical experiment

was carried out to investigate the benefit of a DP strategy versus a S strategy. Note that in this

setting, S, SB, SP and EDP strategies are equivalent and therefore we will only consider the profit

gain PG = PGdp,s in this subsection.

In a single-environment setting, any problem is described by the five parameters (Λ, a, µ, h, c).

Now we show how to reduce the problem to two parameters, the production rate µ and the holding

cost h. The optimal policy depends neither on the time unit nor on the monetary unit. Therefore

we can set a = 1 and Λ = 1 in all the numerical experiments, without losing any generality. To

illustrate this point, we observe that the problem (Λ, a, µ, h, c) and the problem (1, 1, µ/Λ, ha/Λ, ac)

are equivalent. The profit gains and the production decisions are identical and the optimal prices of

the first problem can be obtained as a times the optimal prices of the second one. Moreover, we take

the unit production cost c = 0. This does not affect the generality of the results since the following
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two problems are equivalent: (I) a problem with a unit production cost of c (c > 0) and demand

function λ(p), (II) a problem with zero production cost and demand function λ̃(p) = λ(p + c).

In the following, we address the effects of holding costs, production rate and number of possible

prices on the benefits of DP.

5.2.1 Comparison of pricing strategies

Figure 1 shows the relative profit gain (PG) as a function of the service rate, µ, for different holding

costs, h. In all the curves, the improvement due to DP manifests a non-monotonic behavior in µ.

In particular, the profit gain is low when the production capacity is extremely low or extremely

high with respect to the potential demand rate. The profit gain peaks for intermediate levels of µ.

When the production capacity is high, the replenishment policy is sufficient to manage the system

and the impact of DP in this case is limited. When the production capacity is very low, the average

inventory is also very low and the manager sells most of the time at the maximum price and the

DP strategy and the S strategy are comparable.

Since the profit gain depends only on h and µ, we were able to evaluate the maximum profit

gain that can be achieved. We obtained that the maximum profit gain, maxh,µ PGdp,s, is 3.81%

(realized when µ = 0.255 and h = 0.0123). Apart from this extreme case, the main observation

is that, in a single-environment system, when the static price is chosen effectively the potential

impact of DP is limited.

5.2.2 Impact of the price menu

In this section, we address the following question: if the decision maker prefers to use only a few

prices in P for the DP strategy, how much can s/he expect to gain relative to the S policy? Table 2

shows the improvements due to DP when 2 prices, 3 prices or an infinite number of prices can be

chosen, for different service rates, µ, with h = 0.01. The procedure to compute the optimal average

cost with 2 and 3 prices is detailed in Appendix E. The maximum improvement is, obviously,

obtained by continuous pricing, however the percent improvements with 2 and 3 possible price

values are quite high when compared to the maximum improvement. In fact, in the 20 experiments

with varying service rates, µ ∈ {0.05, 0.10, ..., 1.00}, the average benefit of obtained by a 3-price

menu is 92.5% of the average benefit of continuous pricing, whereas that of a 2-price menu is 78.5%.

Hence, we can reach the conclusion that if the values for possible prices are chosen effectively, 3 or

even 2, different price values brings most of the benefit that can be expected from DP. This is a
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useful observation for the practice of dynamic pricing since companies may prefer to have only a

few different prices to reduce the potential negative customer reaction.

5.3 Two-environment system

In this section, we assume the system operates in two environments Low (L) and High (H) having

potential demand rates ΛL = Λ − ε and ΛH = Λ + ε with ε ≥ 0. As ε increases, the fluctuations

become more significant and as Λ increases, the average potential demand increases. The case

ε = 0 is equivalent to a single-environment system with potential demand ΛH = ΛL. Moreover, we

assume symmetric environment transition rates so that qHL = qLH = q. The focus of this section is

on the influence of the fluctuations represented by ε on the performance of the five strategies. More

precisely, we compare the optimal average profits, the optimal base-stock levels and the optimal

prices.

The problem can be exhaustively described by the seven parameters (Λ, a, µ, h, c, ε, q). As for

the single-environment case, we set without losing generality, a = 1, Λ = 1 and c = 0. Now since q

corresponds to the rate of changes in economic environments, it has to be much smaller than the

average demand rate 1 and we set q = 0.01. We also have µ = 0.11 below, except for Figure 2,

mainly because the relative profit gains are higher for this value as Figure 2 will show. Finally, we

fix h = 0.01, a reasonable value when the prices change in the interval P = (0, 1).

5.3.1 Comparison of average profits

Table 3 presents the profit gains for different values of ε. Recall that as ε increases, the fluctuations

increase. We observe that optimal average profit for each pricing policy decreases with ε, which

can be seen as the degrading effect of the fluctuating environment and the additional demand

uncertainty it brings. The profit gain of SB, SP, EDP and DP strategies, with respect to S strategy,

increases with ε, which confirms the capability of these policies to adjust the highly uncertain

environments. We see that the ability to change the prices according to the environment brings

more benefit than that to adjust the base stock levels: a maximum of 12% for PGsb,s versus a

maximum of 2.4% for PGsp,s. Moreover, if the base-stock levels are controlled in addition to the

prices, the incremental benefit is very marginal, since the maximum of PGedp,s is only 13.6% where

it is 12% for PGsb,s.

Now we compare the performance of the main three strategies we considered: The benefit of

the DP strategy with respect to the SP strategy can be significant in a two-environment system
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(sometimes > 12%), contrary to a single-environment system (always < 3.81%). We also observed

that maxµ{PGdp,edp} is 3.38%, 2.89% and 3.24% for ε = 0.3 (with µ = 0.24), ε = 0.6 (with

µ = 0.44), and ε = 0.8 (with µ = 0.5), respectively. From these observations, we can also conclude

that the DP strategy does not improve over EDP strategy significantly. It appears that adjusting

prices only when the environment changes is most of the time sufficient to obtain most of the benefit

over the SP strategy. Moreover, in this numerical example, adjusting base-stock levels when the

environment changes is not as beneficial as adjusting prices.

Now we examine the effect of service rate on the relative profit gains. Since the differences

between strategies are higher for higher values of ε, the relative profit gains are plotted as a function

of service rate µ for ε = 0.8 in Figure 2. All profit gains are non-monotonic in µ. We observe that the

SP strategy performs the worst when the processing capacity is relatively tight. As the processing

rate increases, the excess processing capacity seems to compensate for the fluctuations so that

the profit gains are relatively low (under 4%) when µ > 0.6. Moreover, PGdp,edp is generally

very low with a maximum of 3.23% pointing out again to the effectiveness of EDP strategies.

This observation supports our earlier conclusion on the comparable performance of EDP and DP

strategies.

In other numerical results (not reported here), we have also explored the effects of the transition

rate q between the economic environments. As the frequency of environment state transitions

increase, the benefit of DP tends to decrease in general. One plausible explanation is that the

pricing strategy cannot be applied long enough to properly gain all the possible benefit when the

environment fluctuates frequently compared to the demand arrival rate. At the other extreme, when

the environment fluctuations become very slow, there are two weakly coupled systems corresponding

to each environment state and DP can be adjusted to each of these systems to reap the full benefits.

5.3.2 Observations on optimal base stock levels and prices

In section 4.3, under certain conditions on the MMPP we show that optimal base-stock levels are

ordered in the demand rates of the environments for strategies SP and EDP. This is confirmed in

Table 4 which presents the optimal base-stock levels of the five pricing strategies for different values

of ε. We see that not only ssp
L ≤ ssp

H and sedp
L ≤ sedp

H but also sdp
L ≤ sdp

H . This is quite intuitive,

since the base stock levels should be tuned to the demand rates. We also observe that sφ
e ≤ sdp

e ,

for φ = s, sb, sp, edp in all experiments, which is a natural consequence of the flexibility in the

DP strategy: The system can store more inventory if it can sell easily when needed (by adjusting
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prices). Finally, as the fluctuations in demand (ε) increase, ΛL decreases and ΛH increases, which

causes sφ
L to decrease and sφ

H to increase for all pricing strategies, φ = sp, edp, dp, so that the

gap between the base-stock levels in two environments increases. Finally, we observe that the SB

strategy, while bringing most of the profit gain of the DP strategy, has lower base-stock levels than

the average base-stock levels of the SP, EDP and DP strategies.

5.3.3 Observations on optimal prices

Table 5 presents optimal prices for all strategies for different ε. For prices of S and SB strategies, we

observe that psb
L ≤ ps ≤ psb

H . For prices of SP and EDP strategies, we observe that pedp
L ≤ psp ≤ pedp

H .

For prices of EDP and DP strategies, we have pdp
e
≤ pedp

e ≤ p̄dp
e for both environments e = L,H.

Let ∆pφ be the gap between the highest and lowest price of strategy φ, in the recurrent region.

Then ∆ps = ∆psp = 0, ∆psb = psb
H − psb

L , ∆pedp = pedp
H − pedp

L and ∆pdp = p̄dp
H − pdp

L
. As ε increases,

psb
L , pedp

L and pdp
L

decrease while psb
H , pedp

H and p̄dp
H increase to compensate the greater fluctuations of

the demand. As a result, the price gap ∆pφ is increasing with ε for the DP, SB and EDP strategies.

Moreover, the gap is much greater for a DP strategy than for an SB or an EDP strategy. For

instance, when ε = 0.8, we have ∆pdp = 0.8 while ∆psb = 0.29 and ∆pedp = 0.27.

5.3.4 Overall comparison of strategies

We observe in both Table 3 and Figure 2 that EDP strategy achieves most of the benefits of a

DP strategy. Moreover, EDP strategy has the advantage of lower base stock levels (see Table 4)

and of smaller price differences (see Table 5). It is then safe to conclude that the EDP strategy

is an excellent compromise, since it brings most of the benefit of the DP strategy, while causing

less reaction on the customer side with less variability in prices, and requiring a reasonable storage

space with less variability in the stock levels.

6 Conclusion

We show that for all three pricing strategies optimal replenishment policies are characterized as

environment-dependent base-stock policies. For DP, this generalizes the corresponding results in Li

[19] to a fluctuating environment setting. For EDP and SP strategies, we have shown the optimality

of environment-dependent base-stock policies. With EDP and SP, we assume that the arrival rate

in each environment is fixed. Hence, the analysis of the MDP in their first step corresponds to the
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analysis of optimal replenishment policies for systems with lost sales which operate in a fluctuating

environment. Consequently, the monotonicity of the base stock levels with respect to environments

under certain conditions is similar to the monotonicity properties of environment-dependent base-

stock policies, see e.g., Song and Zipkin [26] in uncapacitated systems. To our knowledge, these

are the first corresponding monotonicity results for a make-to-stock queue.

For the DP strategy, prices are shown to be decreasing in the inventory level for each environ-

ment e, which is again an extension of Li’s results to systems operating in a fluctuating environment.

This type of monotonicity agrees with the earlier results in different settings. For instance Fed-

ergruen and Heching [12] present corresponding results for a discrete-time finite-horizon problem

with non-stationary demand.

Within the context of revenue management, dynamic pricing has received considerable attention

(see Caldentey and Wein for example, [4]) in situations where an inventory has to be sold within a

finite horizon without any replenishment opportunities. As articulated by Gallego and van Ryzin

[16], there seem be two main reasons for employing dynamic pricing. The first argues that it

is a tool for handling statistical fluctuations in a random -but stationary- demand process. The

second views it as an approach for responding to a shifting and possibly unpredictable demand

function. Their analysis reveals that in case of a stationary demand process, a static price policy

is nearly optimal and that the benefits from dynamic pricing are relatively small. At the same

time, dynamic price adjustments, using a few prices, turn out to be well-justified in case of a time-

varying demand process. The results in this paper confirm these findings in a different setting. In

particular, it is found that the profit improvement over static pricing by dynamic pricing is modest

with a maximum that is less than 4% when the potential demand is a stationary Poisson process.

While such a benefit may be considered high in certain settings, it should be considered a rather

optimistic assessment since our model does not take into account certain intangible negative effects

such as the burden of frequent price changes, negative customer reactions etc.

On the other hand, similar to Gallego and van Ryzin [16], we observe that when the potential

demand rate fluctuates randomly, there are significant improvements that could be achieved with

respect to static pricing. The real value of adjusting the prices in our context appears to be

smoothing the effects of demand rate fluctuations rather than smoothing the statistical fluctuations

when the demand rate is constant. However, once again, full dynamic pricing may not be the most

appropriate means of achieving this end. It turns out that environment dependent pricing policies

which only adjust prices when the demand environment fluctuates are almost as effective as dynamic
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pricing and mitigate its certain undesirable effects such as frequent price adjustments and negative

consumer reaction. Extensions of this research that explicitly model consumer reactions to different

pricing situations is an interesting path for future research.

Acknowledgments: The authors would like to thank an anonymous referee whose comments led
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A Proof of Lemma 1

Assume that f is concave or equivalently that ∆f is decreasing in x. We can consider the terms

separately: By assumption −h is concave. Concavity is preserved under the maximization operator

(Porteus [22]), thus T 1f is also concave. It is obvious that T 2 and T λ also preserve concavity.

Hence, T sp and T edpf are concave as linear combinations of concave functions.

To prove that T dp also preserves concavity, we must show that operator T also preserves con-

cavity. Koole [18] mentioned the fact that Tf is also concave, let us provide a detailed proof.

We denote by Lf (x, e) the set of optimal arrival rates associated to value function f :

Lf (x, e) = arg maxλ{T λf(x, e)}. (5)

Let λ(x− 1, e) ∈ Lf (x− 1, e), λ(x, e) ∈ Lf (x, e) and λ(x + 1, e) ∈ Lf (x + 1, e). Assume that x > 1,

then:

∆Tf(x + 1, e)−∆Tf(x, e)

= Tf(x + 1, e)− Tf(x, e)− Tf(x, e) + Tf(x− 1, e)

≤ T λ(x+1,e)f(x + 1, e)− T λ(x+1,e)f(x, e)− T λ(x−1,e)f(x, e) + T λ(x−1,e)f(x− 1, e) (6)

= λ(x + 1, e)∆f(x− 1, e) + (Λe − λ(x + 1, e))∆f(x, e)

− λ(x− 1, e)∆f(x− 2)− (Λe − λ(x− 1, e))∆f(x− 1, e)

≤ λ(x + 1, e)∆f(x− 1, e) + (Λe − λ(x + 1, e))∆f(x− 1, e)

− λ(x− 1, e)∆f(x− 1, e)− (Λe − λ(x− 1, e))∆f(x− 1, e) (7)

= 0

Inequality (6) follows from definition of T and inequality (7) is a consequence of the concavity of

f .

Assume now that x = 1.

∆Tf(1, e)−∆Tf(0, e) = Tf(2, e)− Tf(1, e)− Tf(1, e) + Tf(0, e)

≤ T λ(2,e)f(2, e)− T λ(2,e)f(1, e)− TΛef(1, e) + Λef(0, e)

= (Λe − λ(2, e))(∆f(1, e)−∆f(0, e))− re(Λe)

≤ 0

Thus Tf is concave. And we conclude by linear combination that T dpf is concave.
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B Proof of Theorem 2

Let x < y, λ(x, e) ∈ Lf (x, e) (defined by (5)) and λ(y, e) ∈ Lf (y, e). We prove Theorem 2 by

contradiction. Assume that λ(x, e) > λ(y, e). Then

Tvdp(y, e) = T λ(y,e)vdp(y, e)

= T λ(y,e)vdp(x, e) + λ(y, e)[∆vdp(x− 1, e)−∆vdp(y − 1, e)] + Λe(vdp(y, e)− vdp(x, e))

< T λ(x,e)vdp(x, e) + λ(x, e)[∆vdp(x− 1, e)−∆vdp(y − 1, e)] + Λe(vdp(y, e)− vdp(x, e))

= T λ(x,e)vdp(y, e)

The inequality Tvdp(y, e) < T λ(x,e)vdp(y, e) is contradictory with definition of T . Therefore the

assumption λ(x, e) > λ(y, e) is false and we conclude that λ(x, e) ≤ λ(y, e), thus p(x, e) ≥ p(y, e).

C Proof of Corollary 1

Assume that the revenue rate re(λ) is strictly concave. Then T λvdp(x, e) is also strictly concave

with respect to λ, which ensures the uniqueness of the maximizer of T λvdp(x, e) and implies the

first part of Corollary 1. The unique maximizer, λ(x, e), satisfies

r′e(λ(x, e)) = ∆vdp(x− 1, e) (8)

and r′e is decreasing by strict concavity of re. On the other hand, by definition of the optimal

policy, we have 



∆vdp(x− 1, e) ≥ 0 if x ≤ sdp
e

∆vdp(x− 1, e) ≤ 0 if x > sdp
e

(9)

We deduce, from equations (8)-(9) and monotonicity of r′e, that




λ(x, e) ≤ λ(p∗e) if x ≤ sdp
e

λ(x, e) ≥ λ(p∗e) if x > sdp
e

(10)

Finally, as pe(λ) is decreasing in λ, we obtain the second part of Corollary 1.

D Proof of Lemma 2

Assume that environments are labeled such that λe ≤ λe+1 and λepe ≤ λe+1pe+1 for all e =

1, ..., N−1, Condition 1 holds, and f satisfies ∆f(x, e+1) ≥ ∆f(x, e) for all x and for 1 ≤ e ≤ N−1.
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Now for φ = sp, edp we will show:

∆T φf(x, e + 1)−∆T φf(x, e) ≥ 0.

We will consider each possible transition separately. First, note that the terms for inventory

costs, h, cancel out so that they satisfy the inequality. For x > 0, the terms for the revenue λepe

also cancel out. However, for x = 0 the revenue terms in the above inequality become:

λe+1pe+1 − 0− λepe − 0 ≥ 0,

since a revenue is obtained when inventory level is 1, while no revenue is gained when x = 0.

This inequality is true by our assumption on the increasing order of revenue rates in environment

labels. On the other hand, the inequality remains the same for all common terms in the fictitious

transitions of environments e and e + 1 (due to qij (with i 6= e and i 6= e + 1), Λi (with i 6= e

and i 6= e + 1), and Λi − λi (with i = e and i = e + 1)) by the assumption on f . Hence, we need

to consider only the transitions due to a demand arrival, a replenishment decision, and an actual

environment transition. For these transitions we will present the proof only for x > 0, since the

case x = 0 is similar.

Consider the actual and fictitious demand rates in environments e and e + 1, so that in envi-

ronment e, λe is the actual demand rate, and λe+1 is the fictitious, and vice versa in e + 1:

λe+1∆f(x− 1, e + 1)− λe∆f(x− 1, e) + λe∆f(x, e + 1)− λe+1∆f(x, e)

= (λe+1 − λe)∆f(x− 1, e + 1) + λe(∆f(x− 1, e + 1)−∆f(x− 1, e))

+λe∆f(x, e + 1)− λe+1∆f(x, e)

≥ (λe+1 − λe)∆f(x, e + 1) + λe(∆f(x− 1, e + 1)−∆f(x− 1, e))

+λe∆f(x, e + 1)− λe+1∆f(x, e)

= λe+1(∆f(x, e + 1)−∆f(x, e)) + λe(∆f(x− 1, e + 1)−∆f(x− 1, e)) ≥ 0,

where the first inequality holds since ∆f(x− 1, e+1) ≥ ∆f(x, e+1) for all e by Lemma 1, and the

second inequality holds by our assumption on f , while the rest is some algebra.

Now consider the transitions due to the replenishment decision, so we need to show:

∆T 0f(x, e + 1)−∆T 0f(x, e) = T 0f(x + 1, e + 1)− T 0f(x, e + 1)− T 0f(x + 1, e) + T 0f(x, e) ≥ 0.

Let a(x, e) = 1 if it is optimal to replenish in state (x, e), and a(x, e) = 0 otherwise. Then we can

write T 0f as follows:

T 0f(x, e) = f(x + a(x, e), e)− a(x, e)c.
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We set a = a(x, e + 1) and a′ = a(x + 1, e). Then:

T 0f(x + 1, e + 1)− T 0f(x, e + 1)− T 0f(x + 1, e) + T 0f(x, e)

≥ f(x + 1 + a′, e + 1)− a′c− f(x + a, e + 1) + ac− f(x + 1 + a′, e) + a′c + f(x + a, e)− ac

= f(x + 1 + a′, e + 1)− f(x + a, e + 1)− f(x + 1 + a′, e) + f(x + a, e),

where the inequality holds since T 0 is a maximizing operator so that action a and a′ always perform

worse than the optimal actions in states, (x, e) and (x + 1, e + 1), respectively. If a = a′, the above

expression is positive by the assumption on f . Consider the two cases:

Case 1: a = 1 and a′ = 0

f(x + 1, e + 1)− f(x + 1, e + 1)− f(x + 1, e) + f(x + 1, e) = 0.

Case 2: a = 0 and a′ = 1

f(x + 2, e + 1)− f(x, e + 1)− f(x + 2, e) + f(x, e)

= ∆f(x + 1, e + 1) + ∆f(x, e + 1)−∆f(x + 1, e)−∆f(x, e) ≥ 0,

by the assumption on f . Note that we add and subtract the terms f(x + 1, e + 1) and f(x + 1, e)

in the equality.

Thus, the inequality holds for the replenishment decisions.

We finally consider the transitions due to environment, so we need to show:
∑

j 6=e+1

qe+1,j∆f(x, j) +
∑

j 6=e

qe,j∆f(x, e + 1)−
∑

j 6=e

qe,j∆f(x, j)−
∑

j 6=e

qe+1,j∆f(x, e) ≥ 0

The terms corresponding to qe,e+1 and qe+1,e cancel out, and we analyze the rest in two groups.

The first inequality we will show is:
e−1∑

j=1

qe,j(∆f(x, e + 1)−∆f(x, j)) +
e−1∑

j=1

qe+1,j(∆f(x, j)−∆f(x, e)) ≥ 0

Now by Condition 1, we have qe,j ≥ qe+1,j for all j = 1, 2, . . ., e− 1. Moreover, by our assumption

on f , ∆f(x, e + 1) ≥ ∆f(x, j) for all j = 1, 2, . . ., e− 1. Then, we have:
e−1∑

j=1

qe,j(∆f(x, e + 1)−∆f(x, j)) +
e−1∑

j=1

qe+1,j(∆f(x, j)−∆f(x, e))

≥ qe+1,j




e−1∑

j=1

(∆f(x, e + 1)−∆f(x, j)) +
e−1∑

j=1

(∆f(x, j)−∆f(x, e))




= qe+1,j




e−1∑

j=1

(∆f(x, e + 1)−∆f(x, e))


 ≥ 0.
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Now consider the second group:

N∑

j=e+2

qe+1,j(∆f(x, j)−∆f(x, e)) +
N∑

j=e+2

qe,j(∆f(x, e + 1)−∆f(x, j))

≥ qe,j




N∑

j=e+2

(∆f(x, j)−∆f(x, e)) +
N∑

j=e+2

(∆f(x, e + 1)−∆f(x, j))




= qe,j




N∑

j=e+2

(∆f(x, e + 1)−∆f(x, e))


 ≥ 0,

where the first inequality is true since qe+1,j ≥ qe,j and ∆f(x, j) − ∆f(x, e) ≥ 0 for all j =

e + 2, e + 3, . . ., N by Condition 1 and by our assumption on f , and the second inequality holds by

our assumption on f .

Thus, we have shown that the inequality given in Lemma 2 holds for all (x, e) with x ≥ 1

whenever Condition 1 holds.

E Computational procedure

To evaluate gdp and its associated policy, we solve the dynamic programs corresponding to each

problem instance using the value iteration method. The value iteration algorithm is terminated only

when a five-digit accuracy is achieved. The state space is truncated at [0,m] where m is a positive

integer. The size of the state space is increased until the average cost is no longer sensitive to the

truncation level. In the dynamic program, we compute the unique price p(x, e) that maximizes the

function T λvdp. Then, we obtain in the case of a linear demand function:

p(x, e) =





0 if a∆vdp(x− 1, e) < −1

1
2a(1 + a∆vdp(x− 1, e)) if −1 ≤ a∆vdp(x− 1, e) ≤ 1

1
a if a > 1.

(11)

The procedure to evaluate gedp is as follows: We discretize the interval [0, 1] with increments

of 0.01. For each possible set of prices, optimal expected average profit obtained by applying

the optimal replenishment policy is calculated by solving the corresponding dynamic programming

equations. Then, the maximum expected average profit obtained from all these prices gives gedp, and

the corresponding price is the optimal environment-dependent prices pedp
L and pedp

H . The procedure

to evaluate gs, gsb and gsp is similar except that we imposed the prices and/or base-stock levels

two be identical in the two environments.
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The procedure to evaluate the optimal DP average cost with two prices, g2, is as follows. Let

g2(p1, p2) be the optimal dynamic pricing average cost when the set of possible prices is {p1, p2}, with

p1 and p2 two elements of P. Using the same discretization, we compute g2 = maxp1,p2{g2(p1, p2)}.
To evaluate g3, the optimal DP average cost with three prices, is very long since we have to

run a dynamic program for 1003 values. Hence we have only computed a lower bound by setting

the third price as the average of the two first prices. Let g2(p1, p2, p3) be the optimal DP average

cost when the set of possible prices is {p1, p2, p3} with p1, p2 and p3 elements of P. Then the

optimization is performed only over two variables and g3 = maxp1,p2{g3(p1, p2, (p1 + p2)/2)}.
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Single static

price

One price per

environment e

One price per

state (x, e)

Single

base-stock

Level

Static (S)

strategy

Static

Base-stock (SB)

strategy

Not considered

One

base-stock

level per

environment e

Static Pricing

(SP) strategy

Environment-

Dependent

Pricing (EDP)

strategy

Dynamic

Pricing (DP)

strategy

Table 1: Classification of strategies
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µ 2 prices 3 prices continuous

0.1 1.5% 1.9% 2.0%

0.3 2.7% 3.2% 3.6%

0.5 1.4% 1.7% 1.8%

0.7 0.7% 0.9% 0.9%

0.9 0.4% 0.4% 0.5%

Table 2: The relative profit gain due to different number of prices in dynamic pricing

ε PGsb,s PGsp,s PGedp,s PGdp,s

0 0.0% 0.0% 0.0% 2.2%

0.3 1.5% 0.0% 1.5% 3.8%

0.6 7.3% 0.5% 7.4% 10.0%

0.8 12.0% 2.4% 13.6% 15.2%

Table 3: Profit gains for different demand variability

ε ss ssb ssp
L ssp

H sedp
L sedp

H sdp
L sdp

H

0 8 8 8 8 8 8 17 17

0.3 7 8 6 11 7 9 12 20

0.6 5 6 4 14 5 10 7 22

0.8 3 4 2 13 3 10 3 23

Table 4: The optimal base stock levels for different ε

ε ps psb
L psb

H psp pedp
L pedp

H pdp
L

p̄dp
L pdp

H
p̄dp

H

0 0.79 0.79 0.79 0.79 0.79 0.79 0.50 0.85 0.50 0.85

0.3 0.78 0.74 0.82 0.78 0.74 0.82 0.42 0.82 0.51 0.87

0.6 0.74 0.65 0.83 0.75 0.65 0.84 0.33 0.75 0.51 0.88

0.8 0.75 0.55 0.84 0.78 0.57 0.84 0.19 0.65 0.51 0.99

Table 5: The optimal prices for different ε, where p̄d
e = max{pdp(x, e)}, and pdp

e
= min{pdp(x, e)}
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Figure 1: Percentage profit gain (PG = PGdp,sp) as a function of the service rate µ and the holding

cost h
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