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4d Lorentzian Holst action with topological terms
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(Dated: November 5, 2018)

We study the Hamiltonian formulation of the general first order action of general relativity com-
patible with local Lorentz invariance and background independence. The most general simplectic
structure (compatible with diffeomorphism invariance and local Lorentz transformations) is obtained
by adding to the Holst action the Pontriagin, Euler and Nieh-Yan invariants with independent cou-
pling constants. We perform a detailed canonical analysis of this general formulation (in the time
gauge) exploring the structure of the phase space in terms of connection variables. We explain
the relationship of these topological terms, and the effect of large SU(2) gauge transformations in
quantum theories of gravity defined in terms of the Ashtekar-Barbero connection.

I. INTRODUCTION

The possibility of describing the phase space of gravity as a background independent SU(2)
connection gauge theory is a remarkable property of the first order formulation of general relativity
in four dimensions. This is the basis of the canonical quantization program of gravity known as
loop quantum gravity [1]. After the discovery of the self dual connection formulation of canonical
general relativity by Ashtekar [2], it was soon realized by Barbero [3] that a formulation in terms
of a real SU(2) connection was indeed possible. The only price to be paid is the appearance of a
new free parameter γ ∈ R − {0} (the so-called Immirzi parameter [4]) into the definition of the
canonical variables. A first step in clarifying the origin of the Immirzi parameter was to show[5]
that the Ashtekar-Barbero variables can be obtained directly from the Hamiltonian formulation
of general relativity defined by the first order action

S[e, ω] =

∫

⋆
(
eI ∧ eJ

)
∧ FJI(ω) +

1

γ
eI ∧ eJ ∧ FIJ (ω) (1)

where e is a vierbein and ω is a Lorentz connection. The first term is the standard Palatini
action of general relativity, while second term can be shown not to affect the classical equations
of motion. The reason for this is that δωS = 0 is independent of γ, and implies the connection
to be the uniquely defined torsion free connection compatible with e: ω = ω(e). The second
term contribution to the equation δeS = 0 vanishes identically when evaluated on ω(e) due to the
Riemann tensor identity R[abc]d = 0.
The canonical formulation of the Holst action leads in this way to a one parameter family

of SU(2) connection formulations of the phase space of general relativity: all of them related by
canonical transformations. However, in the quantum theory the canonical transformations relating
different connection formulations appear not to be unitarily implemented. For instance the spectra
of geometric operators are modulated by γ. Formally speaking, the off shell contributions of the
second term in the action (1) have a non trivial effect on amplitudes in the path integral formulation
of quantum gravity.
There is at least another real parameter—describing the family of possible SU(2) connection

formulations of gravity—with very similar qualitative effects: the so called θ parameter. Again,
this parameter labels classically equivalent formulations that become physically different upon
quantization. The reason for this is geometrically more transparent than the case of the Immirzi
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parameter as the effects of the θ parameter in the quantum theory are associated to the transfor-
mation properties of physical states under large SU(2) gauge transformations [12, 13]. Physically,
the phenomenon is in strict analogy with the θ parameter effects in QCD.
All this motivates the following questions (we shall explore in this work): Are there yet more

general SU(2) connection formulations of gravity? i.e., are there new parameters in addition to
γ and θ? and if so, how naturally they arise from the Lagrangian framework, and , what are
their possible physical effects upon quantization? More particularly, does the θ parameter in the
connection formulation of gravity have a natural description at the Lagrangian level? We will
shed some light on these questions by studying the canonical formulation of a general family of
actions for general relativity (in a sense described below).
Holst’s action allows to understand the presence of a non-vanishing and finite Immirzi parameter

from a more clear standpoint. In fact, not having the second term in the first order formulation
of general relativity (i.e. choosing γ = ∞ or in other words the Palatini formulation) would be
un-natural from the Wilsonian perspective that calls for including in the action principle all terms
compatible with the symmetry and field content of the theory. From this perspective the Immirzi
parameter γ ∈ R − {0} is not an input but a consequence of local Lorentz plus diffeomorphism
invariance together with the choice of e and ω as fundamental fields. If we pursue this logic further
then the most general action principle—compatible with diffeomorphism invariance and Lorentz
invariance—describing pure-gravity in the first order formalism is

S[e, ω] =

∫
Holst

︷ ︸︸ ︷

α1 ⋆
(
eI ∧ eJ

)
∧ FJI(ω) + α2e

I ∧ eJ ∧ FIJ (ω)+

Pontrjagin
︷ ︸︸ ︷

α3F
IJ(ω) ∧ FJI(ω)

+ α4F
IJ (ω) ∧ ⋆FJI(ω)

︸ ︷︷ ︸

Euler

+α5 dωe
I ∧ dωeI − eI ∧ eJ ∧ FIJ (ω)

︸ ︷︷ ︸

Nieh−Y an

+ α6 eI ∧ eJ ∧ eK ∧ eLǫIJKL
︸ ︷︷ ︸

Cosmological constant

, (2)

where α1, α2 and α5 have M2 dimension, α3 and α4 are real dimensionless parameters, and α6 is
proportional to the cosmological constant. It is a remarkable feature that only finitely many terms
are allowed by the symmetry once first order variables are chosen. This is in clear contrast with
the formulation of pure-gravity in terms of metric variables where the most general action has
infinitely many (higher-curvature) contributions1. We should point out that special case of the
previous general action have been studied in the literature by Montesinos [9] and more recently by
Date et al. in [10] and by Mercuri in [11] (the last two references consider coupling with fermion).
We will discuss in detail these special cases a the end of this paper.
Notice that the terms proportional to α3, α4, and α5 are the Pontrjagin, the Euler, and the

Nieh-Yan classes respectively. As the term proportional to α2, these topological invariants have
no effect on the equations of motion of gravity as they can be written as the exterior derivative
of suitable 3-forms (see equation (3) below). However, these boundary terms affect the canonical
structure of the theory: they act as generating functionals of canonical transformations. As
mentioned above this might have physical relevance when these canonical transformations cannot
be unitarily implemented in the quantum theory. Heuristically, the off-shell contributions of the
topological terms in (2) to transition amplitudes (in the language of the functional integral) might
have non trivial effect in quantum gravity.
The paper is organized as follows: In the following section we perform the canonical analysis

of the action (2). In addition to providing a complete analysis of the effect of the addition

1 Incidentally, this would imply the renormalizability of quantum gravity if in the construction of the quantum
theory one could find a regularization prescription compatible with the symmetries of (2).
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of topological invariants to the Holst action (completing existing existing results in the literature
[9, 10]), this section provides a detailed presentation of Holst’s results [5] in a way that is alternative
to the formulation of Barros e Sa [6]. As there are second class constraints that, for general values
of the couplings, cannot be explicitly solved in Section III we compute the Dirac brackets in all
generality. In Section IV we specialize to the family of couplings for which second class constraints
can be solved, and we show that the term leading to the θ parameter in gravity cannot be obtained
for real couplings. We discuss the way in which the θ term can be introduced at the Lagrangian
level in Section V. We conclude with a discussion of our results in Section VI.

II. CANONICAL ANALYSIS

The first step in trying to understand the effects of the topological terms added to the Holst
action is to perform the canonical analysis of our action. In order to do this it will be convenient
to write the topological terms in (2) explicitly as exterior derivatives of 3-forms, namely

S[e, ω] =

∫
Holst

︷ ︸︸ ︷

α1 ⋆
(
eI ∧ eJ

)
∧ FJI(ω) + α2e

I ∧ eJ ∧ FIJ (ω)

+ (α3 − iα4)dLCS(ω
ASD) + (α3 + iα4)dLCS(ω

SD) + α5d(dωe
I ∧ eI), (3)

where ωSD = i(⋆ω)SD = ω − i(⋆ω) and ωASD = i(⋆ω)ASD = ω + i(⋆ω) are the self-dual and
anti-self dual parts of the Lorentz connection ω respectively, and

LCS(ω) = ωIJ ∧ dωIJ +
2

3
ωIJ ∧ [ω ∧ ω]IJ (4)

is the Chern-Simons Lagrangian density. Despite of the presence of complex variables in the above
expression of the action, the action principle is manifestly real as the strict equality with (2) holds.
In performing the canonical analysis of our theory we will use both (2) as well as (3) according to
convenience.
As mentioned above, the addition of boundary terms to the action principle induces canon-

ical transformations in the phase space formulation. Notice that the terms added to Holst’s
formulation are the most general total differentials that one can write using the fields e and ω
without breaking local Lorentz invariance and diffeomorphism invariance. Therefore, studying the
canonical structure behind (2) amounts for studying the most general set of possible canonical
transformations compatible with the field content and symmetries of the action.
We assume that the spacetime manifold has topology M = Σ× R, with Σ compact. In order

to perform the Hamiltonian formulation we start by doing the customary (3 + 1) decomposition
consisting of choosing an arbitrary foliation of spacetime in terms of the level hyper-surfaces of
a global time function t. The hyper-surfaces t = constant will be denoted Σ as well. We denote
na the normal to the foliation. The arbitrariness in the choice of foliation is encoded in the lapse
scalar N and the shift vector (tangent to the foliation) Na which imply that the time vector ta

(defined by ta(t) = 1) takes the form ta = Na + Nna. This implies that the following equation
for the projection of the tetrad in the ta direction:

eIt = NnI + eIaN
a,

where nI ≡ naeIa. With these definitions the Holst action (for the moment we are ignoring the
topological terms, i.e. taking α3 = α4 = α5 = 0) takes the simple form:

LH = 2ǫabceIae
J
b qIJKLF

KL
tc + 2N ǫabcnIeJa qIJKLF

KL
bc + 2Nd ǫabceIde

J
a qIJKLF

KL
bc , (5)
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where qIJKL = α1ǫIJKL + α2ηIJKL denoting by ηIJKL = η[I|K|ηJ]L the invariant metric in the

Lie algebra of the Lorentz group. If we define Πa
KL = 2ǫabceIbe

J
c qIJKL then the previous action

takes the form

LH = Πa
I ė

I
a +Πa

IJ ω̇
IJ
a +N IJDaΠ

a
IJ + 2N ǫabcnIeJa qIJKLF

KL
bc +NaΠb

IJF
IJ
ba

+(1)λI
aΠ

a
I +

(2)λKL
a (Πa

KL − 2ǫabceIbe
J
c qIJKL), (6)

where N IJ ≡ ωIJ
t , N , Na, (1)λI

a, and (2)λKL
a are Lagrange multipliers imposing the primary

constraints of the Holst action. On the other hand Πa
IJ and Πa

I denote the momentum conjugate
to ωIJ

a and eIa respectively. Therefore, the primary constraints are

Πa
I ≈ 0 (7)

Πa
KL − 2ǫabceIbe

J
c qIJKL ≈ 0 (8)

Lorentz-Gauss law DaΠ
a
IJ = 2Da(ǫ

abceIbe
J
c qIJKL) ≈ 0 (9)

Vector constraint ǫabceIde
J
a qIJKLF

KL
bc ≈ 0 (10)

Scalar constraint ǫabcnIeJa qIJKLF
KL
bc ≈ 0. (11)

A simple look at the list of primary constraints tell us that there will be secondary constraints
when we require the primary to be preserved by the Hamiltonian evolution. However, before
continuing and completing the analysis it will be convenient to treat the general case including
the topological terms.

A. The Holst action plus topological terms

Including the topological terms is straightforward at this level. According to (3), and using that
∂Σ = 0, the Lagrangian (5) is modified by the addition of the total time derivative, namely

L = LH + (α3 − iα4)∂tLCS(ω
ASD) + (α3 + iα4)∂tLCS(ω

SD) + α5∂t(dωe
I ∧ eI), (12)

which, using that ∂tLCS(ω) = 2Ba
IJ(ω)ω̇

IJ
a where Ba

IJ = ǫabcFbc(ω), implies that the conjugate
momenta Πa

IJ and Πa
I receive additional contributions of the form 4α3B

a
IJ + 4α4ǫ

KL
IJ Ba

KL +
α5ǫ

abc(eb)[I(eb)J] and 2α5ǫ
abcdωe

I
bc respectively. Notice that, due to ∂Σ = 0, the addition of the

topological terms only affects the kinetic term of the Holst action. More precisely if we define the
real functional

W (ωIJ
a , eIa) =

∫

Σ

(α3 − iα4)LCS(ω
ASD) + (α3 + iα4)LCS(ω

SD) + α5(dωe
I ∧ eI), (13)

the new constraints become

Πa
I −

δW

δeIa
=

= Πa
I − 2α5ǫ

abc(dωe)bcI ≈ 0 (14)

Πa
IJ − 2ǫabceKb eLc qIJKL −

δW

δωIJ
a

=

= Πa
KL − 2ǫabceIbe

J
c qIJKL − α5ǫ

abc(eb)[K(eb)L] − 4α3B
a
KL − 4α4ǫ

IJ
KL Ba

IJ ≈ 0 (15)

Lorentz-Gauss law DaΠ
a
IJ = 2Da(ǫ

abceIbe
J
c qIJKL) ≈ 0 (16)

Vector constraint ǫabceIde
J
a qIJKLF

KL
bc ≈ 0 (17)

Scalar constraint ǫabcnIeJa qIJKLF
KL
bc ≈ 0. (18)
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Notice that the addition of the topological invariants, being just boundary terms, modify only the
constraints defining the momenta. The vector and scalar constraints remain the same as they do
not depend on momentum variables at this stage (eIa is here considered a configuration variable).
The Gauss law (16) does depend on the momenta (as written as in the l.h.s.); however, it also
remains unchanged (as in the r.h.s.) due to the Bianchi identity implying DaB

a
IJ = 0.

B. The time gauge: reducing SO(3, 1) to SO(3)

Let us now introduce the standard gauge condition that reduces the Lorentz gauge symmetry
to an SO(3) gauge symmetry. The gauge condition is often called the time-gauge condition. It
corresponds to the requirement that the zeroth element of the tetrad coincide with the co-normal
to Σ, namely nIe

I
µ = nµ. This implies the phase-space additional gauge-fixing constraint

nIe
I
a ≈ 0, (19)

which now must be added to the list of primary constraint above. The previous gauge fixing
condition is necessary to recover the compact gauge group connection variables that are used in
LQG. One can of course complete the Hamiltonian formulation without breaking the local Lorentz
invariance. However, the price to be paid is a non trivial Dirac bracket between the components
the Lorentz connection ωIJ

a [7] precluding the existence of a connection representation in the
quantum theory. A proposal for quantizing the non-commutative connection can be found in [8].
The condition (19) is second class with respect to the projection of equation (7) in the nI

internal direction. In other words the requirement that the gauge (19) is preserved in time fixes
the Lagrange multipliers (1)λa

I in (6). This means that we can impose nIΠa
I = 0 and nIe

I
a = 0

strongly. From now on we will take nI = (1, 0, 0, 0) and denote with lower case Latin alphabet
letters the space-like internal directions. The new restricted dynamical system is described by

Πa
i − 2α5ǫ

abc(dωe)bci ≈ 0 (20)

1

2
ǫ ij
k Πa

ij ≈ (2α2 − α5)ǫ
abceibe

j
cǫijk + 4α3ǫ

ij
k Ba

ij − 16α4B
a
k0 (21)

Πa
k0 ≈ 2α1ǫ

abceibe
j
c ǫijk + 4α3B

a
k0 − 4α4ǫ

lm
k Ba

lm (22)

Lorentz-Gauss law

{
ǫmlkE

alK̂k
a ≈ 0,

∂dE
dk + ǫijkΓ̂

i
dE

dj ≈ 0,
(23)

Vector constraint Πb
ijF

ij
ba + 2Πb

i0F
i0
ba ≈ 0 (24)

Scalar constraint ǫabceia q0ijkF
jk
bc + 2ǫabceia q0i0kF

0k
bc ≈ 0, (25)

where we have used the following definitions

Ea
i ≡

1

2
ǫabcejae

k
b ǫijk, K̂i

a ≡ ω0i
a Γ̂i

a ≡
1

2
ǫi jkω

jk
a (26)

and the Bianchi identity to write the Gauss law constraints (23). We will see in a moment that
the previous variables are indeed the extrinsic curvature component and the Levi-Civita spin
connection respectively, which justifies the notation. Equations (21) and (22) can be combined in
a way to simplify the dependence on the triad eia: notice that the triad dependence is the same
in both equations. Therefore, one can introduce new variables

±
P

a
i ≡

1

4
ǫ jk
i Πa

jk ±
2α2 + α5

4α1
Πa

i0

=
1

4
ǫ jk
i Πa

jk ±
1

2γ
Πa

i0, (27)
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where we introduced the definition γ ≡ 2α1

2α2−α5
. The previous new momenta are the conjugate of

new SO(3) connections

±ωdl = ±γωdl0 +
1

2
ǫ mn
l ωdmn, (28)

and we recognize γ as the Immirzi parameter at this stage. In the time gauge, one can write
the functional W (ωIJ

a , eIa) defined in (13) as a functional as W (ωIJ
a , eIa) = W0(

+ωi
a,

−ωi
a) +

α5ǫ
abc(dωe)

i
abeci where W0(

+ωi
a,

−ωi
a) is simply the value of W (ωIJ

a , eIa) for α5 = 0. Using the
new variables the constraints become

(I)ai ≡ Πa
i − 2α5ǫ

abc(dωe)bci ≈ 0 (29)

(II)ak ≡ +
P

a
k − 2

α1

γ
ǫabceibe

j
cǫijk −

δW0

δ+ωi
a

(30)

(III)ak ≡ −
P

a
k −

δW0

δ−ωi
a

(31)

Boosts constraint Bk ≡ ∂dE
dk − ǫijkΓ̂

i
dE

dj ≈ 0 =⇒ Bk = −ǫijkE
ai(Γ̂j

a − Γj
a) ≈ 0 (32)

SO(3) Gauss law Gm ≡ ǫmlkE
alK̂k

a ≈ 0 (33)

Vector constraint Va ≡ Πb
ijF

ij
ba + 2Πb

i0F
i0
ba ≈ 0 (34)

Scalar constraint S ≡ ǫabceia q0ijkF
jk
bc + 2ǫabceia q0i0kF

0k
bc ≈ 0, (35)

where

K̂i
a =

1

2γ
(+ωi

a −
−ωi

a) Γ̂i
a =

1

2
(−ωi

a +
+ωi

a). (36)

Notice that we have re-written the boost part of the Lorentzian Gauss law—which we should
expect to be second class due to the time gauge condition (19)—in terms of the spin connection
Γi
a, i.e., the solution of Cartan’s first structure equation

∂[ae
k
b] − ǫk ijΓ

i
[ae

j

b] = 0. (37)

Indeed it will be convenient to introduce the quantity

(IV)ia ≡ Γ̂i
a − Γi

a. (38)

We will explicitly show in what follows how three components of the boost part of the Lorentzian

Gauss law plus six secondary constraints (not derived yet) imply (IV)
i
a ≈ 0 which will be shown

to be second class.
By setting W = 0 one recovers the primary constraints of Holst [5]. Notice in addition that,

as mentioned above, only the first three constraints in the previous list are modified by the
addition of the Pontrjagin, Euler and Nieh-Yan invariants to the Holst action. The modification
is very simple: if we take {+ωi

a,
−ωi

a, e
i
a} as configuration variables then, the Holst momenta are

shifted according to p → p + {p,W (+ωi
a,

−ωk
a , e

i
a)}, where p denotes +Pa

i ,
−Pa

i , and Πa
i . The

modification introduced by the topological invariants is just a canonical transformation generated
by W (+ωi

a,
−ωk

a , e
i
a). For that reason, the constraint algebra is not affected by the topological

terms. Therefore, the consistency conditions (secondary constraints) that follow from requiring
that primary constraints are preserved by the total Hamiltonian remain unchanged. This also
hold for the classification between first class and second class constraints. Collecting all primary
constraints the Hamiltonian becomes

H =

∫

Σ

NS +NaVa +NkGk + λkBk + λ(1)

dl (I)
dl + λ(2)

dl (II)
dl + λ(3)

dl (III)
dl, (39)
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At this point one needs to look for potential secondary constraint by requiring that the constraint
surface be preserved by the time evolution defined by the previous Hamiltonian. This leads to the
following consistency conditions:

0 ≈ {(I)
a
i , HT } =

4α1

γ
ǫabcλ(2)j

b ekc ǫijk + additional terms (40)

0 ≈ {(II)
a
i , HT } =

1

2
λjEakǫijk − (α5 + 2(2α2 − α5))ǫijkǫ

abcejbλ
(1)k
c −

δH0

δ+ωk
a

(41)

0 ≈ {(III)ai , HT } =
1

2
λjEakǫijk − α5ǫijkǫ

abcejbλ
(1)k
c −

δH0

δ−ωk
a

(42)

0 ≈ {Bi, HT } = −
1

2
ǫijkλ

(3)j
b Ebk + additional terms, (43)

where H0 ≡
∫

Σ
NS+NaVa+NkGk is a linear combination of the scalar, vector and SO(3) Gauss

constraints. Equations (40) and (41) completely determine the Lagrange multipliers λ(2)j
b and

λ(1)j
b respectively. Equation (43) determines the antisymmetric part of λ(3)

ij ≡ λ(2)

bi E
b
j , i.e., it fixes

three out of the nine components of the Lagrange multiplier λ(3)j
b . Hence, there are no secondary

constraints arising from these equations.
Equation (42) leads to secondary constraints. To see this one has to replace in (42) the solution

for λ(1)i
a obtained from (41). Consider the quantity

Cij ≡ (ea)j {(III)
a
i , HT } . (44)

Then it is easy to see that the three conditions C[ij] = 0 can be used to fix the Lagrange multipliers

λi while the remaining six conditions C(ij) = 0 are proportional to

C(ij) = (ea)(j

{

(III)
a
i), HT

}

∝ ǫabdEd(md(Γ̂)a ebl) ≈ 0, (45)

where dΓ̂ is the exterior covariant differential computed with Γ̂. Notice now that the six indepen-
dent above constraints over Γ̂ can be combined with the three boost constraints Bi in (32) into
the nine component constraint (38), namely

Bi = 0 in addition to C(ij) = 0 ⇔ (IV)
i
a ≡ Γ̂i

a − Γi
a = 0. (46)

We can therefore rearrange the total Hamiltonian in the more convenient form

HT =

∫

Σ

NS +NaVa +NkGk + λ(1)

dl (I)
dl + λ(2)

dl (II)
dl + λ(3)

dl (III)
dl + λ(4)d

l (IV)ld, (47)

where instead of adding the secondary constraint (45) to the primary constraints Hamiltonian,
we have dropped the term λkBk from the integrand in (39) and added the term λ(4)d

l (IV)ld in the
previous expression of the total Hamiltonian. One can check that the consistency conditions of
the new set of constraints fix the Lagrange multipliers λ(µ) for µ = 1, 2, 3, 4, while the Lagrange
multipliers N,Na and Nk are left arbitrary. From this one concludes that the 36 constraints (I)ai ,
(II)ai , (III)

a
i , and (IV)ia are second class constraint while the seven remaining constraints (the

scalar S, vector Va and Gauss Gk constraints) are first class2. There are 27 configuration variables

eia,
+ωi

a, and
−ωi

a; therefore, the counting of degrees of freedom yields the expected two degrees of
freedom of gravity.

2 Strictly speaking the scalar S, vector Va and Gauss Gk constraints are not first class as written here. In order
to make them into first class constraints one would need to add to them appropriate linear combinations of the
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III. CONSTRUCTION OF THE DIRAC BRACKET

The analysis up to this point follows the same logical line as in the Holst’s case, by the simple
fact that the addition of a surface term to the action does not change the Poisson brackets among
the constraints. However, contrary to the Holst case, we cannot explicitly solve the constraint
(II)ai . The reason is the presence of the curvature tensor in the magnetic field contributions to
(30) which prevents one from eliminating the densitized triad as a function of the connection
and its momenta: the dependence on the densitized triad on is quite complicated due to the non
polynomial character of the spin connection Γi

a(E). Thus, in order to complete the canonical
analysis of the general action, we need to explicitly construct the Dirac brackets for the second
class constraints (I)ai , (II)

a
i , (III)

a
i , and (IV)ia. Before computing the constraint algebra it will

be convenient to replace the constraint (I)ai . The constraint algebra is

{
(I)ai , (I)

b
j

}
= 0, (48)

{
(I)ai , (II)

b
j

}
= (4α2 − α5) ǫ

abcǫijke
k
cδ

3(x, y), (49)
{
(I)ai , (III)

b
j

}
= α5ǫ

abcǫijke
k
c δ

3(x, y), (50)

{

(I)ai , (IV)jb

}

=
δΓj

b(y)

δeia(x)
, (51)

{
(II)ai , (II)

b
j

}
= 0, (52)

{
(II)ai , (III)

b
j

}
= 0, (53)

{

(II)ai , (IV)jb

}

= −
1

2
δbaδ

j
i δ

3(x, y), (54)
{
(III)ai , (III)

b
j

}
= 0, (55)

{

(III)ai , (IV)jb

}

= −
1

2
δbaδ

j
i δ

3(x, y), (56)
{
(IV)ai , (IV)bj

}
= 0. (57)

second class constraints. Nevertheless, the fact that N,Na and Nk are not fixed by the equations of motion
implies the existence of 7 first class constraints and that these coincide with the scalar S, vector Va and Gauss
Gk constraints once the second class constraints have been solved. To see this in a more general way, suppose
we have two sets of constraints, φA and θA such that

{φA, φB} = 0,

{φA, θB} = MAB,

{θA, θB} = ∆AB,

where ∆ is an invertible matrix and M not. We can ‘decouple’ the two sets of constraints by the redefinition:

φA → φ̃A = φA −MAC(∆−1)CDθD ,

the algebra becomes:

{φ̃A, φ̃B} = {φA −MAC(∆−1)CDθD, φB −MBC(∆−1)CDθD} ≈ 0,

{φ̃A, θB} = −{MAC(∆−1)CD , θB}θD ≈ 0,

{θA, θB} = ∆AB ,

this is completely equivalent to solve first the Dirac brackets for the θA sector and then, recomputing the
remaining algebra for the φA sector.
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We construct the Dirac matrix, which we represent symbolically as

M =







0 (4α2 − α5)A
ab
ij (x, y) α5A

ab
ij (x, y) Bbk

al (x, y)
−(4α2 − α5)A

ab
ij (x, y) 0 0 − 1

2I
bk
al (x, y)

−α5A
ab
ij (x, y) 0 0 − 1

2I
bk
al (x, y)

−Bbk
al (x, y)

1
2I

bk
al (x, y)

1
2I

bk
al (x, y) 0







,

where

Ibkal (x, y) = δbaδ
k
l δ

3(x, y),

Aab
ij (x, y) = ǫabcǫijke

k
cδ

3(x, y),

and

Bbk
al (x, y) ≡

δΓk
a(x)

δelb(y)
.

The inverse of this matrix is:

M

−1 =
γ

4α1







0 −(A−1)ijab(x, y) (A−1)ijab(x, y) 0

(A−1)ijab(x, y) 0 −2(A−1 · B)klab(x, y) −2α5I
bk
al (x, y)

−(A−1)ijab(x, y) 2(A−1 ·B)klab(x, y) 0 2(4α2 − α5)I
bk
al (x, y)

0 2α5I
bk
al (x, y) −2(4α2 − α5)I

bk
al (x, y) 0







,

where the dot in the above expression involves the appropriate index contraction and integration
over Σ, explicitly:

(A−1 ·B)klab(x, y) ≡

∫

dz(A−1)kmac (x, z)Bcl
bm(z, y). (58)

The only explicit inversion that one needs is that of the tensor density Aab
ij (x, y). It is straight-

forward to show that the inverse is given by

(A−1)ijab(x, y) =
δeia(x)

δEb
j (y)

, (59)

which can be computed explicitly using that eia = 1
2ǫabcǫ

ijkEb
jE

c
k/(

√

det(E)) as implied by eq.
(26). Notice also that the previous equation implies

(A−1 ·B)klab(x, y) =
δΓk

a(x)

δEb
l (y)

. (60)

Thus, the full Dirac bracket is given by

{f, g}D = {f, g} −
γ

4α1

∫
[

−{f, (I)ai (x)}
δeia(x)

δEb
j (y)

{(II)bj(y), g}+ {f, (I)ai (x)}
δeia(x)

δEb
j (y)

{(III)bj(y), g}

+ {f, (II)ai (x)}
δeia(x)

δEb
j (y)

{(I)bj(y), g} − 2{f, (II)ai (x)}
δΓi

a(x)

δEb
j (y)

{(III)bj(y), g}

− 2α5{f, (II)
a
i (x)}{(IV)ia(y), g} − {f, (III)ai (x)}

δeia(x)

δEb
j (y)

{(I)bj(y), g}

+ 2{f, (III)ai (x)}
δΓi

a(x)

δEb
j (y)

{(II)bj(y), g}+ 2(4α2 − α5){f, (III)
a
i (x)}{(IV)ia(y), g}

+ 2α5{f, (IV)ai (x)}{(I)
a
i (y), g} − 2(4α2 − α5){f, (IV)ai (x)}{(III)

i
a(y), g}

]

d3xd3y. (61)
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From (61) we obtain the new commutation relations:

{
+ωi

a(x), e
j
b(y)

}

D
=

γ

4α1

δeia(x)

δEb
j (y)

,

{
+ωi

a(x),
+ωj

b(y)
}

D
= 0,

{
+ωi

a(x),
−ωj

b(y)
}

D
=

γ

2α1

δΓj
b(y)

δEa
k (x)

,

{

eia(x), e
j
b(y)

}

D
= 0,

{
eka(x),

+
P

b
j (y)

}

D
= −

γ

4α1

∫
δemd (z)

δEa
i (x)

δ

δ+ωm
d (z)

[

δW0

δ+ωj
b(y)

−
δW0

δ−ωj
b(y)

]

dz,

{
eka(x),

−
P

b
j (y)

}

D
= −

γ

4α1

∫
δemd (z)

δEa
i (x)

δ

δ−ωm
d (z)

[

δW0

δ+ωj
b(y)

−
δW0

δ−ωj
b(y)

]

dz,

{
+
P

a
i (x),

+
P

b
j (y)

}

D
= −

γ

2α1

∫
[

δ2W0

δ+ωi
a(y)δ

+ωk
c (z)

δΓk
c (z)

δEd
m(w)

δ2W0

δ−ωm
d (w)δ+ωj

b(y)
− (ia) ↔ (jb)

]

dzdw,

{
−
P

a
i (x),

−
P

b
j (y)

}

D
= −

γ

2α1

∫
[

δ2W0

δ−ωi
a(y)δ

+ωk
c (z)

δΓk
c (z)

δEd
m(w)

δ2W0

δ−ωm
d (w)δ−ωj

b(y)
− (ia) ↔ (jb)

]

dzdw,

{
−ωi

a(x),
−
P

b
j (y)

}

D
=

γ

2α1

∫
[

δΓm
d (z)

δEa
i (x)

δ2W0

δ−ωj
b(y)δ

+ωm
d (z)

]

dz,

{
+ωi

a(x),
+
P

b
j (y)

}

D
= δbaδ

i
jδ(x, y)−

γ

2α1

∫
[

δΓm
d (z)

δEa
i (x)

δ2W0

δ+ωj
b(y)δ

−ωm
d (z)

]

dz, (62)

If from now on we use only the Dirac brackets, we are allowed to eliminate all the second class
constraints, in particular (46). Thus, writing everything only as functions of +ωdl and Edl the
scalar and vector constraints become

S = 4α1e
−1ǫijkEb

jE
c
k

[
−γ2Fbci(

+ω) +
(
γ2 + 1

)
Fbci(Γ)

]
, (63)

Vd = −4α1

[
γEckFdck(

+ω) +
(
γ2 + 1

)
Kk

d [
+DcE

c]k
]
.

The expression of +P as a function of +ωdl and Edl is

+
P

d
k = 4α2E

d
k + ǫdab

[
(4α4γ − 4α3γ

2)Fabk(
+ω) + α3(1 + γ2)Fabk(Γ)

+(6α3 + 2α4γ − 4
α4

γ
)ǫkmnK

m
a Kn

b

]

.

IV. WHICH W0 LEAD TO CANONICAL TRANSFORMATIONS?

The Dirac algebra among the basic variables found in the previous section for arbitrary
W0 is quite complicated. In this section we investigate the possible choices of W0 such that
(4α1E/γ, +ω) → (+P, +ω) is a canonical transformation.
The necessary and sufficient condition that one needs to satisfy is

∫
[

δΓm
d (z)

δEa
i (x)

δ2W0

δ+ωj
b(y)δ

−ωm
d (z)

]

dz = 0 (64)
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for all field configurations and for W0 a functional of +ω and −ω respectively. This condition holds
if and only if

δ2W0

δ+ωj
b(y)δ

−ωm
d (z)

= 0, (65)

whose solution is given by W0[
+ω,−ω] = W+

0 [+ω] +W−
0 [−ω]. We should point out that the integral

equation

∫
δΓm

d (z)

δEa
i (x)

V d
m(z, y)dz = 0 (66)

admits non trivial solutions. Recall that each Ea
i gives a unique spin connections Γi

a; however,
this relationship is not invertible. The reason is that Γi

a(E) = Γi
a(λE) for λ =constant. Therefore,

only the scale invariant geometry (E up to a constant factor) can be recovered from Γi
a. This

implies a non trivial solution of equation (66), for instance V a
i (x, y) = Ea

i (x)Ω(y). Nevertheless,
that solution depends explicitly on E and cannot be realized by derivatives of W0. This in turn
implies that the canonical transformation takes the simple form

+
P

a
i = 4

α1

γ
Ea

i +
δW+

0

δ+ωi
a

. (67)

Recall that we started from the most general action principle for general relativity in the tetrad
first order formulation. Therefore, in addition to the factorization property written above, the
generating function must derive from a particular combination of the Pontrjagin, Euler and Nieh-
Yan invariants (which are Lorentz invariant). The general solution to these constraints is γ = ±i
(or equivalently −2iα1 = 2α2 − α5) and α3 and α4 arbitrary. The canonical transformation (67)
becomes in this case

+
P

a
i = ∓i4α1E

a
i + 2(α3 ± iα4)ǫ

abcFbci(
+ω). (68)

which corresponds to the one obtained in [9] for the special case α5 = 0 and α3 = iα4. For
instance when α5 = 0 the action becomes

S[e, ω] =

∫

α1

(
eI ∧ eJ

)
∧ FJI(ω

SD)

+ (α3 − iα4)dLCS(ω
ASD) + (α3 + iα4)dLCS(ω

SD). (69)

Notice that the momentum shift (68)—analog of the canonical transformation induced by the
addition of the Pontrjagin invariant in Yang-Mills theory that introduces the θ parameter in
QCD—can only be obtained for values of the free parameters in the action (2) that make the
formulation complex.

V. THE THETA PARAMETER IN GENERAL RELATIVITY

In the previous section we have shown that the most general family of connection variables that
can be obtained from the standard Ashtekar-Barbero variables and general action (2) contains
the θ parameter family only in the complex self-dual or anti-self-dual formulations. Therefore,
contrary to what one might have naively expected, the real connection formulation of gravity with
non trivial θ is not contained in the family of possible phase space parametrizations stemming
from (2). In this section we will show that the requirement of manifest Lorentz invariance, that
initially led to (2), is too restrictive to contain that case.
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Indeed one can recover the canonical transformation if one is ready to introduce a boundary
term that violates the Lorentz gauge symmetry. More precisely, using the additional structure
provided by the gauge condition (19), we define:

ω̂IJ
µ = ǫIJCD(γωKC

µ +
1

2
ǫCK

MNωMN
µ )nKnD, (70)

Note that ω̂ transforms as an SO(3)-connection for SO(3) ⊂ SO(3, 1) gauge transformations
that leave invariant the internal vector nI . Notice that the components of (70) are such that

ω̂i0
µ = 0 for i = 1, 2, 3, and ω̂ij

a = ǫijk+ωk
a for a = 1, 2, 3 (coordinates adapted to the foliation

Σ). It follows from this that the curvature components F̂ i0
µν = 0, F̂ ij

td = ∂[tω̂
ij

d] − ω̂ik
[t ω̂

kj

d] , and

F̂ ij
ab = ǫijkF k

ab[
+ω]. Now we can introduce topological boundary terms defined in terms of the

connection (70). Notice that the Euler term vanishes identically. This leaves the Pontrjagin term
for ω̂IJ

µ which takes the form

α7

∫

M

Tr [F (ω̂) ∧ F (ω̂)] = 2α7ǫ
abc(∂t(

+ωa)kF
k
bc(

+ω) + tµ(ω̂µ)kDaF
k
bc(

+ω)), (71)

Notice that the second term in the previous expression vanishes due to the Bianchi identities.
The Pontrjagin term depends only on +ω; therefore, it satisfies the condition (65). In fact it is
obvious from the form of the previous expression that its effect is the expected one producing the
canonical transformation

+
P

a
i = 4

α1

γ
Ea

i + 2α7ǫ
abcFbci(

+ω), (72)

which is real for real Immirzi parameter γ.
We have just shown how the theta term in quantum gravity can be obtained from the addition

of the total derivative (71). In other words, the canonical transformation studied in the quantum
context in [12] cannot be obtained from the most general manifestly Lorentz invariant first order
formulation of gravity. In order to define the appropriate boundary term one needs to introduce a
boundary term that brings in an SO(3) ⊂ SL(2, C) by explicitly choosing an internal vector nI .
This might seem strange at first sight as one would seem to be violating both Lorentz invariance
in sharp conflict with general covariance. From the point of view of the classical theory is its clear
that this is not the case since the term added has no effect on the equation of motion of the theory.
However, the situation might appear more obscure in the quantum theory. After all we have seen
that—as in QCD— the theta term can have important dynamical as well as kinematical effects
in the quantum theory. So even when it is clear that no violation of Lorentz or diffeomorphism
invariance is present in the classical theory (i.e. on shell) we need to make sure that this remains
true in the context of quantum gravity where off-shell contributions to physical amplitudes cannot
be avoided.
So, can the boundary term (71) produce a Lorentz violating effect in the quantum theory?

The answer to this question is in the negative as we argue now. The reason is the topological
character of (71). The quantity computed in (71) is proportional to the Pontrjagin invariant of
an SU(2) principal bundle obtained through the choice of an internal normalized vector nI (for
a mathematical description see [14]). As the latter takes discrete values it must be invariant
under continuous deformations of nI . It remains the question of whether there are homotopically
inequivalent choices of nI . This correspond to the possible winding of the maps from M = Σ×R

into the hyperboloid H ∈ M
4 defined by the condition nInJηIJ = −1. As this winding is trivial

we conclude that the term (71) is independent of the choice of nI and hence well defined.

VI. CONCLUSIONS

We have completed the canonical analysis of the general action (2) and obtained the Dirac
bracket for arbitrary values of the couplings α1 to α6. As long as we restrict to this action the



13

family of connection formulations is described by the following two cases:

1. real variables The phase space variables are labelled by an SU(2) connection is given by
+ω = Γ+ γK̂ with Immirzi parameter γ = 2α1/(2α2 − α5) and α3 = α4 = 0, and conjugate
momentum +Pa

i = 4α1

γ
Ea

i . This shows that both α2 and α5 enter the definition of the

Immirzi parameter. Hence it is possible to obtain a non trivial γ by simply adding the
Nieh-Yang topological invariant to the Palatini action as shown in [10].

2. complex variables The configuration variable is described by a self dual or antiselfdual
connection +ω = Γ + γK̂ with γ = ±i and the other parameters constrained to sat-
isfy ±i(2α2 − α5) = 2α1, with α3 and α4 arbitrary. The conjugate momentum is
+Pa

i = 4α1

γ
Ea

i + 2(α3 + γα4)ǫ
abcFbci(

+ω). This second set contains the one studied by

[9] as a subclass.

If in turn one wants to describe the effects of SU(2) large gauge transformations for real variables
by the addition of a term to the first order action one has no choice but to break manifest Lorentz
invariance by the addition of the term (71) to the action (2) with parameters in the first class
above. This explicit symmetry breaking is only apparent as the term added does not affect the
classical equations of motion on the one hand, and it does change the quantum theory but in a
Lorentz invariant way as argued in the last section.
Finally notice that if one is ready to break manifest Lorentz invariance in a more general way

then the set of possible connection formulations become infinite dimensional. For instance the
canonical transformations

(+ωi
a,

+
P

b
j ) → (+̃ω

i

a = +ωi
a + δW [+P]/δ+

P
a
i ,

+
P

b
j ) (73)

forW [+P] an arbitrary diffeomorphism invariant and SU(2) invariant functional of +Pi
a. This kind

of canonical transformation—consisting of shifting one canonical variable by the total derivative
of a functional of the canonically conjugate one—is available in any field theory. For instance
in the case of a real scalar field φ with conjugate momentum π then the analog of the canonical
transformations above is given by the shift (π, φ) → (π + f(φ), φ) for some f : R → R. The
quantization in this case strongly depends on the choice of canonical variables. Notice that this
transformation would turn a simple free theory (which can straightforwardly quantized using for
instance the Fock representation) into a highly non linear (depending on f(φ)) theory where those
techniques cannot be directly applied.
The situation in the case of LQG is much simpler at first sight. The reason is that the canonical

transformation (73) preserves the connection nature of the configuration variable and therefore
allows for a straightforward implementation of the standard LQG quantization techniques: defi-
nition of holonomy-flux algebra of basic kinematical observables and construction of the (unique)
diffeomorphism invariant representation. However, this uniqueness of the construction appears to
have some unexpected implications. On the one hand questions concerning the geometric inter-
pretation of the kinematical variables in the kinematical Hilbert space seem to arise, as well as
the possibility of physically distinguishable sectors (due to the potential unitarily inequivalence
of the different formulations). As this concerns entirely the quantum theory these questions will
be investigated elsewhere. In the appendix we explicitly exhibit the infinite dimensional nature of
this family of connection formulations.
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VIII. APPENDIX

In order to simplify the notation let us assume that we are in the real connection variables
setting. The functional W [+P] appearing in (73) can be simply thought of a functional W [E] as
the triad E is proportional to +P (at least in the α7 = 0 case). An example of suitable generating
functional is

W2[E] =

∫

Σ

λ1LCS(Γ) + λ2

√

det(E) + λ3R[E]
√

det(E) + λ4RabcdR
abcd[E]

√

det(E) + · · ·(74)

where R[E] and Rabcd is the scalar curvature and Riemann tensor of Σ associated to E, and LCS

is the Chern-Simons Lagrangean evaluated in the spin connection Γi
a(E). Unlike the previous case,

generating function W2 contains infinitely many parameters—we have given a few characteristic
examples; however, any scalar density local functional of E is assumed to be contained in W2.
The action on the connection variables is to shift the connection as (A,E) → (A + δW3/δE,E).
This observation implies that an infinite dimensional set of simple connection variables for general
relativity exist.
Notice the word simple in the previous sentence. The fact that the connection formulations

infinitely dimensional should have been expected from the fact that any phase space functional
generates a Hamiltonian vector field which (if the latter is diffeomorphism invariant and gauge
invariant) can be viewed as a one parameter family of canonical transformations preserving the
connection nature of the variables. However, the most general transformation is generated by
functional depending on both the connection and the electric field and in general these trans-
formations will not be analytically integrable or be more complicated. Here we concentrate on
infinitesimal canonical transformations which can be explicitly exponentiated and lead to a close
formula for the new variables as a function of the old ones.
Among the functionals of both the connection A and E whose associated Hamiltonian flow can

be integrated in close form there is an important example, namely

W3[A,E] = ǫ

∫

Σ

(Ai
a − Γi

a)E
a
i + · · · , (75)

The generating function W2 generates rescaling of the Immirzi parameter γ → (1 + ǫ)γ. The
exponentiated version generates finite redefinition of the Immirzi parameter. This one is clearly
not unitarily implementable at the kinematical level in LQG.
The existence of an infinite dimensional set of possible SU(2) connection formulations of general

relativity has little interest from the classical point of view. They are all equivalent ways of writing
the same classical theory. However, questions arise as to what the interpretation and effects of
these parameters might be in the quantum theory. These questions will be addressed elsewhere.
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