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Abstract

We present lower estimates for the best constant appearing in the weak (1, 1) maximal
inequality in the space (Rn

, ‖ · ‖∞). We show that it grows to infinity faster than (log n)κ for
any κ < 1. We follow the approach used by J.M. Aldaz in a recent paper. The new part of the
argument relies on Donsker’s theorem identifying the Brownian bridge as the limit (n → ∞)
of the empirical distribution function associated to coordinates of a point randomly chosen in
the unit cube [0, 1]n.

Introduction

Let vol(·) denote the Lebesgue measure on Rn. For x ∈ Rn and r > 0, let Q(x, r) denote the
n-dimensional cube with center x and edge length 2r. For a positive Borel measure µ on Rn, let
Mµ be the “cubic” centered maximal function

Mµ(x) := sup
r>0

µ(Q(x, r))

vol(Q(x, r))

We are interested in the following weak (1, 1) inequality : for any positive Borel measure µ on Rn

and any L > 0,
L vol{Mµ > L} 6 Cµ(Rn). (1)

We denote by Θn the best possible C appearing in (1). Using a mollifying argument, one checks
that restricting to absolutely continuous measures (or functions in L1) does not alter the value of
Θn.

We are interested in the asymptotic beahviour of Θn. The easiest proof of (1) goes through
Vitali’s covering lemma, and gives Θn 6 3n. This was greatly improved by Stein and Strömberg
[6], who obtained Θn 6 Cn log n for some absolute constant C. This is the best known upper
bound (we refer to [1] for additional background and bibliography). Conversely, Aldaz [1] proved
recently that the sequence (Θn) is unbounded. However he presented no concrete lower bounds.
We prove the following

Theorem 1. For any κ ∈ (0, 1), there is a constant λ(κ) > 0 so that

Θn > λ(κ)(log n)κ.

Note also that is it unknown whether the constants defined similarly, but using Euclidean balls
instead of cubes, are uniformly bounded.

Let us briefly sketch the proof, which follows closely Aldaz’s approach. We consider the count-
ing measure on a very large box inside the lattice Zn. We show that the value of the corresponding
maximal function at a point x ∈ Rn is closely related to the statistical distribution of the co-
ordinates of x mod 1. The asymptotic statistical behaviour is governed by a stochastic process
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(βt)06t61 called the Brownian bridge. More precisely, the typical value of the maximal function is
related to the following quantity

sup
ε6t61−ε

βt
√

t(1 − t)
.

The order of magnitude of the latter is given by the law of the iterated logarithm.

Acknowledgements : I thank Nadine Guillotin-Plantard for helpful explanations about the
Brownian bridge, and Jesús Munárriz Aldaz for several comments on the paper.

Proof of the theorem

Consider the measure µ obtained by putting a Dirac mass on each lattice point x ∈ Zn. That is,
for any Borel set A, µ(A) := card(A ∩ Zn). Although this measure has infinite mass, it can be
used to estimate the constant Θn:

Lemma 1. For any L > 1,

L vol ({x ∈ [0, 1]n s.t. Mµ(x) > L}) 6 Θn.

Proof of lemma 1. The point is that large cubes can be ignored when computing Mµ. Indeed,
since a cube of edge length 2r contains at most (2r + 1)n lattice points, we get for any L > 1,

sup
r>n/2 log L

µ(Q(x, r))

vol(Q(x, r))
6 sup

r>n/2 log L

(

1 +
1

2r

)n

6

(

1 +
log L

n

)n

6 L (2)

Let µR be the restriction of µ to the cube Q(0, R). It follows from (2) that for any x ∈ Q(0, R −
n/2 logL), Mµ(x) > L if and only if MµR(x) > L. Using the obvious fact that Mµ is Zn-periodic,
this gives

Θn >
L vol ({x ∈ Rn s.t. MµR > L})

µR(Rn)
>

(⌊R − n/2 logL⌋
R

)n

L vol ({x ∈ [0, 1]n s.t. Mµ(x) > L}) .

Ir remains to take R → ∞.

For x ∈ [0, 1]n, we will relate the value of Mµ(x) to the stastistical distribution of the coordi-
nates of x in the interval [0, 1]. For t ∈ (0, 1), a number x ∈ [0, 1] is called t-centered if it belongs
to
[

1−t
2 , 1+t

2

]

. Define the following set

En
t,K :=

{

x ∈ [0, 1]n with at least nt + K
√

nt(1 − t) t-centered coordinates
}

.

This definition may look strange but the reason is simple. Think of x as a random variable
uniformly distributed on [0, 1]n. The number of t-centered coordinates is a random variable with
expectation nt, and standard deviation

√

nt(1 − t). In particular, it follows from the central limit
theorem that

lim
n→∞

vol(En
t,K) = P(G > K)

where G is a standard Gaussian random variable. The next lemma shows that the maximal function
is large on the set En

t,K . This is essentially a variant on ([1], Claim 1)

Lemma 2. For any η > 0, there exists a constant D(η) so that for any K > 0 and t ∈ (0, 1), if

n >
D(η)K2

t(1−t) , then

En
t,K ⊂

{

Mµ > eK2/(2+η)
}

.
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Since the proof of lemma 2 is essentially independent from the rest of the argument, we post-
pone it to the next section. We now think of ([0, 1]n, vol) as a probability space, and of the coor-
dinates x1, . . . , xn as independent random variables. Let Xi := 2|xi − 1

2 |. It is easily checked that
(X1, . . . , Xn) are also independent random variables uniformly distributed on [0, 1]. We introduce
new random variables, for 0 6 t 6 1

α
(n)
t :=

1√
n

n
∑

i=1

(

1{ 1−t
2

6xi6
1+t
2 } − t

)

=
1√
n

n
∑

i=1

(

1{Xi6t} − t
)

.

The following identity is at the heart of our probabilistic reasoning (it is easily checked that the
set involved is measurable)

vol





⋃

ε6t61−ε

En
t,K



 = P

(

sup
ε6t61−ε

α
(n)
t

√

t(1 − t)
> K

)

. (3)

A theorem by Donsker [3] asserts that (α
(n)
t )06t61 converges (n → ∞) in the sup norm towards

a Brownian bridge (βt)06t61. Recall that a Brownian bridge (βt)06t61 is defined as a Gaussian
process which is almost surely continuous and given by the covariance

Eβtβu = t(1 − u) for 0 6 t 6 u 6 1.

In particular, β0 = β1 = 1 a.s. There are several ways to relate the Brownian bridge to the
Brownian motion. Let (Bt)t>0 be a standard Brownian motion, given by the covariance EBtBu =
min(t, u). It is easily checked, just by computing the covariance, that the process (Bt − tB1)06t61

is a Brownian bridge. Similarly, the process

(

(1 − t)B t
1−t

)

06t61
(4)

is also a Brownian bridge. We refer to [4] (Chapter 7.8) for more information on the Brownian
bridge.

As the formula (3) hints, we need to control the supremum of βt/
√

t(1 − t). Using the transfor-
mation given by (4), this amounts to controlling the supremum of Bt/

√
t, where (Bt) is a Brownian

motion. It is well-known that this supremum, when taken over (0,∞), is almost surely +∞. This
last fact can be used to show that Θn is unbounded, giving a simpler proof of Aldaz’s result1. To
obtain concrete lower bounds, we need a more quantitative result, given by the law of the iteratied
logarithm ; this is the statement of the next lemma. For completeness, we include a proof at the
end of the paper.

Lemma 3. Let (βt)06t61 be a Brownian bridge. For any η ∈ (0, 2), there exists a constant c(η) > 0
so that for any 0 < ε 6 1/e,

P

(

sup
ε6t61−ε

βt
√

t(1 − t)
>
√

(2 − η) log log(1/ε)

)

> c(η). (5)

Since we are interested in non-asymptotic bounds, we also need more quantitative results about
the speed of convergence in Donsker’s theorem. This is provided by the following theorem, due to
Komlós–Major–Tusnády [5]. We use the version appearing in a paper by Bretagnolle and Massart
[2]

1This was done in a prior version of this note, which can be found on the author’s webpage. This qualitative

approach does not use advanced probabilistic tools beyond the multivariate central limit theorem.
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Theorem (Komlós–Major–Tusnády). For any n > 1, there exists a probability space on which are

defined

• A n-tuple of i.i.d. random variables uniformly distributed on [0, 1] : X1, . . . , Xn,

• a Brownian bridge : (β
(n)
t )06t61,

so that, denoting

α
(n)
t =

1√
n

n
∑

j=1

(

1{Xj6t} − t
)

,

the following inequality is valid for any x > 0:

P

(

sup
06t61

|
√

n(α
(n)
t − β

(n)
t )| > 12 logn + x

)

< 2 exp(−x/6).

We are now ready to prove the main theorem.

Proof of the theorem. Fix η > 0 and let c(η) the constant given by lemma 3, which we apply with
the choice ε := log2 n/n. Choose now x > 0 so that 2 exp(−x/6) < c(η)/2. Applying Komlós–

Major–Tusnády theorem, we obtain a coupling of α
(n)
t and β

(n)
t so that the following events hold

simultaneously with probability larger than c(η)/2















sup
ε6t61−ε

β
(n)
t

√

t(1 − t)
>
√

(2 − η) log log(1/ε)

∀t ∈ [0, 1], α
(n)
t > β

(n)
t − 12 logn + x√

n

This shows that

P

(

sup
ε6t61−ε

α
(n)
t

√

t(1 − t)
>
√

(2 − η) log log(1/ε) − 12 logn + x
√

nε(1 − ε)

)

>
c(η)

2
.

Set K :=
√

(2 − η) log log(1/ε) − 12 log n+x√
nε(1−ε)

. Using formula (3), we obtain

vol





⋃

ε6t61−ε

En
t,K



 >
c(η)

2
.

One checks that for n large enough, K >
√

(2 − 2η) log log n. Also, for n large enough, n >
D(η)K2

ε(1−ε) ,

so that we can use lemma 2 and conclude that

vol
({

x ∈ [0, 1]n s.t. Mµ(x) > eK2/(2+η)
})

>
c(η)

2
.

Using lemma 1, this implies that for n large enough,

Θn >
c(η)

2
eK2/(2+η)

>
c(η)

2
(log n)

2−2η
2+η .

This inequality can be extended to all n by adjusting c(η) is necessary. Since 2−2η
2+η is arbitrarily

close to 1, this proves the theorem.
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Proof of lemma 2

A variant of this lemma appears in [1]. Let s > 1 be an integer. Let xi ∈ [0, 1]. Note that

card

([

xi −
(

s − 1 − t

2

)

, xi +

(

s − 1 − t

2

)]

∩ Z

)

=

{

2s if xi is t-centered,

2s − 1 otherwise.

Consequently, if x ∈ [0, 1]n has at least m t-centered coordinates, then

Mµ(x) > sup
s∈N∗

µ(Q(x, s − (1 − t)/2))

vol(Q(x, s − (1 − t)/2))
= sup

s∈N∗

(2s)m(2s − 1)n−m

(2s − (1 − t))n

and it remains to optimize on s. Let F (s) := (2s)m(2s − 1)n−m(2s − 1 + t)−n. We first compute
the supremum of F over s ∈ R+. We write m = nt + C

√
n and compute

(log F )′(s) =
−2

√
n(2Cs − C(1 − t) −√

nt(1 − t))

(2s)(2s − 1 + t)(2s − 1)
.

Thus, F is maximal at the point s0 defined as

s0 :=

√
nt(1 − t)

2C
+

1 − t

2
.

The maximal value of F is

F (s0) =

(

1 +
C√
nt

)nt+C
√

n(

1 − C√
n(1 − t)

)n(1−t)−C
√

n

.

Let Φ(x) = (1 + x) log(1 + x). One checks by consecutive differentiation that Φ(x) > x + x2

2 − x3

6
for x > −1. We get

log F (s0) = ntΦ

(

C√
nt

)

+ n(1 − t)Φ

( −C√
n(1 − t)

)

>
C2

2t(1 − t)
+

C3

6
√

n

2t − 1

t2(1 − t)2
.

However, since we are only allowed to consider integer-valued s, we need to evaluate F (⌊s0⌋), and
show that it is not very different from F (s0). For x ∈ [s0 − 1, s0], we have

2x > 2x − 1 + t > 2x − 1 > 2s0 − 3 >

√
nt(1 − t)

C
− 3.

Provided
√

nt(1 − t) > 3C, this implies

|(log F )′(x)| 6
4
√

nC4

(
√

nt(1 − t) − 3C)3
.

Applying the mean value theorem to log F between ⌊s0⌋ and s0 gives

log Mµ(x) > log F (⌊s0⌋) >
C2

2t(1 − t)
+

C3

6
√

n

2t − 1

t2(1 − t)2
− 4

√
nC4

(
√

nt(1 − t) − 3C)3
. (6)

If x ∈ En
t,K , then (6) holds with C = K

√

t(1 − t). Set n = DK2

t(1−t) . Using the inequality 2t−1 > −1,
we get

log Mµ(x) >
K2

2
− K2

6
√

D
− 4

√
DK2

(
√

D − 3)3
.

One checks that the last expression is larger than K2/(2 + η) when D is large enough.
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Proof of lemma 3

Fix η ∈ (0, 2) and let (Bt)t>0 be a standard Brownian motion. Using the transformation given by
(4), we check that, denoting A = 1/ε,

P

(

sup
ε6t61−ε

βt
√

t(1 − t)
>
√

(2 − η) log log(1/ε)

)

= P

(

sup
1

A−1
6t6A−1

Bt√
t

>
√

(2 − η) log log A

)

.

We will actually estimate the supremum of Bt/
√

t over [1, A − 1]. Since (Bt) and (−Bt) have the
same distribution, we have

P

(

sup
16t6A−1

Bt√
t

>
√

(2 − η) log log A

)

>
1

2
P

(

sup
16t6A−1

|Bt|√
t

>
√

(2 − η) log log A

)

Choose α > 1 large enough so that ρ < 2, where ρ denotes the number

ρ :=
(2 − η)(1 +

√
α)2

α − 1
.

Let N :=
⌊

log(A−1)
log α

⌋

− 1 and for 1 6 j 6 N , consider the event :

Ej := “
Bαj+1 − Bαj√

αj+1 − αj
>
√

ρ log log A”

One checks that if Ej holds, then at least one of the following inequalities is true:

{

either Bαj+1 >
√

(2 − η) log log A ·
√

αj+1

or Bαj 6 −
√

(2 − η) log log A ·
√

αj .

Consequently,

P

(

sup
16t6A

|Bt|√
t

>
√

(2 − η) log log A

)

> P





⋃

16j6N

Ej





Now because the Brownian motion has independent increments, the events Ej are independent,
and they all have the same probability

P(Ej) = P
(

G >
√

ρ log log A
)

,

where G is a standard Gaussian random variable. We use the following estimate (see [4], Theorem
1.4) : for x > 1

P(G > x) >
x−1 − x−3

√
2π

e−x2/2
> C(ρ) exp(−x2/ρ).

for some constant C(ρ) > 0. We obtain P(Ej) > C(ρ)(log A)−1. Finally, since the events Ej are
independent,

P





⋃

16j6N

Ej



 > 1 −
(

1 − C(ρ)

log A

)N

> 1 − exp

(

−C(ρ)N

log A

)

Given our choice of N , one checks that the last expression is bounded below by some positive
constant depending only on η when A tends to +∞. This proves the lemma, at least for A large
enough. Small values of A can be taken into account by adjusting a posteriori the constant c(η) if
necessary.
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