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Abstract. We give a link between stochastic processes which are infinitely divisible with re-
spect to time (IDT) and Lévy processes. We investigate the connection between the selfsimilarity
and the strict stability for IDT processes. We also consider a subordination of a Lévy process by
an increasing IDT process. We introduce a notion of multiparameter IDT stochastic processes,
extending the one studied by Mansuy [3]. The main example of this kind of processes is the Lévy
sheet.
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1 Introduction

An Rd−valued stochastic process X = (Xt, t ≥ 0) is said to be IDT if, for every n ∈ N, we have

(Xnt, t ≥ 0)
d
= (X

(1)
t + ... + X

(n)
t , t ≥ 0),

where (X(1), t ≥ 0), ..., (X(n), t ≥ 0) are independent copies of X and
d
= denotes equality in all

finite-dimensional distributions. The notion of IDT processes has been introduced by Mansuy
[3] as a generalization of Lévy processes. Various properties of IDT processes have been already
investigated in [3], related for instance to their temporal self-decomposability and the charac-
terization of IDT Gaussian processes. Regarded as a contribution to this expending topic, it is
the purpose of this paper to extend some results on Lévy processes studied in [1], [2] and [4] to
the case of IDT processes. In particular, we shall prove that, IDT processes are more tractable
than Lévy processes, since they could be obtained by combining the selfsimilarity and strict
stability. A such result is not true in general for Lévy processes. Moreover, we will prove that
a necessary and sufficient condition for an IDT process to be a Lévy process is the hypothesis
of independence increments. While, this condition can be circumvented when dealing with IDT
processes. So it turns out that the class of IDT processes can be very rich.
The paper is organized as follows. Section 2 contains some preliminaries on stable processes
and selfsimilar processes. Section 3 establishes, for IDT processes, the connection between the
selfsimilar (semi-selfsimilar, resp.) processes and the strictly stable (strictly semi-stable, resp.)
processes. Namely, strictly stable (strictly semi-stable, resp.) IDT process is a simple example of
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selfsimilar (semi-selfsimilar, resp.) process. As a byproduct, we consider the so-called Lamperti
transformation for strictly semi-stable IDT processes to give a generalized semi-stable Ornstein-
Uhlenbeck process (see Definition 3.4).

Time-changed Lévy processes where the chronometers are more general than subordinators
arise now in many fields of application, see for instance [1] and the reference therein. We shall
prove (Theorem 3.6) the inheritance of IDT under time change when base processes are Lévy
processes.

In section 4 we shall introduce a notion of multiparameter IDT processes and we give several
examples of this kind of processes, one of them is the Lévy sheet. Contrary to the one-parameter
case, we will prove that multiparameter Lévy processes are not IDT in our sense. As in the
one-parameter case [3], we characterize the multiparameter IDT Gaussian processes. Moreover,
we define multiparameter temporal selfdecomposable processes similar to those introduced by
Barndorff-Nielsen, Meajima and Sato [1] and we prove that multiparameter IDT processes are
temporal selfdecomposable.

2 Preliminaries

In this section we recall some definitions that we will use in the sequel. For more details the
reader is referred to Sato [7].

An Rd−valued random variable X is called degenerate if it is a constant almost surely. An
Rd−valued process (Xt, t ≥ 0) is called trivial if Xt is degenerate for every t.

Let 0 < α ≤ 2. An infinitely divisible probability measure µ on Rd is called α−stable if, for
any a > 0, there is γa ∈ Rd such that

µ̂(θ)a :=

(∫

Rd

ei<θ,z>µ(dz)

)a

= µ̂(a1/αθ)ei<θ,γa>, ∀ θ ∈ Rd. (1)

It is called strictly α−stable if, for any a > 0,

µ̂(θ)a = µ̂(a1/αθ), ∀ θ ∈ Rd. (2)

It is called α−semi-stable if, for some a > 0 with a 6= 1, there is γa ∈ Rd satisfying (1). It is
called strictly α−semi-stable if, there is some a > 0 with a 6= 1 satisfying (2).

Let (Xt, t ≥ 0) be a Lévy (IDT, resp.) process on Rd. It is called a α-stable, strictly α-stable,
semi α-stable, or strictly α-semi-stable Lévy (IDT, resp.) process if every finite-dimensional
distribution of X is, respectively, α-stable, strictly α-stable, semi α-stable, or strictly α-semi-
stable.

Let H > 0. A stochastic process (Xt, t ≥ 0) on Rd is called H-selfsimilar if, for any a > 0,

(Xat, t ≥ 0)
d
= (aHXt, t ≥ 0). (3)

It is called wide-sense H-selfsimilar if, for any a > 0, there is a function c(t) from R+ to Rd such
that

(Xat, t ≥ 0)
d
= (aHXt + c(t), t ≥ 0). (4)

It is called H-semi-selfsimilar if, there is some a > 0 with a 6= 1 satisfying (3) and it is called
wide-sense H-semi-selfsimilar if, for some a > 0 with a 6= 1, there is a function c(t) satisfying
(4).
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3 Stable IDT processes

The goal of this section is to generalize some properties of Lévy process to the case of IDT
process. We first establish a link between IDT process and Lévy process than between IDT
process and selfsimilar process.

Theorem 3.1. If X = (Xt, t ≥ 0) is an IDT, stochastically continuous process with independent
increments, then X is a Lévy process.

Proof. It suffices to prove that X has stationary increments. Using the IDT property we obtain

EeiθXk =
(

EeiθX1

)k
, for any k ∈ N. (5)

In a similar way (5) can be obtained when k is a rational time. It follows now from the stochastic
continuity of X that

EeiθXt =
(

EeiθX1

)t
, for any t ∈ R+.

Therefore, for any 0 ≤ s < t, we have

EeiθXt−s =
(

EeiθX1

)t−s
=

EeiθXt

EeiθXs
= Eeiθ(Xt−Xs),

where the last equality follows from the independence of increments. And since for IDT processes
X0 = 0 almost surely, then X has stationary increments, which completes the proof.

Remark 3.1. If (Xt, t ≥ 0) is a centered Gaussian process satisfying the assumptions of the
previous proposition, then X is Brownian motion up to a multiplicative constant with covariance
function c(s, t) = E(XtXs) = (s ∧ t) c(1, 1). In particular, for Gaussian processes, one can
replace the assumption of independence of increments by stationarity of increments. Indeed, let
s < t, since X is an IDT centered Gaussian process, then it is 1/2-selfsimilar (see [3]), hence

E exp (i(Xt − Xs)) = exp

(

−
1

2

[

(t + s)EX2
1 − 2E(XtXs)

]

)

. (6)

On the other hand, we have

E exp (i(Xt − Xs)) = (E exp(iX1))
t−s = exp

(

−
1

2
(t − s)E(X1)

2

)

. (7)

It follows from (6) and (7) that E(XtXs) = sE(X1)
2 for s < t.

Proposition 3.1. Let 0 < α ≤ 2. A nontrivial, strictly α-stable, (1/α)-selfsimilar process
(Xt, t ≥ 0) is an IDT process.

Proof. Since X is strictly α-stable, we have

(

n(1/α)Xt, t ≥ 0
)

d
=

(

n
∑

i=1

X
(i)
t , t ≥ 0

)

, ∀ n ∈ N∗,

where X(1), ..., X(n) are independent copies of X. On the other hand, it follows from the self-
similarity of X that

(Xnt, t ≥ 0)
d
=

(

n(1/α)Xt, t ≥ 0
)

which implies {X(t)} is an IDT process.
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3.1 Strictly stable IDT processes

In the case of a Lévy process (Xt, t ≥ 0), Theorem 1.4.2 in [2] prove that L(X1) is stable if and
only if (Xt, t ≥ 0) is selfsimilar. We can generalize this result as follows.

Theorem 3.2. Let (Xt, t ≥ 0) be a nontrivial, stochastically continuous, IDT process. Then
(Xt, t ≥ 0) is strictly α-stable if and only if it is ( 1

α)-selfsimilar.

Proof. First, assume that (Xt, t ≥ 0) is ( 1
α)-selfsimilar. Using the IDT property, we obtain

(

n( 1
α

)Xt, t ≥ 0
)

d
= (Xnt, t ≥ 0)

d
=

(

n
∑

i=1

X
(i)
t , t ≥ 0

)

, for any n ∈ N∗,

where X(1), ..., X(n) are independent copies of X. Thus {X(t)} is strictly α-stable.
Conversely, suppose (Xt, t ≥ 0) is strictly α-stable. Since {X(t)} is an IDT process,

(Xnt, t ≥ 0)
d
= (

n
∑

i=1

X
(i)
t , t ≥ 0)

d
=

(

n
1
α Xt, t ≥ 0

)

, for any n ∈ N∗,

and also
(

X t
n
, t ≥ 0

)

d
=

(

(
1

n
)

1
α Xt, t ≥ 0

)

.

Hence, for any m ∈ N, n ∈ N∗, we have that
(

X(m
n

t), t ≥ 0
)

d
=

(

(m/n)
1
α Xt, t ≥ 0

)

.

Combining this with the stochastic continuity of {X(t)}, we obtain that {X(t)} is ( 1
α)-selfsimilar.

The proof is now complete.

Next, we will give an example of an IDT process which is not Lévy process and satisfies the
above theorem.

Example 3.1. Let Sα be a strictly α-stable random variable. The process X defined by

Xt = t1/αSα, t ≥ 0,

is an (1/α)-selfsimilar, IDT process.

Corollary 3.1. If α = 2 or 0 < α < 1, then 1
α -selfsimilar , IDT processes with stationary

increments are necessarily α-stable Lévy processes.

The proof of this corollary is straightforward from Theorem 7.5.4 in [6] and Theorem 3.2 above.

Corollary 3.2 (Sub-stable processes). Let 0 < α < 2, α < β ≤ 2 and (Yt, t ≥ 0) be a symmetric
β-stable IDT process and let ξ be a (α/β)-stable positive random variable independent of Y . The
process (Xt, t ≥ 0) defined by

Xt = ξ
1
β Yt,

is ( 1
β )-selfsimilar, symmetric α-stable.

Proof. The 1/β-self similarity follows from Theorem 3.2 and the symmetric α-stability can be
proved by using classical arguments on sub-stable processes (see Example 3.6.3 in [2]). So we
omit the details.
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3.2 Strictly semi-stable IDT processes

The following result gives the connection between semi-selfsimilarity and strict semi-stability for
IDT processes. The case of Lévy processes appears in [[7], Theorem 4.1].

Theorem 3.3. Let (Xt, t ≥ 0) be an Rd-valued IDT, stochastically continuous process. Then
1) (Xt, t ≥ 0) is semi-stable if it is wide-sense semi-selfsimilar.
2) (Xt, t ≥ 0) is semi-selfsimilar if and only if it is strictly semi-stable.

Proof. 1) Suppose X is wide-sense H-semi-selfsimilar, then for some a ∈ (0, 1) ∪ (1,∞), there
exists a nonrandom function c : [0,∞) → Rd, such that

(Xat, t ≥ 0)
d
= (aHXt + c(t), t ≥ 0)

Therefore, and by using IDT property, for all t1, t2, ..., tm ∈ R+ and all (θ1, ...θm) ∈ Rd×m, we
have

(

Eei
∑m

k=1〈θk,Xtk〉
)a

=
(

Eei
∑m

k=1〈θk,Xatk〉
)

=
(

Eei
∑m

k=1〈θk,aHXtk〉
)(

ei
∑m

k=1〈θk,c(tk)〉
)

.

It remains to show that (Xt1 , ..., Xtm) is infinitely divisible, which follows from the IDT property.
Thus (Xt, t ≥ 0) is 1/H-semi-stable.
2) Assume that (Xt, t ≥ 0) is strictly α-semi-stable, then for some a ∈ (0, 1) ∪ (1,∞), we have

(

Eei〈θ,a1/α(Xt1 ,...,Xtm )〉
)

=
(

Eei〈θ,(Xt1 ,...,Xtm )〉
)a

=
(

Eei〈θ,(Xat1 ,...,Xatm )〉
)

.

where the last equality follows from the IDT property. Hence (Xt, t ≥ 0) is 1/α-semi-selfsimilar.
The converse is proved in a similar way. Hence we omit the details.

Is a wide-sense H-selfsimilar in fact H-selfsimilar, if it is H-semi-selfsimilar? This question
has an answer in the case of a stable Lévy process in [4], but we can also answer this question in
the case of a stable IDT process.

Proposition 3.2. Let (Xt, t ≥ 0) be an Rd-valued, nontrivial, stochastically continuous α-stable
IDT process. If it is strictly α-semi-stable, then it is strictly α-stable.

Proof. Assume that (Xt, t ≥ 0) is strictly α-semi-stable, then for some a > 1

(Xat, t ≥ 0)
d
= (a1/αXt, t ≥ 0). (8)

Let t1, ..., tm ∈ R+, b1, ..., bm ∈ R fixed. Then there exists a finite measure Γ on the unit sphere
S of Rd×m and a vector µ in Rd×m with a symmetric nonnegative-definite matrix A, such that
the characteristic function of X := (Xt1 , ..., Xtm) has the following form

Eei<θ,X>

=











e{−
∫

S |<θ,s>|α(1−isign(<θ,s>) tan(πα/2))Γ(ds)+i<θ,µ>} if α 6= 1, 2

e{−
∫

S |<θ,s>|(1+i 2
π

sign(<θ,s>) ln |<θ,s>|)Γ(ds)+i<θ,µ>} if α = 1

e{−
1
2
<Aθ,θ>+i<θ,µ>} if α = 2.
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The pair (Γ, µ) is unique, and

sign(x) =







1 if x > 0
0 if x = 0
−1 if x < 0.

Using the IDT property and (8), we have

(

Eei<θ,X>
)a

= Eei<θ,(Xat1 ,...,Xatm )> = Eei<a
1
α θ,X>, ∀ θ ∈ Rd×m. (9)

First, if α 6= 1, then according to (9) we have aµ = a
1
α µ. Which implies that µ = 0. Thus, X is

strictly α-stable.
Let’s now assume that α = 1, then

∫

S
< θ, s > ln | < θ, s > |Γ(ds) =

∫

S
< θ, s > ln | < aθ, s > |Γ(ds).

Consequently
∫

S
ln(a) < θ, s > Γ(ds) = 0, ∀θ ∈ Rd.

This means that
∫

S skΓ(ds) = 0 for k = 1, 2, ..., d. Which is exactly the condition for the strictly
1−stability of X. Then every finite-dimensional distribution of (Xt, t ≥ 0) is strictly α-stable.
The proof is completed.

Applying the Lamperti transformation to semi-stable IDT processes, we derive a new class
of periodically stationary processes. Recall that a stochastic process (Yt, t ∈ R) is said to be
periodically stationary with period p (> 0) if

(Yt+p, t ∈ R)
d
= (Yt, t ∈ R).

Definition 3.4. Let 0 < α ≤ 2 and let (Xt, t ≥ 0) be a strictly α-semi-stable IDT, stochastically
continuous process, and we define a periodically stationary process (Yt, t ∈ R) by

Yt = e−t/αXet .

We call this process a generalized α-semi-stable Ornstein-Uhlenbeck process.

Proposition 3.3. A generalized α-semi-stable Ornstein-Uhlenbeck process (Yt, t ∈ R) is strictly
α-semi-stable.

Proof. From Theorem 3.3, point 2) we obtain

(Xat, t ≥ 0)
d
= (a1/αXt, t ≥ 0), for some a ∈ (0, 1) ∪ (1,∞). (10)

Combining the IDT property and (10), we have that for any θ = (θ1, ...., θm), θk ∈ Rd, k =
1, ..., m and (t1, ..., tm) ∈ Rm,

(

Eei〈θ,(Yt1 ,...,Ytm )〉
)a

=
(

Eei〈θ,(e−t1/αX
aet1 ,...,e−tm/αXaetm )〉

)

=
(

Eei〈θ,(a1/αe−t1/αX
et1 ,...,a1/αe−tm/αXetm )〉

)

=
(

Eei〈a1/αθ,(Yt1 ,...,Ytm )〉
)

.

Thus (Yt1 , ..., Ytm) is strictly α-semi-stable for any (t1, ..., tm) ∈ Rm. The proof is completed.
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3.3 Subordination through an IDT process

Subordination is a transformation of a stochastic process to a new stochastic process through
random time change by an increasing Lévy process (subordinator) independent of the original
process. The aim of this paragraph is to investigate the case where the chronometer is an
increasing IDT process .

Definition 3.5. A real-valued stochastic process ξ = {ξt, t ≥ 0} with ξ0 = 0 a.s. is called a
chronometer if, it is increasing, stochastically continuous.

The following result on chronometers is needed in the sequel. Its proof is obvious and so omitted.

Lemma 3.1. Let (ξ
′

t)t≥0 be a copies of a chronometer ξ then the following statements are true
¦ ξ

′

0 = 0 a.s.,
¦ for any t1, t2 with 0 ≤ t1 ≤ t2, P (0 ≤ ξ

′

t1 ≤ ξ
′

t2) = 1,

¦ and ξ
′
is stochastically continuous.

The following result is inheritance of IDT under time change when base processes are Lévy
processes.

Theorem 3.6. Let X be a Lévy process on Rd and ξ is an IDT chronometer such that X and ξ
are independent. Then (Zt := Xξt : t ≥ 0) is an IDT process.

Proof. Let ξ(j), j = 1, ..., n be independent copies of ξ. Since X is independent of ξ, then for
every n ≥ 1, θ = (θ1, ..., θm) ∈ (Rd)m, we have

J(n, θ) := E exp{

m
∑

k=1

i
〈

θk, Xξntk

〉

} = E





(

E exp{

m
∑

k=1

i 〈θk, Xsk
〉}

)

sk=ξntk
, k=1,...,m





By using the IDT property, we obtain

J(n, θ) = E







(

E exp{

m
∑

k=1

i 〈θk, Xsk
〉}

)

sk=
∑n

j=1 ξ
(j)
tk

, k=1,...,m







According to the change of variables ck = θk + ... + θn and t0 = 0, and the independence of
increments of X, we have

J(n, θ) = E







(

E exp{
m

∑

k=1

i
〈

ck, Xsk
− Xsk−1

〉

}

)

sk=
∑n

j=1 ξj
tk

, k=1,...,m







= E







(

m
∏

k=1

E exp{i
〈

ck, Xsk
− Xsk−1

〉

}

)

sk=
∑n

j=1 ξ
(j)
tk

, k=1,...,m







Now, it follows from the stationarity of the increments of X and the independence of the ξ(j),
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j = 1, ..., n, that

J(n, θ) = E













m
∏

k=1

n
∏

j=1

E exp{i
〈

ck, Xrj
k

〉

}





rj
k=ξ

(j)
tk

−ξ
(j)
tk−1

, k=1,...,m, j=1,...,n









= E











n
∏

j=1

E exp{
m

∑

k=1

i
〈

θk, Xrj
k

〉

}





rj
k=ξ

(j)
tk

, k=1,...,m, j=1,...,n







=



E





(

E exp{
m

∑

k=1

i 〈θk, Xrk
〉}

)

rk=ξtk
, k=1,...,m









n

=

(

E exp{
m

∑

k=1

i
〈

θk, Xξtk

〉

}

)n

.

This completes the proof.

Similarly, one can prove the following result.

Proposition 3.4. Let
{

Xs : s ∈ RN
+

}

be an RN
+ -parameter Lévy process on Rd and let {ξt : t ≥ 0}

be a N-dimensional subordinator in the sense of being a N-dimensional IDT process {ξt} =
{

(

ξ1
t , ..., ξN

t

)⊤
}

that is increasing in each coordinate with the superscript ⊤ denoting the trans-

pose, and {ξt} independent of
(

X(s) : s ∈ RN
+

)

. Define the subordinated process by composition
as follows

Yt = Xξt , t ≥ 0.

Then (Yt : t ≥ 0) is an IDT process on Rd.

4 Multiparameter IDT processes

In this section we introduce a notion of multiparameter infinitely divisible with respect to time
(IDT) processes. A typical example of this processes is the Lévy sheet.

Definition 4.1. An Rd-valued stochastic process (Xt, t ∈ RN
+ ) is said to be IDT if for any

n = (n1, ..., nN ) ∈ (N∗)N ,

(

X(n.t), t ∈ RN
+

) d
=





∏N
k=1 nk
∑

i=1

X
(i)
t , t ∈ RN

+



 ;

where X(1), ..., X(
∏N

k=1 nk) are independent copies of X and (n.t) := (n1t1, ..., nN tN ).

In the following we give some examples of multiparameter IDT processes.

Example 4.1. 1) Let ξ be a strictly α-stable random variable, the process defined by

(

Xt = (t
1/α
1 t

1/α
2 ....t

1/α
N )ξ, t ∈ RN

+

)

,

8



is an IDT process.

2) If X is an IDT process and µ a measure on RN
+ such that

X
(µ)
t =

∫

R
N
+

X(s.t) µ(ds), t ∈ RN
+ ,

is well defined, then X(µ) is an IDT process.
3) Let (Xt, t ≥ 0) be an IDT process, then the multiparameter process defined by

Yt = Xt1t2...tN , for any t = (t1, ..., tN ) ∈ RN
+ ,

is IDT.

In order to show that any Lévy sheet process is IDT, we give firstly the definition of such
process.

Definition 4.2. Let (Xt, t ∈ R2
+) be a family of random variables on Rd. we write Xs1,s2 instead

of Xs when s = (s1, s2)
⊤. For s = (s1, s2)

⊤ and u = (u1, u2)
⊤ in R2

+ with s1 ≤ u1 and s2 ≤ u2,
call B = (s1, u1] × (s2, u2] a rectangle in R2

+ and set

X(B) = Xu1,u2 − Xs1,u2 − Xu1,s2 + Xs1,s2 ,

If B1, ..., Bn are disjoint rectangles in R2
+ and B = ∪n

j=1Bj, then set X(B) =
∑n

j=1 X(Bj).

The stochastic process (Xt, t ∈ R2
+) is called a Lévy sheet if

(a) If n ≥ 2 and B1, ..., Bn are disjoint rectangles, then X(B1), ..., X(Bn) are independent.

(b) If B is a rectangle and s ∈ R2
+, then X(B)

d
= X(B + s).

(c) Xs1,0 = X0,s2 = 0 a.s. for s1, s2 ∈ R2
+.

(d) Xt → Xs in probability as |t − s| → 0 in R2
+.

Proposition 4.1. Let (Xt, t ∈ R2
+) be a Lévy sheet process on Rd, then it is IDT.

Proof. Let n,m ∈ N, θ = (θ1, ..., θp) ∈ Rd×p, 0 = s0 ≤ s1 < ... < sp and 0 = t0, t1, ..., tp ∈ R+,
let σ be a permutation such that tσ(1) ≤ ... ≤ tσ(p) and σ(0) = 0. We consider disjoint rectangles
(

Bl
k = (nsk−1, nsk] × (mtσ(l−1),mtσ(l)]

)

, k = 1, ..., p, l = 1, ..., p. Using Lévy sheet properties

(see [5]), there exist a matrix
(

cl
k

)

0≤k,l≤p
, cl

k ∈ Rd such that

Ee
i
∑p

j=1

〈

θj ,X(nsj,mtj)

〉

= Eei
∑p

j=1〈θj ,X((0,nsj ]×(0,mtj ])〉 = Eei
∑

0≤k,l≤p〈cl
k,X(Bl

k)〉.

=
∏

0≤k,l≤p

Eei〈cl
k,X(Bl

k)〉

=
∏

0≤k,l≤p

(

Eei〈cl
k,X1,1〉

)λ(Bl
k)

= I, say,
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where λ is the Lebesgue measure. Since λ(Bl
k) = n × mλ

(

(sk−1, sk] × (tσ(l), tσ(l−1)]
)

, then we
have

I =





∏

0≤k,l≤p

(

Eei〈cl
k,X1,1〉

)λ((sk−1,sk]×(tσ(l),tσ(l−1)])




n×m

=





∏

0≤k,l≤p

(

Eei〈cl
k,X((sk−1,sk]×(tσ(l),tσ(l−1)])〉

)





n×m

=
(

Eei
∑p

j=1〈θj ,X((0,sj ]×(0,tj ])〉
)n×m

This completes the proof.

Remark 4.1. If (Xt, t ∈ RN
+ ) is an Rd-valued stochastically continuous IDT process, then

Xt = 0 a.s for any t ∈ RN
+ , with inf

i=1,...,N
ti = 0.

Indeed, for any n ≥ 1, u ∈ Rd and t = (t1, ..., tj−1, 0, tj+1, ...tN ), by IDT property we have

E exp (i〈u,Xt〉) = E exp
(

i〈u,X(t1,...,tj−1,n×0,tj+1,...,tN )〉
)

= [E exp (i〈u,Xt〉)]
n .

Moreover the characteristic function of Xt is non vanishing (because the laws of this variable is
infinitely divisible), then

EeiuXt = 1, for all u ∈ Rd.

Thus, L(Xt) = δ0, where δ0 is the distribution concentrated at 0 and L(X) denotes the law of
X.

According to Mansuy [3], Proposition 1.1, any one-parameter Lévy process is IDT. The follow-
ing result shows that such a result does’nt hold in the multiparameter case. We refer to Pedersen
and Sato [[5], Definition 2.1] for the definition and properties of RN

+ -parameter Lévy processes
in law.

Proposition 4.2. Let N ≥ 2. If (Xt, t ∈ RN
+ ) is an RN

+ -parameter Lévy processes in law
satisfying the IDT property, then Xt = 0 a.s, ∀t ∈ RN

+ .

Proof. Assuming X a such process. Then by Remark 4.1, we have

Eei〈u,Xt〉 =
N
∏

k=1

Eei〈u,X(0,...,0,tk,0,...,0)〉 = 1, for any t ∈ RN
+ , u ∈ Rd.

this proves L(Xt) = δ0, ∀t ∈ RN
+ .

In the following we show that for any stochastically continuous IDT process X there exists a
Lévy sheet that has the same one-dimensional marginals with X.

Proposition 4.3. Let
(

Xt, t ∈ R2
+

)

be a stochastically continuous IDT process. Then there exists
a Lévy sheet process (Zt, t ∈ R2

+) such that

Xt
d
= Zt, for any t ∈ R2

+.
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Proof. First we note that the laws of finite dimensional marginals of an multiparameter IDT
process X are infinitely divisible. In particular, the law of X1,1 is infinitely divisible, then there

exists a Lévy sheet (Zt, t ∈ R2
+) with X1,1

d
= Z1,1. It follows that if Zt, t ∈ R2

+ is a Lévy sheet
then L(Xt) is infinitely divisible and that

E
[

ei〈z,Xt1,t2〉
]

=
(

E
[

ei〈z,X1,1〉
])t1t2

for any t1, t2 ∈ R+.

Hence
Xt

d
= Zt, for any t ∈ R2

+.

Definition 4.3. An stochastic process
(

Yt, t ∈ RN
)

is said to be strictly stationary if, for every
a ∈ RN

(

Ya+t, t ∈ RN
) d

=
(

Yt, t ∈ RN
)

.

For the characterization of IDT Gaussian multiparameter processes, we will need the following

Lemma 4.1. Let
(

Yt, t ∈ RN
)

be a strictly stationary process, and fix H = (h1, ..., hN ) ∈ (R∗
+)N .

Define
(

Xt, t ∈ RN
+

)

by

Xt = th1
1 ...thN

N Y(log(t1),...,log(tN )), t ∈ (R+)N ; X0 = 0,

then
(

Xt, t ∈ RN
+

)

is H-selfsimilar in the following sense

(

X(a.t), t ∈ (R+)N
) d

=
(

ah1
1 ...ahN

N Xt, t ∈ (R+)N
)

for any a ∈ (R∗
+)N .

Conversely, if
(

Xt, t ∈ (R+)N
)

is H-selfsimilar process, then its Lamperti transform

(

Yt := e{−
∑N

k=1 hktk}X(et1 ,...,etN ), t ∈ RN
)

,

is strictly stationary.

Proof. Assume that
(

Yt, t ∈ RN
)

is strictly stationary, then for any a = (a1, ..., aN ) ∈ (R∗
+)N ,

we have

(

X(a.t), t ∈ RN
+

)

=
(

(a1t1)
h1 ...(aN tN )hN Y(log(a1)+log(t1),...,log(aN )+log(tN )), t ∈ RN

+

)

d
=

(

(a1t1)
h1 ...(aN tN )hN Y(log(t1),...,log(tN )), t ∈ RN

+

)

=
(

ah1
1 ...ahN

N Xt, t ∈ RN
+

)

,

thus,
(

Xt, t ∈ RN
+

)

is H-selfsimilar. Conversely, since
(

Xt, t ∈ RN
)

is H-selfsimilar, for any

b = (b1, ..., bN ) ∈ R+
N we have

(

Y(t+b), t ∈ RN
)

=
(

e{−
∑N

k=1 hk(tk+bk)}X(et1+b1 ,...,etN +bN ), t ∈ RN
)

d
=

(

e{−
∑N

k=1 hktk}X(et1 ,...,etN ), t ∈ RN
)

=
(

Yt, t ∈ RN
)

.

Thus,
(

Yt, t ∈ RN
)

is strictly stationary.
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Proposition 4.4. Let (Xt, t ∈ RN
+ ) be a stochastically continuous, centered Gaussian process.

Then the following properties are equivalent:
i) (Xt, t ∈ RN

+ ) is an IDT process.
ii) The covariance function c(s, t) := E(XsXt), (s, t) ∈ RN

+ × RN
+ , satisfies

c(α.s, α.t) = α1...αNc(s, t), for any α ∈ (R∗
+)N .

iii) The process (Xt, t ∈ RN
+ ) is (1

2 , ..., 1
2)-selfsimilar.

iv)
(

Yy := e{−
∑N

k=1 hkyk}X(ey1 ,...,eyN ), y ∈ RN
)

is strictly stationary.

Proof. i) ⇔ ii). We have, (Xt, t ∈ RN
+ ) is IDT if and only if, for any n = (n1, ..., nN ) ∈ NN , s, t ∈

RN
+

c(n.s, n.t) = n1...nNc(s, t),

and also, for any q = (q1, ..., qN ) ∈ QN
+ , s, t ∈ RN

+

c(q.s, q.t) = q1...qNc(s, t).

Moreover, since X is stochastically continuous, its covariance function is continuous. Hence,
using the density of Q+ in R+, we obtain the result.
ii) ⇔ iii). Since the centered Gaussian process is characterized by its covariance function, we
obtain the result easily.
iii) ⇔ iv). It is a direct application of Lemma 4.1 for H = (1/2, ..., 1/2).

Example 4.2. Let (Bt, t ∈ RN
+ ) ba a Brownian sheet. i.e. the centered, real-valued Gaussian

random field with covariance function E (B(t)B(s)) =
∏N

i=1 si ∧ ti. Since its covariance function
satisfies the point ii) of Proposition 4.4, then (Bt, t ∈ RN

+ ) is an IDT process.

We will define the multiparameter temporally selfdecomposable processes which extend the
one introduced in [1] and relate this notion with the IDT processes.

Definition 4.4. An Rd-valued stochastic process X = (Xt, t ∈ RN
+ ) is temporally selfdecompos-

able if, for every c ∈ (0, 1)N , there exist two independent processes X(c) = (X
(c)
t , t ∈ RN

+ ), and

U (c) = (U
(c)
t , t ∈ RN

+ ) on Rd, such that

X
d
= X(c) + U (c),

where X(c) d
= (X(c.t), t ∈ RN

+ ) and U c is called the c-residual of X.
For every m ≥ 2, we say that X is temporally selfdecomposable of order m if, it is temporally
selfdecomposable and for any c ∈ (0, 1)N , the c-residual process of X is temporally selfdecompos-
able of order (m − 1). When X is temporally selfdecomposable of order m for all m, we call it
infinitely temporally selfdecomposable.

Proposition 4.5. An Rd-valued, stochastically continuous IDT process is infinitely temporally
selfdecomposable.
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Proof. By stochastic continuity and IDT property, we have for any (t1, ..., tm) ∈ (RN
+ )m, ξ ∈ Rm

and c = (c1, ..., cN ) ∈ (0, 1)N

Ee
∑m

j=1 i〈ξj ,Xtj 〉 =

(

Ee

∑m
j=1 i

〈

ξj ,X
(c1t1

j
,...,cN tN

j
)

〉

)1/
∏N

k=1 ck

=
(

Ee
∑m

j=1 i〈ξj ,Xc.tj 〉
)






Ee

∑m
j=1 i

〈

ξj ,X
(c1( 1

∏N
k=1

ck
−1)t1

j
,...,cN ( 1

∏N
k=1

ck
−1)tN

j
)

〉






.

Therefore (Xt, t ∈ RN
+ ) is temporally selfdecomposable and

(Xt, t ∈ RN
+ )

d
= (Xc.t + U c

t , t ∈ RN
+ ),

where U c is independent of (Xc.t, t ∈ RN
+ ) and

(U c
t , t ∈ RN

+ )
d
= (X(c1( 1

∏N
k=1

ck
−1)t1,...,cN ( 1

∏N
k=1

ck
−1)tN ), t ∈ RN

+ ) (11)

It follows from (11) that U c is stochastically continuous and IDT. The same steps as above applied
to U c, proves that U c is temporally selfdecomposable and its residuel process is stochastically
continuous and IDT. Continuing in exactly the same manner, we conclude that X is infinitely
temporally selfdecomposable.
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