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1 Calibration of Birgé and Massart’s penalization

Birgé and Massart’s penalization makes use of the penalty

penBM(D) :=
ĈD

n

(
5 + 2 log

( n

D

))
.

In a previous version of this work [6, Chapter 7], Ĉ was defined as suggested in [7, 8],
that is, Ĉ = 2K̂max.jump with the notation below. This yielded poor performances, which

seemed related to the definition of Ĉ. Therefore, alternative definitions for Ĉ have been
investigated, leading to the choice Ĉ = 2K̂thresh. throughout the paper, where K̂thresh. is
defined by (2) below. The present appendix intends to motivate this choice.

Two main approaches have been considered in the literature for defining Ĉ in the
penalty penBM:

• Use Ĉ = σ̂2 any estimate of the noise-level, for instance,

σ̂2 :=
1

n

n/2∑

i=1

(Y2i − Y2i−1)
2 , (1)

assuming n is even and t1 < · · · < tn.

• Use Birgé and Massart’s slope heuristics, that is, compute the sequence

D̂(K) := arg min
D∈Dn

{
Pnγ( ŝ bmERM(D)) +

KD

n

(
5 + 2 log

( n

D

))}
,

find the (unique) K = K̂jump at which D̂(K) jumps from large to small values, and

define Ĉ = 2K̂jump.

The first approach follows from theoretical and experimental results [4, 8] which show
that Ĉ should be close to σ2 when the noise-level is constant; (1) is a classical estimator
of the variance used for instance by Baraud [3] for model selection in a different setting.

The optimality (in terms of oracle inequalities) of the second approach has been proved
for regression with homoscedastic Gaussian noise and possibly exponential collections of
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s· σ· 2K̂max.jump 2K̂thresh. σ̂2 σ2
true

1 c 6.85 ± 0.12 3.91 ± 0.03 1.74 ± 0.02 2.05 ± 0.02
pc,3 17.56 ± 0.15 13.08 ± 0.04 4.42 ± 0.04 10.43 ± 0.05

s 20.07 ± 0.31 9.41 ± 0.04 2.18 ± 0.03 1.66 ± 0.02

2 c 6.02 ± 0.03 5.27 ± 0.03 3.58 ± 0.02 3.54 ± 0.02
pc,3 17.76 ± 0.10 20.12 ± 0.07 10.58 ± 0.07 16.64 ± 0.08

s 10.17 ± 0.05 9.69 ± 0.04 5.28 ± 0.03 10.95 ± 0.02

3 c 4.97 ± 0.02 4.39 ± 0.01 4.62 ± 0.01 4.21 ± 0.01
pc,3 8.66 ± 0.03 8.47 ± 0.03 6.64 ± 0.02 8.00 ± 0.03

s 8.50 ± 0.04 7.59 ± 0.03 5.94 ± 0.02 15.50 ± 0.04

A 7.52 ± 0.04 6.82 ± 0.03 4.86 ± 0.03 5.55 ± 0.03
B 7.89 ± 0.04 7.21 ± 0.04 5.18 ± 0.03 5.77 ± 0.03
C 12.81 ± 0.08 13.49 ± 0.07 8.93 ± 0.06 12.44 ± 0.07

Table 1: Performance Cor(BM) with four different definitions of Ĉ (see text), in some of
the simulation settings considered in the paper. In each setting, N = 10000 independent
samples have been generated. Next to each value is indicated the corresponding empirical
standard deviation divided by

√
N .

models [5], as well as in a heteroscedastic framework with polynomial collections of models
[2]. In the context of change-point detection with homoscedastic data, Lavielle [7] and
Lebarbier [8] showed that Ĉ = 2K̂max.jump can even perform better than Ĉ = σ2 when

K̂max.jump corresponds to the highest jump of D̂(K).

Alternatively, it was proposed in [2] to define Ĉ = 2K̂thresh. where

K̂thresh. := min

{
K s.t. D̂(K) ≤ Dthresh. :=

⌊
n

ln(n)

⌋}
. (2)

These three definitions of Ĉ have been compared with Ĉ = σ2
true := n−1

∑n
i=1 σ(ti)

2 in
the settings of the paper. A representative part of the results is reported in Table 1. The
main conclusions are the following.

• 2K̂thresh. almost always beats 2K̂max.jump, even in homoscedastic settings. This con-
firms some simulation results reported in [2].

• σ2
true often beats slope heuristics-based definitions of Ĉ, but not always, as previously

noticed by Lebarbier [8]. Differences of performance can be huge (in particular when
σ = σs), but not always in favour of σ2

true (for instance, when s = s3).

• σ̂2 yields significantly better performance than σ2
true in most settings (but not all),

with huge margins in some heteroscedastic settings.

The latter result actually comes from an artefact, which can be explained as follows.
First,

E

[
σ̂2

]
=

1

n

n∑

i=1

σ(ti)
2 +

1

n

n∑

i=1

(s(t2i) − s(t2i−1))
2 ≥ 1

n

n∑

i=1

σ(ti)
2 = σ2

true .
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The difference between these expectations is not negligible in all the settings of the paper.
For instance, when n = 100, ti = i/n and s = s1, n−1

∑
i(s(t2i)−s(t2i−1))

2 = 0.04 whereas

σ2
true varies between 0.015 (when σ = σpc,1) to 0.093 (when σ = σpc,3). Nevertheless, σ̂2

would not overestimate σ2
true at all in a very close setting: Shifting the jumps of s1 by

1/100 is sufficient to make n−1
∑

i(s(t2i)− s(t2i−1))
2 equal to zero, and the performances

of BM with Ĉ = σ̂2 would then be very close to the performances of BM with Ĉ = σtrue.
Second, overpenalization turns out to improve the results of BM in most of the het-

eroscedastic settings considered in the paper. The reason for this phenomenon is illus-
trated by the right panel of Figure 4. Indeed, penBM is a poor penalty when data are
heteroscedastic, underpenalizing dimensions close to the oracle but overpenalizing the
largest dimensions (remember that Ĉ = 2K̂thresh. on Figure 4). Then, in a setting like
(s2, σpc,3) multiplying penBM by a factor Cover > 1 helps decreasing the selected dimen-
sion; the same cause has different consequences in other settings, such as (s1, σs or (s3, σc).
Nevertheless, even choosing Ĉ using both Pn and s, (critBM(D))D>0 remains a poor esti-

mate of
(∥∥s − ŝ bmERM(D)

∥∥2

n

)

D>0
in most heteroscedastic settings (even up to an additive

constant).

To conclude, penBM with Ĉ = σ̂2 is not a reliable change-point detection procedure,
and the apparently good performances observed in Table 1 could be misleading. This
leads to the remaining choice Ĉ = 2K̂thresh. which has been used throughout the paper,
although this calibration method may certainly be improved.

Results of Table 1 for Ĉ = σ2
true indicate how far the performances of penBM could

be improved without overpenalization. According to Tables 4 and 5, BM with Ĉ = σ2
true

only has significantly better performances than JERM,VF5K or JLoo,VF5K in the three
homoscedastic settings and in setting (s1, σs).

Finally, overpenalization could be used to improve BM, but choosing the overpenaliza-
tion factor from data is a difficult problem, especially without knowing a priori whether the
signal is homoscedastic or heteroscedastic. This question deserves a specific extensive sim-
ulation experiment. To be completely fair with CV methods, such an experiment should
also compare BM with overpenalization to V -fold penalization [1] with overpenalization,
for choosing the number of change-points.

2 Random frameworks generation

The purpose of this appendix is to detail how piecewise constant functions s and σ have
been generated in the frameworks A, B and C of Section 5.3. In each framework, s and σ
are of the form

s(x) =

Ks−1∑

j=0

αj1[aj ;aj+1) + αKs1[aKs ;aKs+1] with a0 = 0 < a1 < · · · < aKs = 1

σ(x) =

Kσ−1∑

j=0

βj1[bj ;bj+1) + βKσ1[bKσ ;bKσ+1] with b0 = 0 < b1 < · · · < bKσ = 1

for some positive integers Ks,Kσ and real numbers α0, . . . , αKs ∈ R and β0, . . . , βKσ > 0.
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Remark 1. The frameworks A, B and C depend on the sample size n, through the distri-
bution of Ks, Kσ, and of the size of the intervals [aj ; aj+1) and [bj ; bj+1). This ensures
that the signal-to-noise ratio remains rather small, so that the quadratic risk remains an
adequate performance measure for change-point detection.

When the signal-to-noise ratio is larger (that is, when all jumps of s are much larger
than the noise-level, and the number of jumps of s is small compared to the sample size),
the change-point detection problem is of different nature. In particular, the number of
change-points would be better estimated with procedures targeting identification (such as
BIC, or even larger penalties) than efficiency (such as VFCV).

2.1 Framework A

In framework A, s and σ are generated as follows:

• Ks, the number of jumps of s, has uniform distribution over {3, . . . , ⌊√n⌋}.

• For 0 ≤ j ≤ Ks,

aj+1 − aj = ∆s
min +

(1 − (Ks + 1)∆s
min)Uj∑Ks

k=0 Uk

with ∆s
min = min {5/n, 1/(Ks + 1)} and U0, . . . , UKs are i.i.d. with uniform distri-

bution over [0; 1].

• α0 = V0 and for 1 ≤ j ≤ Ks, αj = αj−1 + Vj where V0, . . . , VKs are i.i.d. with
uniform distribution over [−1;−0.1] ∪ [0.1; 1].

• Kσ, the number of jumps of σ, has uniform distribution in {5, . . . , ⌊√n⌋}.

• For 0 ≤ j ≤ Kσ,

bj+1 − bj = ∆σ
min +

(1 − (Kσ + 1)∆σ
min)U ′

j∑Ks

k=0 U ′
k

with ∆σ
min = min {5/n, 1/(Kσ + 1)} and U ′

0, . . . , U
′
Kσ

are i.i.d. with uniform distri-
bution over [0; 1].

• β0, . . . , βKσ are i.i.d. with uniform distribution over [0.05; 0.5].

Two examples of a function s and a sample (ti, Yi) generated in framework A are plotted
on Figure 1.

2.2 Framework B

The only difference with framework A is that U0, . . . , UKs are i.i.d. with the same distri-
bution as Z = |10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2

has a standard Gaussian distribution. Two examples of a function s and a sample (ti, Yi)
generated in framework B are plotted on Figure 2.
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Figure 1: Random framework A: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s.
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Figure 2: Random framework B: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s.
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2.3 Framework C

The main difference between frameworks C and B is that [0; 1] is split into two regions:
aKs,1+1 = 1/2 and Ks = Ks,1 + Ks,2 + 1 for some positive integers Ks,1,Ks,2, and the
bounds of the distribution of βj are larger when bj ≥ 1/2 and smaller when bj < 1/2. Two
examples of a function s and a sample (ti, Yi) generated in framework C are plotted on
Figure 3. More precisely, s and σ are generated as follows:

• Ks,1 has uniform distribution over {2, . . . ,Kmax,1} with Kmax,1 = ⌊√n⌋−1−⌊(⌊√n−
1⌋)/3⌋.

• Ks,2 has uniform distribution over {0, . . . ,Kmax,2} with Kmax,2 = ⌊(⌊√n − 1⌋)/3⌋.

• Let U0, . . . , UKs be i.i.d. random variables with the same distribution as Z =
|10Z1 + Z2| where Z1 has Bernoulli distribution with parameter 1/2 and Z2 has
a standard Gaussian distribution.

• For 0 ≤ j ≤ Ks,1,

aj+1 − aj = ∆s,1
min +

(1 − (Ks,1 + 1)∆s,1
min)Uj

∑Ks,1

k=0 Uk

with ∆s,1
min = min {5/n, 1/(Ks,1 + 1)}.

• For Ks,1 + 1 ≤ j ≤ Ks,

aj+1 − aj = ∆s,2
min +

(1 − (Ks,2 + 1)∆s,2
min)Uj∑Ks

k=Ks,1+1 Uk

with ∆s,2
min = min {5/n, 1/(Ks,2 + 1)}.

• α0 = V0 and for 1 ≤ j ≤ Ks, αj = αj−1 + Vj where V0, . . . , VKs are i.i.d. with
uniform distribution over [−1;−0.1] ∪ [0.1; 1].

• Kσ, (bj+1 − bj)0≤j≤Kσ are distributed as in frameworks A and B.

• β0, . . . , βKσ are independent.
When bj < 1/2, βj has uniform distribution over [0.025; 0.2].
When bj ≥ 1/2, βj has uniform distribution over [0.1; 0.8].

3 Additional results from the simulation study

In the next pages are presented extended versions of the Tables of the main paper, as well
as an extended version of Table 1 (Table 7).
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Figure 3: Random framework C: two examples of a sample (ti, Yi)1≤i≤100 and the corre-
sponding regression function s.
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s
·

σ
·

ERM Loo Lpo
20

Lpo
50

1 c 1.59 ± 0.01 1.60 ± 0.02 1.58 ± 0.01 1.58 ± 0.01
pc,1 1.04 ± 0.01 1.06 ± 0.01 1.06 ± 0.01 1.06 ± 0.01
pc,2 1.89 ± 0.02 1.87 ± 0.02 1.87 ± 0.02 1.87 ± 0.02
pc,3 2.05 ± 0.02 2.05 ± 0.02 2.05 ± 0.02 2.07 ± 0.02

s 1.54 ± 0.02 1.52 ± 0.02 1.52 ± 0.02 1.51 ± 0.02
2 c 2.88 ± 0.01 2.93 ± 0.01 2.93 ± 0.01 2.94 ± 0.01

pc,1 1.31 ± 0.02 1.16 ± 0.02 1.14 ± 0.02 1.11 ± 0.01
pc,2 2.88 ± 0.02 2.24 ± 0.02 2.19 ± 0.02 2.13 ± 0.02
pc,3 3.09 ± 0.03 2.52 ± 0.03 2.48 ± 0.03 2.32 ± 0.03

s 3.01 ± 0.01 3.03 ± 0.01 3.05 ± 0.01 3.13 ± 0.01
3 c 3.18 ± 0.01 3.25 ± 0.01 3.29 ± 0.01 3.44 ± 0.01

pc,1 3.00 ± 0.01 2.67 ± 0.02 2.68 ± 0.02 2.77 ± 0.02
pc,2 4.06 ± 0.02 3.63 ± 0.02 3.64 ± 0.02 3.78 ± 0.02
pc,3 4.41 ± 0.02 3.97 ± 0.02 4.00 ± 0.02 4.11 ± 0.02

s 4.02 ± 0.01 3.82 ± 0.01 3.85 ± 0.01 3.98 ± 0.01

Table 2: Average performance Cor (JP, IdK) for change-point detection procedures P

among ERM, Loo and Lpop with p = 20 and p = 50. Several regression functions s
and noise-level functions σ have been considered, each time with N = 10000 independent
samples. Next to each value is indicated the corresponding empirical standard deviation
divided by

√
N , measuring the uncertainty of the estimated performance.

s· σ· Oracle VF5 BM

1 c 1.59 ± 0.01 5.40 ± 0.05 3.91 ± 0.03
pc,1 1.04 ± 0.01 11.96 ± 0.03 12.85 ± 0.04
pc,2 1.89 ± 0.02 6.43 ± 0.05 13.03 ± 0.04
pc,3 2.05 ± 0.02 4.96 ± 0.05 13.08 ± 0.04

s 1.54 ± 0.02 7.33 ± 0.06 9.41 ± 0.04

2 c 2.88 ± 0.01 4.51 ± 0.03 5.27 ± 0.03
pc,1 1.31 ± 0.02 11.67 ± 0.09 19.36 ± 0.07
pc,2 2.88 ± 0.02 6.58 ± 0.06 19.82 ± 0.07
pc,3 3.09 ± 0.03 6.66 ± 0.06 20.12 ± 0.07

s 3.01 ± 0.01 5.21 ± 0.04 9.69 ± 0.40

3 c 3.18 ± 0.01 4.41 ± 0.02 4.39 ± 0.01
pc,1 3.00 ± 0.01 4.91 ± 0.02 6.50 ± 0.02
pc,2 4.06 ± 0.02 5.99 ± 0.02 7.86 ± 0.03
pc,3 4.41 ± 0.02 6.32 ± 0.02 8.47 ± 0.03

s 4.02 ± 0.01 5.97 ± 0.03 7.59 ± 0.03

Table 3: Performance Cor (JERM,PK) for P = Id (that is, choosing the dimension D⋆ :=

arg minD∈Dn

{∥∥s − ŝ bmERM(D)

∥∥2

n

}
), P = VFV with V = 5 or P = BM. Several regression

functions s and noise-level functions σ have been considered, each time with N = 10000
independent samples. Next to each value is indicated the corresponding empirical standard
deviation divided by

√
N , measuring the uncertainty of the estimated performance.
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s· σ· JERM,VF5K JLoo,VF5K JLpo20,VF5K JLpo50,VF5K JERM,BMK

1 c 5.40 ± 0.05 5.03 ± 0.05 5.10 ± 0.05 5.24 ± 0.05 3.91 ± 0.03
pc,1 11.96 ± 0.03 10.25 ± 0.03 10.28 ± 0.03 10.66 ± 0.04 12.85 ± 0.04
pc,2 6.43 ± 0.05 5.83 ± 0.05 5.99 ± 0.05 6.20 ± 0.05 13.03 ± 0.04
pc,3 4.96 ± 0.05 4.82 ± 0.04 4.79 ± 0.05 5.02 ± 0.05 13.08 ± 0.04

s 7.33 ± 0.06 6.82 ± 0.05 6.99 ± 0.06 6.91 ± 0.06 9.41 ± 0.04

2 c 4.51 ± 0.03 4.55 ± 0.03 4.50 ± 0.03 4.73 ± 0.03 5.27 ± 0.03
pc,1 11.67 ± 0.09 10.26 ± 0.08 10.29 ± 0.08 10.45 ± 0.09 19.36 ± 0.07
pc,2 6.58 ± 0.06 5.85 ± 0.06 5.85 ± 0.06 5.49 ± 0.06 19.82 ± 0.07
pc,3 6.66 ± 0.06 5.81 ± 0.06 5.74 ± 0.06 5.66 ± 0.06 20.12 ± 0.06

s 5.21 ± 0.04 5.19 ± 0.03 5.17 ± 0.03 5.51 ± 0.04 9.69 ± 0.04

3 c 4.41 ± 0.02 4.54 ± 0.02 4.62 ± 0.02 4.94 ± 0.02 4.39 ± 0.01
pc,1 4.91 ± 0.02 4.40 ± 0.02 4.44 ± 0.02 4.69 ± 0.02 6.50 ± 0.02
pc,2 5.99 ± 0.02 5.34 ± 0.02 5.42 ± 0.02 5.75 ± 0.02 7.86 ± 0.03
pc,3 6.32 ± 0.02 5.74 ± 0.02 5.81 ± 0.02 6.24 ± 0.02 8.47 ± 0.03

s 5.97 ± 0.02 5.72 ± 0.02 5.86 ± 0.02 6.07 ± 0.02 7.59 ± 0.03

Table 4: Performance Cor(P) for several change-point detection procedures P. Several
regression functions s and noise-level functions σ have been considered, each time with
N = 10000 independent samples. Next to each value is indicated the corresponding
empirical standard deviation.

Framework A B C

JERM,BMK 6.82 ± 0.03 7.21 ± 0.04 13.49 ± 0.07
JERM,VF5K 4.78 ± 0.03 5.09 ± 0.03 7.17 ± 0.05
JLoo,VF5K 4.65 ± 0.03 4.88 ± 0.03 6.61 ± 0.05

JLpo20,VF5K 4.78 ± 0.03 4.91 ± 0.03 6.49 ± 0.05
JLpo50,VF5K 4.97 ± 0.03 5.18 ± 0.04 6.69 ± 0.05

Table 5: Performance C
(R)
or (P) of several model selection procedures P in frameworks A, B,

C with sample size n = 100. In each framework, N = 10, 000 independent samples have
been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by

√
N .
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Framework A B C

JERM,BMK 9.04 ± 0.12 11.62 ± 0.14 21.21 ± 0.31
JERM,BMbσK 5.34 ± 0.10 6.24 ± 0.11 11.48 ± 0.22
JERM,VF5K 5.10 ± 0.11 5.92 ± 0.11 7.31 ± 0.14
JLoo,VF5K 4.90 ± 0.11 5.63 ± 0.11 6.89 ± 0.16

JLpo20,VF5K 4.88 ± 0.10 5.55 ± 0.10 6.82 ± 0.15
JLpo50,VF5K 5.11 ± 0.11 5.49 ± 0.10 7.14 ± 0.15

Table 6: Performance C
(R)
or (P) of several model selection procedures P in frameworks A,

B, C with sample size n = 200. In each framework, N = 1, 000 independent samples have
been considered. Next to each value is indicated the corresponding empirical standard
deviation divided by

√
N .

s· σ· 2K̂max.jump 2K̂thresh. σ̂2 σ2
true

1 c 6.85 ± 0.12 3.91 ± 0.03 1.74 ± 0.02 2.05 ± 0.02
pc,1 70.97 ± 1.18 12.85 ± 0.04 1.13 ± 0.02 10.20 ± 0.05
pc,2 23.74 ± 0.26 13.03 ± 0.04 3.55 ± 0.04 10.43 ± 0.05
pc,3 17.56 ± 0.15 13.08 ± 0.04 4.42 ± 0.04 10.43 ± 0.05

s 20.07 ± 0.31 9.41 ± 0.04 2.18 ± 0.03 1.66 ± 0.02

2 c 6.02 ± 0.03 5.27 ± 0.03 3.58 ± 0.02 3.54 ± 0.02
pc,1 17.83 ± 0.10 19.36 ± 0.07 8.52 ± 0.06 15.62 ± 0.08
pc,2 17.63 ± 0.10 19.82 ± 0.07 10.77 ± 0.07 16.56 ± 0.08
pc,3 17.76 ± 0.10 20.12 ± 0.07 10.58 ± 0.07 16.64 ± 0.08

s 10.17 ± 0.05 9.69 ± 0.04 5.28 ± 0.03 10.95 ± 0.02

3 c 4.97 ± 0.02 4.39 ± 0.01 4.62 ± 0.01 4.21 ± 0.01
pc,1 7.18 ± 0.03 6.50 ± 0.02 4.52 ± 0.02 6.70 ± 0.03
pc,2 8.14 ± 0.03 7.86 ± 0.03 6.22 ± 0.02 7.55 ± 0.03
pc,3 8.66 ± 0.03 8.47 ± 0.03 6.64 ± 0.02 8.00 ± 0.03

s 8.50 ± 0.04 7.59 ± 0.03 5.94 ± 0.02 15.50 ± 0.04

A 7.52 ± 0.04 6.82 ± 0.03 4.86 ± 0.03 5.55 ± 0.03
B 7.89 ± 0.04 7.21 ± 0.04 5.18 ± 0.03 5.77 ± 0.03
C 12.81 ± 0.08 13.49 ± 0.07 8.93 ± 0.06 12.44 ± 0.07

Table 7: Performance Cor(BM) with four different definitions of Ĉ (see text), in some of
the simulation settings considered in the paper. In each setting, N = 10000 independent
samples have been generated. Next to each value is indicated the corresponding empirical
standard deviation divided by

√
N .
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