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Load optimization in a planar network

Charles Bordenave∗ and Giovanni Luca Torrisi†

Abstract

We analyze the asymptotic properties of an Euclidean optimization problem on the plane.
Specifically, we consider a network with 3 bins and n objects spatially uniformly distributed,
each object being allocated to a bin at a cost depending on its position. Two allocations are
considered: the allocation minimizing the bin loads and the allocation allocating each object to
its less costly bin. We analyze the asymptotic properties of these allocations as the number of
objects grows to infinity. Using the symmetries of the problem, we derive a law of large numbers,
a central limit theorem and a large deviation principle for both loads with explicit expressions.
In particular, we prove that the two allocations satisfy the same law of large numbers, but they
do not have the same asymptotic fluctuations and rate functions.

Keywords: Calculus of variations; Central limit theorem; Euclidean optimization; Large deviations;
Law of the large numbers; Wireless networks.

1 Introduction

In this paper we take an interest in an Euclidean optimization problem on the plane. For ease
of notation, we shall identify the plane with the set of complex numbers C. Set λ = 2(3

√
3)−1/2,

i =
√
−1 (the complex unit), j = e2iπ/3 and consider the triangle T ⊂ C with vertices B2 = λi,

B1 = j2B2, and B3 = jB2. Note that T is an equilateral triangle with side length λ
√

3 and unit
area. We label by {1, . . . , n} n objects located in the interior of T and denote byXk, k = 1, . . . , n, the
location of the k-th object. We assume that {Xk}k=1,...,n are independent random variables (r.v.’s)
with uniform distribution on T. Suppose that there are three bins located at each of the vertices
of T and that each object has to be allocated to a bin. The cost of an allocation is described
by a measurable function c : T → [0,∞) such that ‖c‖∞ := supx∈T c(x) < ∞. More precisely,
c(x) = c1(x) denotes the cost to allocate an object at x ∈ T to the bin in B1; the cost to allocate
an object at x ∈ T to the bin in B2 is c2(x) = c(j2x); the cost to allocate an object at x ∈ T to the
bin in B3 is c3(x) = c(jx). Let

An = {A = (akl)1≤k≤n,1≤l≤3 : akl ∈ {0, 1}, ak1 + ak2 + ak3 = 1}

be the set of allocation matrices: if akl = 1 the k-th object is affiliated to the bin in Bl. We consider
the load relative to the allocation matrix A = (akl)1≤k≤n,1≤l≤3 ∈ An:

ρn(A) = max
1≤l≤3

(
n∑

k=1

aklcl(Xk)

)
,
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and the minimal load
ρn = min

A∈An

ρn(A).
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Figure 1: The triangle T, the three bins and the n objects.

Throughout this paper we refer to ρn as the optimal load. This simple instance of Euclidean
optimization problem has potential applications in operations research and wireless communication
networks. Consider three processors running in parallel and sharing a pool of tasks {1, . . . , n}
located, respectively, at {X1, · · · ,Xn} ⊆ T. Suppose that cl(x) is the time requested by the l-th
processor to process a job located at x ∈ T. Then ρn is the minimal time requested to process all
jobs. For example, a natural choice for the cost function is c(x) = 2|x − B1|, i.e. the time of a
round-trip from B1 to x at unit speed. In a wireless communication scenario, the bins are base
stations and the objects are users located at {X1, · · · ,Xn} ⊆ T. For the base station located at
Bl, the time needed to send one bit of information to a user located at x ∈ T is cl(x). In this
context ρn is the minimal time requested to send one bit of information to each user and 1/ρn is
the maximal throughput that can be achieved. We have chosen a triangle T because it is contained
in the hexagonal grid, which is a good model for cellular wireless networks.

For 1 ≤ l ≤ 3, we define the Voronoi cell associated to the bin at Bl by

Tl = {x ∈ T : |x−Bl| = min
1≤m≤3

|x−Bm|}\Dl

where D1 = {ijt : t < 0} and, for l = 2, 3, Dl = {ijlt : t ≤ 0}. Note that T1 ∪ T2 ∪ T3 = T and
T1 ∩ T2 = T1 ∩ T3 = T2 ∩ T3 = ∅, i. e. {T1,T2,T3} is a partition of T. Note also that 0 ∈ T1.

Throughout the paper, we denote by | · | the Euclidean norm on C, by ℓ the Lebesgue measure
on C and by x · z the usual scalar product on C, i. e. x · z = ℜ(x)ℜ(z) + ℑ(x)ℑ(z). We suppose
that the value of the cost function is related to the distance of a point from a bin as follows:

For all x ∈ T and l = 2, 3, if |x−B1| < |x−Bl| then c1(x) < cl(x). (1)

For example, if c(x) = f(|x−B1|) and f : [0,∞) → [0,∞) is increasing then (1) is satisfied.
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In this paper, as n goes to infinity, we study the properties of an allocation which realizes the
optimal load ρn, and, as a benchmark, we compare it with the suboptimal load ρn = ρn(A), where
A = (akl)1≤k≤n,1≤l≤3 is the random matrix obtained affiliating each object to its less costly bin:

akl = 11(Xk ∈ Tl).

We shall prove that, using the strong symmetries of the system, it is possible to perform a fine
analysis of the asymptotic optimal load. It will turn out that a law of large number can be deduced
for the optimal and suboptimal load. More precisely, setting

γ =

∫

T1

c(x) dx,

we have

Theorem 1.1 Assume (1). Then, almost surely (a.s.),

lim
n→∞

ρn
n

= lim
n→∞

ρn
n

= γ.

As a consequence, at the first order, the optimal and the suboptimal load perform similarly.
The next result shows that, at the second order, the two loads differ significantly. We first

introduce an extra symmetry assumption on c, namely, its symmetry with respect to the straight
line determined by the points 0 and B1. If x = teiθ ∈ T, t > 0, θ ∈ [0, 2π], then its reflection with
respect to the straight line determined by the points 0 and B1 is te−iθ−i

π
3 ∈ T. Formally, we assume

c(teiθ) = c(te−iθ−i
π
3 ) for all θ ∈ [0, 2π] and t > 0 such that teiθ ∈ T,

and c is Lipschitz in a neighborhood of D1 ∪D3. (2)

Setting

σ2 =

∫

T1

c2(x) dx,

we have:

Theorem 1.2 Assume (1) and (2). Then, in distribution, as n goes to infinity,

n−1/2(ρn − γn) ⇒ G

where G is a Gaussian r. v. with zero mean and variance σ2/3 − γ2. Moroever, in distribution, as

n goes to infinity,

n−1/2(ρn − γn) ⇒ max{G1, G2, G3}
and

n−1/2(ρn − ρn) ⇒ max{G1, G2, G3} −
1

3
(G1 +G2 +G3),

where G1, G2 and G3 are independent Gaussian r. v.’s with zero mean and variance σ2. Finally

E[ρn] = nγ + o(
√
n) and E[ρn] = nγ +m

√
n+ o(

√
n),

where m = E[max{G1, G2, G3}] > 0 depends linearly on σ.
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Theorem 1.1 states that ρn is asymptotically optimal at scale n, but Theorem 1.2 says that it is
not asymptotically optimal at scale

√
n. In the proof of Theorem 1.2, we shall exhibit a suboptimal

allocation which is asymptotically optimal at scale
√
n (see Proposition 3.1).

We shall also prove a large deviation principle (LDP) for both the sequences {ρn/n}n≥1 and
{ρn/n}n≥1. Recall that a family of probability measures {µn}n≥1 on a topological space (M,TM )
satisfies a LDP with rate function I if I : M → [0,∞] is a lower semi-continuous function such that
the following inequalities hold for every Borel set B:

− inf
y∈

◦

B

I(y) ≤ lim inf
n→∞

1

n
log µn(B) ≤ lim sup

n→∞

1

n
log µn(B) ≤ − inf

y∈B
I(y),

where
◦
B denotes the interior of B and B denotes the closure of B. Similarly, we say that a

family of M -valued random variables {Vn}n≥1 satisfies an LDP if {µn}n≥1 satisfies an LDP and
µn(·) = P (Vn ∈ ·). We point out that the lower semi-continuity of I means that its level sets
{y ∈ M : I(y) ≤ a} are closed for all a ≥ 0; when the level sets are compact the rate function I(·)
is said to be good. For more insight into the large deviations theory, see, for instance, the book by
Dembo and Zeitouni [4].

We introduce an assumption on the level sets of the cost function:

ℓ(c−1({t})) = 0 for all t ≥ 0, (3)

an assumption on the regularity of c:

c is continuous on T, (4)

and two further geometric conditions:

c(B1) < c(x) < c(0), for any x ∈ T1 \ {0, B1}, (5)

c1(x)c2(x)c3(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)
<
c(0)

3
<

∫

T2

c(z) dz, for any x ∈ T \ {0}. (6)

Assumption (5) fixes the extrema of the cost function on T1. The left hand side inequality of
(6) imposes that 0 is the most costly position in terms of load (for a more precise statement, we
postpone to (37)). For θ ∈ R, define the functions

Λ(θ) = log

(
3

∫

T1

eθc(x) dx

)
and Λ(θ) = log

(∫

T1

eθc(x) dx+ 2/3

)

and, for y ∈ R, their Fenchel-Legendre transforms

Λ∗(y) = sup
θ∈R

(θy − Λ(θ)) and Λ
∗
(y) = sup

θ∈R

(θy − Λ(θ)).

The following LDPs hold:

Theorem 1.3 Assume (1), (3), (4), (5) and (6). Then

(i) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J(y) =

{
Λ∗(3y) if y ∈ (c(B1)/3, c(0)/3)
+∞ otherwise.

(7)

(ii) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J(y) =





Λ∗(3y) if y ∈ (c(B1)/3, γ]

Λ
∗
(y) if y ∈ (γ, c(0))

+∞ otherwise.

(8)
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Next proposition gives a more explicit expression for the rate functions.

Proposition 1.4 Assume (1), (5) and c continuous at 0 and B1. Then Λ∗ and Λ
∗

are continuous

on (c(B1), c(0)) and

(i)

Λ∗(y) =

{
yθy − Λ(θy) if c(B1) < y < c(0)
+∞ if c(B1) > y or y > c(0)

where θy is the unique solution of

∫
T1
c(x)eθc(x) dx
∫

T1
eθc(x) dx

= y. (9)

(ii)

Λ
∗
(y) =

{
yηy − Λ(ηy) if c(B1) < y < c(0)
+∞ if c(B1) > y or y > c(0)

where ηy is the unique solution of

∫
T1
c(x)eθc(x) dx

∫
T1

eθc(x) dx+ 2/3
= y. (10)

(iii) If γ < y < c(0)/3 then Λ
∗
(y) < Λ∗(3y).

Note that: J(y) = Λ∗(3y) except possibly at y ∈ {c(B1), c(0)}; J(y) = Λ∗(3y) on (−∞, γ] except
possibly at y = c(B1), and J(y) = Λ

∗
(y) on (γ,∞) except possibly at y = c(0). These gaps are

treated in Proposition 4.4 with extra regularity assumptions on c. See Figure 2 for a schematic plot
of the rate functions. A simple consequence of Theorem 1.3 and Proposition 1.4 is the following:

lim
n→∞

logP (ρn ≥ nt)

logP (ρn ≥ nt)
=
J(t)

J(t)
and lim

n→∞

P (ρn ≥ nt)

P (ρn ≥ nt)
= 0, ∀t ∈ (γ, c(0)/3).

In words, it means that the probability of an exceptionally large optimal load is significantly lower
than the probability of an exceptionally large suboptimal load; although, on a logarithmic scale, the
probability of an exceptionally small optimal load does not differ significantly on the probability
of an exceptionally small suboptimal load. It is not in the scope of this paper to discuss the trade-
off between algorithmic complexity and asymptotic performance. Moreover, we do not know if
the allocation that is asymptotically optimal at scale

√
n used in the proof of Theorem 1.2 (see

Proposition 3.1) has the same rate function than ρn/n.
Unlike it may appear, we shall not prove Theorem 1.3 by first computing the Laplace transform

of ρn and ρn and then applying Gärtner-Ellis theorem (see e. g. Theorem 2.3.6 in [4]). We shall
follow another route. First, we combine Sanov theorem (see e. g. Theorem 6.2.10 in [4]) and the
Contraction Principle (see e. g. Theorem 4.2.1 in [4]) to prove that the sequences {ρn/n}n≥1 and
{ρn/n}n≥1 obey a LDP, with rate functions given in variational form. Then, we provide the explicit
expression of the rate functions solving the related variational problems. It is worthwhile to remark
that, using Theorem 1.3 and Varadhan lemma (see e. g. Theorem 4.3.1 in [4]) it is easily seen that

lim
n→∞

1

n
log E[eθρn ] = J∗(θ) and lim

n→∞

1

n
log E[eθρn ] = J

∗
(θ), ∀θ ∈ R
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where J∗ and J
∗

are the Fenchel-Legendre transforms of J and J , respectively. A nice consequence
of Theorems 1.1 and 1.2 is that, in terms of law of the large numbers and central limit theorem, ρn
has the same asymptotic behavior as

ρ̆n =
1

3

3∑

l=1

n∑

k=1

11{Xk ∈ Tl}cl(Xk).

Moreover, if the cost function satisfies extra regularity assumptions (see Proposition 4.4), by Theo-
rem 1.3 and the Gärtner-Ellis theorem, we have that ρn and ρ̆n have the same asymptotic behavior
even in terms of large deviations.

As it can be seen from the proofs, if the left hand side of assumption (6) does not hold then we
have an explicit rate function J(y) only for y < c(0)/3. If neither the right hand side of assumption
(6) holds, then we have an explicit rate function J(y) only for y < y0 for some y0 > γ. We also
point out that the statements of Theorems 1.2-1.3 concerning ρn do not require the use of (2) and
(5).

In wireless communication, the typical cost function is the inverse of signal to noise plus inter-
ference ratio (see e.g. Chapter IV in Tse and Viswanath [9]), which has the following shape:

c(x) =
a+ min{b, |x −B2|−α} + min{b, |x−B3|−α}

min{b, |x −B1|−α}
, x ∈ T

where α ≥ 2, a > 0 and b > (λ
√

3/2)−α (recall that λ = 2(3
√

3)−1/2 and λ
√

3 = |B1 − B2|). We
shall check in the Appendix that this cost function satisfies (1), (2), (3), (4) and (5). Moreover,
the first inequality in (6) will be checked numerically and, for arbitrarily fixed α > 2 and a > 0,
we shall determine values of the parameter b > (λ

√
3/2)−α such that the second inequality in (6)

holds.
The remainder of the paper is organized as follows. In Section 2 we analyze the sample path

properties of the optimal allocation and we prove Theorem 1.1. In Section 3 we show Theorem
1.2. Section 4 is devoted to the proof of Theorem 1.3 and Proposition 1.4. In Section 5, we discuss
some generalizations of the model. We include also an Appendix where we prove some technical
lemmas and provide an illustrative example.

2 Sample Path Properties

2.1 Structural properties of the optimal allocation

Throughout this paper we denote by Mb(T) the space of Borel measures on T with total mass less
than or equal to 1 and by M1(T) the space of probability measures on T. These spaces are both
equipped with the topology of weak convergence (see e. g. Billingsley [1]). For a Borel function h
and a Borel measure µ on T, we set µ(h) =

∫
T
h(x)µ(dx). Consider the functional from Mb(T)3 to

R defined by
φ(α1, α2, α3) = max(α1(c1), α2(c2), α3(c3)). (11)

Letting α|B denote the restriction of a measure α to a Borel set B, we define the functionals Φ and
Ψ from M1(T) to R by

Φ(α) = inf
(αl)1≤l≤3∈Mb(T)3:α1+α2+α3=α

φ(α1, α2, α3),

and
Ψ(α) = φ(α|T1

, α|T2
, α|T3

).
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Figure 2: The rate functions J and J .

Note that if δx denotes the Dirac measure with total mass at x ∈ T, then

ρn
n

= Ψ

(
1

n

n∑

k=1

δXk

)
. (12)

Lemma 2.1 Under assumption (4) we have that φ is continuous on Mb(T)3 and Ψ and Φ are

continuous on M1(T) (for the topology of the weak convergence).

The proof of Lemma 2.1 is postponed in Appendix; the continuity of φ and Ψ is essentially trivial,
the continuity of Φ requires more work. Define the set of matrices

Bn = {B = (bkl)1≤k≤n,1≤l≤3 : bkl ∈ [0, 1], bk1 + bk2 + bk3 = 1}

and
ρ̃n = min

B∈Bn

ρn(B).

Given a matrix B = (bkl) ∈ Bn, we define the associated measures (α1, α2, α3) ∈ Mb(T)3 by setting
αl = (1/n)

∑n
k=1 bklδXk

(l = 1, 2, 3). Due to this correspondence, it is straightforward to check that

ρ̃n
n

= Φ

(
1

n

n∑

k=1

δXk

)
. (13)

Next lemma is a collection of elementary statements, whose proofs are given in Appendix.

Lemma 2.2 Fix n ≥ 1 and let B∗ = (b∗kl) ∈ Bn be an optimal allocation matrix for ρ̃n. Then:

(i) For all α ∈ M1(T), there exists (α1, α2, α3) ∈ Mb(T)3 such that α = α1 +α2 +α3 and Φ(α) =
φ(α1, α2, α3). Moreover, whenever such equality holds, we have α1(c1) = α2(c2) = α3(c3) and,

in particular,
n∑

k=1

b∗k1c1(Xk) =

n∑

k=1

b∗k2c2(Xk) =

n∑

k=1

b∗k3c3(Xk).
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(ii) If assumption (3) holds then

ρn − 3‖c‖∞ ≤ ρ̃n ≤ ρn a.s..

(iii) If assumption (3) holds then the sequences {ρ̃n/n} and {ρn/n} are exponentially equivalent.

For the definition of exponential equivalence see [4].

2.2 Proof of Theorem 1.1

The law of large numbers yields, for all l = 1, 2, 3,

lim
n→∞

1

n

n∑

k=1

cl(Xk)11{Xk ∈ Tl} =

∫

Tl

cl(x) dx = γ a.s..

Therefore from the identity

ρn
n

= max
1≤l≤3

1

n

n∑

k=1

cl(Xk)11{Xk ∈ Tl},

we get limn→∞ ρn/n = γ a.s.. We also have to prove that limn→∞ ρn/n = γ a.s.. Let A = (akl) ∈ An

be an allocation matrix. By assumption (1), if x ∈ Tl then cl(x) = min1≤m≤3 cm(x). Therefore

3ρn(A) ≥
3∑

l=1

n∑

k=1

aklcl(Xk) ≥
3∑

l=1

∑

Xk∈Tl

cl(Xk) ≥ 3 min
1≤l≤3

(
n∑

k=1

cl(Xk)11{Xk ∈ Tl}
)
. (14)

So taking the minimum over all the allocation matrices we deduce:

min
1≤l≤3

(
n∑

k=1

cl(Xk)11{Xk ∈ Tl}
)

≤ ρn ≤ ρn.

Thus by applying the law of large numbers, we have a.s.

γ ≤ lim inf
n→∞

ρn
n

≤ lim sup
n→∞

ρn
n

≤ γ.

Remark 2.3 Assume that conditions (1), (3) and (4) hold. By Theorem 1.1 we have limn→∞ ρn/n =
γ a.s.. So by Lemma 2.1, equation (12) and the a.s. weak convergence of (1/n)

∑n
k=1 δXk

to
ℓ we get Ψ(ℓ) = γ. Similarly, using equation (13) in place of equation (12), we deduce that
limn→∞ ρ̃n/n = Φ(ℓ) a.s.. So by Lemma 2.2(ii) limn→∞ ρn/n = Φ(ℓ) a.s., and by Theorem 1.1
we have Φ(ℓ) = γ.

3 Proof of Theorem 1.2

Consider the random signed measure

Wn =
√
n (µn − ℓ) where µn =

1

n

n∑

k=1

δXk
.
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The standard Brownian bridge W on T is a random signed measure specified by the centered
Gaussian process {W (f)} (indexed on the set of square integrable functions on T, with respect to
ℓ), with covariance given by

E[W (f)W (g)] = ℓ(fg) − ℓ(f)ℓ(g),

see e.g. Dudley [5]. By construction

ρn = n max
1≤l≤3

(∫

Tl

cl(x)µn(dx)

)
,

or equivalently
ρn − nγ√

n
= max

1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)
. (15)

Let f be a square integrable function on T, in distribution, as n→ ∞,

Wn(f) =

∑n
k=1 f(Xk) − nℓ(f)√

n
⇒W (f),

indeed by the central limit theorem Wn(f) converges in distribution to a Gaussian r.v. with zero
mean and variance equal to ℓ(f2)− ℓ2(f), which is exactly the law of W (f). Using Lévy continuity
theorem and the inversion theorem, we have, in distribution, for all square integrable functions f1,
f2 and f3:

(Wn(f1),Wn(f2),Wn(f3)) ⇒ (W (f1),W (f2),W (f3)).

Therefore, by the continuous mapping theorem we have, in distribution, as n goes to infinity,

ρn − nγ√
n

⇒ max
1≤l≤3

(∫

Tl

cl(x)W (dx)

)
. (16)

We shall show later on that the r.v. in the right-hand side of (16) has the claimed distribution. Now
we consider the optimal load ρn. By the second inequality in (14) we have

3ρn ≥ n

3∑

l=1

∫

Tl

cl(x)µn(dx)

and therefore

3
ρn − nγ√

n
≥

3∑

l=1

∫

Tl

cl(x)Wn(dx). (17)

The following proposition is the heart of the proof. It will be showed later on.

Proposition 3.1 Under the assumptions of Theorem 1.2, for any 1/4 < α < 1/2, there exists

an allocation matrix Â = (âkl)1≤k≤n,1≤l≤3 ∈ An with associated load ρ̂n = ρn(Â) such that with

probability at least 1 − L1 exp(−L0n
1−2α),

∣∣∣∣∣∣
3
ρ̂n − nγ√

n
−
∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣
≤ n1/2−2α,

for some positive constants L0 and L1, not dependent of n.
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Using this result, ρ̂n ≥ ρn and (17), we have that with probability at least 1 − L1 exp(−L0n
1−2α)

∣∣∣∣∣∣
3
ρn − nγ√

n
−
∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣
≤ n1/2−2α. (18)

Therefore, as n goes to infinity, in distribution

ρn − nγ√
n

− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx) ⇒ 0.

The continuous mapping theorem yields

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx) ⇒
∑

1≤l≤3

∫

Tl

cl(x)W (dx).

So combining these latter two limits we get, as n goes to infinity,

ρn − nγ√
n

⇒ 1

3

3∑

l=1

∫

Tl

cl(x)W (dx),

i. e. n−1/2(ρn−nγ) converges weakly to a centered Gaussian random variable with variance σ2/3−
γ2. We have considered so far, the normalized sequences ρn and ρn separately. However, we can
carry the same analysis on the normalized difference ρn − ρn. More precisely, by equation (15) we
have a.s.

∣∣∣∣∣∣
ρn − ρn√

n
−


max

1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)
− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)




∣∣∣∣∣∣

≤
∣∣∣∣
ρn − nγ√

n
− max

1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)∣∣∣∣+

∣∣∣∣∣∣
ρn − nγ√

n
− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
ρn − nγ√

n
− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣
.

Thus, by equation (18), we obtain, with probability at least 1 − L1 exp(−L0n
1−2α),

∣∣∣∣∣∣
ρn − ρn√

n
−


max

1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)
− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)




∣∣∣∣∣∣
≤ 1

3
n1/2−2α.

Therefore, in distribution, as n→ ∞,

ρn − ρn√
n

−


max

1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)
− 1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)


⇒ 0.

The continuous mapping theorem yields

max
1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)
−1

3

∑

1≤l≤3

∫

Tl

cl(x)Wn(dx) ⇒ max
1≤l≤3

(∫

Tl

cl(x)W (dx)

)
−1

3

∑

1≤l≤3

∫

Tl

cl(x)W (dx)

10



and therefore, in distribution, as n→ ∞,

ρn − ρn√
n

⇒ max
1≤l≤3

(∫

Tl

cl(x)W (dx)

)
− 1

3

3∑

l=1

∫

Tl

cl(x)W (dx).

For l ∈ {1, 2, 3}, set

Nl =

∫

Tl

cl(x)W (dx) − 1

3

3∑

l=1

∫

Tl

cl(x)W (dx).

By definition {W (f)} is a centered Gaussian process indexed on the set of square integrable func-
tions, therefore N = (N1, N2, N3) follows a multivariate Gaussian distribution with mean 0. A
simple computation shows that the covariance matrix of N is

σ2

3




2 −1 −1
−1 2 −1
−1 −1 2


 .

It implies that N has the same distribution as

(G1 − (G1 +G2 +G3)/3, G2 − (G1 +G2 +G3)/3, G3 − (G1 +G2 +G3)/3)

where G1,G2 and G3 are independent Gaussian r. v.’ s with mean 0 and variance σ2.
It remains to compute the asymptotic behavior of the expectation of the loads. A direct com-

putation gives, for any l = 1, 2, 3,

E

[(∫

Tl

cl(x)Wn(dx)

)2
]

=
σ2

3
− γ2

9n
≤ σ2

3
.

Thus the sequences {
∫

Tl
cl(x)Wn(dx)} (l = 1, 2, 3) are uniformly integrable. This implies that the

sequence
{

max1≤l≤3

(∫
Tl
cl(x)Wn(dx)

)}
is uniformly integrable and so using equation (15) we have

lim
n→∞

E [ρn − nγ] /
√
n = lim

n→∞
E

[
max
1≤l≤3

(∫

Tl

cl(x)Wn(dx)

)]

= E

[
max
1≤l≤3

(∫

Tl

cl(x)W (dx)

)]
= m.

Now we give the asymptotic behavior of E[ρn]. Note that by (18) we have

E




∣∣∣∣∣∣
3
ρn − nγ√

n
−
∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣




≤ n1/2−2α + E




∣∣∣∣∣∣
3
ρn − nγ√

n
−
∑

1≤l≤3

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣∣
11{| . . . | > n1/2−2α}




≤ n1/2−2α + 10‖c‖∞L1

√
n exp(−L0n

1−2α)

= n1/2−2α + L̃1

√
n exp(−L0n

1−2α) (19)

where the latter inequality follows since γ ≤ ‖c‖∞, ρn ≤ ‖c‖∞n and |
∫

Tl
cl(x)Wn(dx)| ≤ 2‖c‖∞

√
n.

Clearly, the term in (19) goes to zero as n→ ∞. Therefore, since E
[∫

Tl
cl(x)Wn(dx)

]
= 0, we have

lim
n→∞

E[ρn − nγ]/
√
n = 0.
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Proof of Proposition 3.1. We start describing the allocation matrix Â. For l,m ∈ {1, 2, 3} and
t ∈ [−λ

√
3/2, λ

√
3/2], denote by Blm(t) the point on the segment BlBm at distance t+λ

√
3/2 from

Bl. We extend the definition of Blm(t) for all t ∈ [−λ
√

3, λ
√

3] by following the edges of T. More
precisely, we set

B12(t) =

{
B31(λ

√
3 + t) if t ∈ [−λ

√
3,−λ

√
3/2]

B23(λ
√

3 − t) if t ∈ [λ
√

3/2, λ
√

3].

For l,m ∈ {1, 2, 3}, Blm(t) is defined similarly by a circular permutation of the indices. For t =
(t1, t2, t3) ∈ [−λ

√
3, λ

√
3]3, let

C1(t) = {0}
⋃(

{z ∈ C : z · (B12(t
1)e−iπ/2) ≥ 0} ∩ {z ∈ C : z · (B31(t

3)eiπ/2) > 0}
)

be the (possibly empty) cone delimited by the straight straight line determined by the points 0 and
B31(t

3). We define D1(t) = C1(t)∩T. Similarly, let D2(t) = C2(t)∩T and D3(t) = C3(t)∩T with

C2(t) = {z ∈ C : z · (B12(t
1)eiπ/2) > 0} ∩ {z ∈ C : z · (B23(t

2)e−iπ/2) ≥ 0},
C3(t) = {z ∈ C : z · (B23(t

2)eiπ/2) > 0} ∩ {z ∈ C : z · (B31(t
3)e−iπ/2) ≥ 0}.

By construction, the sets D1(t), D2(t) and D3(t) are disjoint and their union is T. For l ∈ {1, 2, 3},
set

ρln(t) =
n∑

k=1

cl(Xk)11{Xk ∈ Dl(t)}

and consider the following recursion. At step 0: for t0 = (0, 0, 0), define

m0 = arg min
1≤l≤3

ρln(t0)

(breaking ties with the lexicographic order) and

M0 = arg max
1≤l≤3

ρln(t0)

(again breaking ties with the lexicographic order). If ρM0

n (t0) − ρm0

n (t0) ≤ 2‖c‖∞, the recur-
sion stops. Otherwise, ρM0

n (t0) − ρm0

n (t0) > 2‖c‖∞ and there is at least one point Xi (i =
1, . . . , n) in DM0(t0). Note also that, a.s., for all θ ∈ [0, 2π], there is at most one point of
{X1, · · · ,Xn} on the straight line (xeiθ, x > 0). As a consequence there exists a random vari-
able 0 ≤ t1 ≤ λ

√
3 such that, a.s., there is exactly one point Xi (i = 1, . . . , n) in the triangle

with vertices {0, Bm0M0
(t1), Bm0M0

(0)} for 0 ≤ t1 ≤ λ
√

3/2, or in the polygon with vertices
{0, Bm0M0

(t1), BM0
, Bm0M0

(0)} for λ
√

3/2 < t1 ≤ λ
√

3. We then set t1 = (t1, 0, 0) if m0 = 1,
M0 = 2; t1 = (−t1, 0, 0) if m0 = 2, M0 = 1; t1 = (0, t1, 0) if m0 = 2, M0 = 3; t1 = (0,−t1, 0)
if m0 = 3, M0 = 2; t1 = (0, 0,−t1) if m0 = 1, M0 = 3; t1 = (0, 0, t1) if m0 = 3, M0 = 1. By
construction, we have

ρm0

n (t1) < ρM0

n (t1) , max
1≤l≤3

ρln(t1) < max
1≤l≤3

ρln(t0) and min
1≤l≤3

ρln(t1) > min
1≤l≤3

ρln(t0).

At step 1: define
m1 = arg min

1≤l≤3
ρln(t1)

(breaking ties with the lexicographic order) and

M1 = arg max
1≤l≤3

ρln(t1)

12



(again breaking ties with the lexicographic order). Similarly to step 0, if ρM1

n (t1)−ρm1

n (t1) > 2‖c‖∞,
then there is at least one point of {X1, · · · ,Xn} in DM1(t1) and we build the random vector t2. The
recursion stops at the first step k ≥ 0 such that

ρMk
n (tk) − ρmk

n (tk) ≤ 2‖c‖∞,

(where mk, Mk and tk are defined similarly to m0,m1, . . ., M0,M1, . . . and t1, t2, . . .). As we shall
check soon, the recursion stops after at most n steps. When the recursion stops, say at step kn ≤ n,
we set Dl

n = Dl(tkn
) and tn = tkn

. The allocation matrix Â is defined by allocating Xk to the bin
in Bl if Xk ∈ Dl

n, i. e.

Â = (âkl)1≤k≤n,1≤l≤3 where âkl = 11{Xk ∈ Dl
n}.

By construction, we have for all l,m ∈ {1, 2, 3}

|ρln(tn) − ρmn (tn)| ≤ 2‖c‖∞. (20)

We now analyze the recursion more closely. Assume that at step 0 we have m0 = 3 and M0 = 1,
i. e. ρ1

n(t0) ≥ ρ2
n(t0) ≥ ρ3

n(t0). Then, for all k ≤ kn,

ρ1
n(tk) ≥ ρ2

n(tk) − ‖c‖∞ and ρ3
n(tk) ≤ ρ2

n(tk) + ‖c‖∞. (21)

Indeed, if for all k < kn, mk = 3 and Mk = 1, there is nothing to prove since |ρln(tk+1)− ρln(tk)| ≤
‖c‖∞. Assume that there exists k < kn such that mk 6= 3 or Mk 6= 1. We define

k0 = min{k ≥ 1 : mk 6= 3 or Mk 6= 1}.

For concreteness, assume for example that Mk0 6= 1. By construction, k0 − 1 < kn so that
ρ1
n(tk0−1) > ρ3

n(tk0−1) + 2‖c‖∞. Since ρ1
n(tk0−1) ≥ ρ2

n(tk0−1) ≥ ρ3
n(tk0−1), we deduce that Mk0 = 2

and mk0 = 3. Recall that, for k < kn, ρ
Mk
n (tk)−‖c‖∞ ≤ ρMk

n (tk+1) < ρMk
n (tk). Thus, for k = k0−1,

from ρ1
n(tk0) ≤ ρ2

n(tk0) = ρ2
n(tk0−1) ≤ ρ1

n(tk0−1), we obtain

ρ2
n(tk0) − ‖c‖∞ ≤ ρ1

n(tk0)

Similarly, for k < kn, ρ
mk
n (tk) + ‖c‖∞ ≥ ρmk

n (tk+1) > ρmk
n (tk). Thus, from ρ3

n(tk0−1) ≤ ρ2
n(tk0) =

ρ2
n(tk0−1), we have

ρ3
n(tk0) ≤ ‖c‖∞ + ρ2

n(tk0).

We have proved so far that the inequalities in (21) hold for all k ≤ k0. Since |ρln(tk+1) − ρln(tk)| ≤
‖c‖∞ and ρ1

n(tk0−1) − ρ3
n(tk0−1) > 2‖c‖∞ we get

ρ1
n(tk0) − ρ3

n(tk0) > 0.

Thus mk0 = 3 and ρ3
n(tk0) ≤ ρ1

n(tk0) ≤ ρ2
n(tk0). Define

k1 = min{kn,min{k > k0 : mk 6= 3 or Mk 6= 2}}.

For k = k0, · · · , k1 − 1, ρ2
n(tk+1) < ρ2

n(tk) and ρ1
n(tk+1) = ρ1

n(tk) is constant, so the left hand side
inequality of (21) holds. Also, since k1 ≤ kn, for k ∈ {k0+1, · · · , k1−1}, ρ3

n(tk) < ρ2
n(tk)+4‖c‖∞. So

finally, (21) holds for k = 0, · · · , k1. Moreover, if k1 < kn, then Mk1 = 1 and mk1 = 3. Indeed, as
above, ρ2

n(tk1−1) − ρ3
n(tk1−1) > 2‖c‖∞ implies

ρ2
n(tk1) > ρ3

n(tk1).
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So Mk1 6= 3 and mk1 6= 2. If mk1 = 1 and Mk1 = 2, then we write, by (21),

ρ1
n(tk1) + ‖c‖∞ ≥ ρ2

n(tk1) > ρ3
n(tk1) ≥ ρ1

n(tk1).

So k1 = kn, a contradiction. Therefore, we necessarily have Mk1 = 1 and mk1 = 3. By recursion,
it shows that for all k < kn, mk = 3. Hence, at each step one point is added to the bin at B3. No
point is added to the bins at B1 and B2, points may only be removed from the bins at B1 and
B2. Since there are at most n points, we deduce kn ≤ n, as claimed. Also, since Dl(t0) = Tl, we
obtain, for all k = 1, · · · , kn, T3 ⊂ D3(tk), T2 ⊇ D2(tk) and T1 ⊃ D1(tk). The other case, where
mk0 = 2 could be treated similarly. So more generally, if, at some step, l = mk then l 6= Mj for all
k < j < kn, and conversely, if l = Mk then l 6= mj for all k < j < kn. It implies that Dl(tk) is a
monotone sequence in k. Since Dl(t0) = Tl, for all l ∈ {1, 2, 3},

Dl
n ⊆ Tl or Tl ⊆ Dl

n. (22)

Assume now, that t1n > zn−α with z > 0 then, from (22), T1 ⊆ D1
n and D2

n ⊆ T2. For t ∈ R, define
the set V 1(t) = D1(t, 0, 0)\T1. On the event {t1n > zn−α} we have

ρ1
n(tn) ≥ n

∫

T1

c(x)µn(dx) + n

∫

V 1(zn−α)
c(x)µn(dx) and ρ2

n(tn) ≤ n

∫

T2

c2(x)µn(dx).

So, by inequality (20), we deduce that on {t1n > zn−α}
∫

T1

c(x)µn(dx) +

∫

V 1(zn−α)
c(x)µn(dx) ≤

∫

T2

c2(x)µn(dx) +
2‖c‖∞
n

.

Or equivalently,

{t1n > zn−α} ⊆
{
√
n

∫

V 1(zn−α)
c(x)µn(dx) ≤

∫

T2

c2(x)Wn(dx) −
∫

T1

c(x)Wn(dx) +
2‖c‖∞√

n

}
.

(23)
Let A be a Borel set in T, by Hoeffding concentration inequality (see e. g. [4]) we have, for all s ≥ 0
and l ∈ {1, 2, 3},

P

(∫

A
cl(x)µn(dx) −

∫

A
cl(x) dx ≥ s

)
≤ exp(−K0s

2n), (24)

P

(∫

A
cl(x)µn(dx) −

∫

A
cl(x) dx ≤ −s

)
≤ exp(−K0s

2n) (25)

where K0 = 2‖c‖−2
∞ . Taking s = yn−α, where y > 0, we have

P

(∫

Tl

cl(x)Wn(dx) ≥ yn
1

2
−α

)
≤ exp(−K0y

2n1−2α), (26)

P

(∫

Tl

cl(x)Wn(dx) ≤ −yn 1

2
−α

)
≤ exp(−K0y

2n1−2α).

Similarly, by (25) we deduce, for s ≥ 0,

P

(∫

V 1(zn−α)
c(x)µn(dx) ≤

∫

V 1(zn−α)
c(x) dx− s

)
≤ exp(−K0s

2n).
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By assumption (1), there exists c0 > 0 such that c(x) > c0, for all x ∈ V 1(zn−α). If 0 ≤ s ≤ λ
√

3/2,
the area of V 1(s) is equal to λs/4. Therefore, for all 0 ≤ z ≤ λ

√
3nα/2,

K1zn
−α ≤

∫

V 1(zn−α)
c(x) dx ≤ K2zn

−α,

with K1 = c0λ/4 and K2 = ‖c‖∞λ/4. So, taking s = K1zn
−α/2, we get, for all 0 ≤ z ≤ λ

√
3nα,

P

(
√
n

∫

V 1(zn−α)
c(x)µn(dx) ≤

K1

2
zn

1

2
−α

)
≤ exp(−K3z

2n1−2α) (27)

where K3 = K0K
2
1/4. Similarly, for t ≥ 0, define

U l(t) =
(
Dl(t, 0, 0)\Tl

)⋃(
Dl(−t, 0, 0)\Tσ(l)

)
,

where σ = (1 2 3) is the cyclic permutation. By (24) we have, for all s ≥ 0,

P

(∫

U1(zn−α)
c(x)µn(dx) ≥

∫

U1(zn−α)
c(x) dx+ s

)
≤ exp(−K0s

2n).

Thus, setting s = zn−α, we get

P
(
µn(U

1(zn−α)) ≥ K4zn
−α
)
≤ exp(−K0z

2n1−2α) (28)

with K4 = 1 + 2K2. Now, note that by (23), from the union bound, for y > 0,

{t1n > zn−α} ⊆
{
√
n

∫

V 1(zn−α)
c(x)µn(dx) ≤ yn

1

2
−α

}
⋃{

−
∫

T1

c1(x)Wn(dx) +
‖c‖∞√
n

>
1

2
yn

1

2
−α

}

⋃{∫

T2

c2(x)Wn(dx) +
‖c‖∞√
n

>
1

2
yn

1

2
−α

}
.

Now take y = K1z/2, by (26) and (27) we deduce, if 4‖c‖∞nα−1K1
−1 ≤ z ≤ λ

√
3nα

P (t1n > zn−α) ≤ exp
(
−K3z

2n1−2α
)

+ 2exp

(
−K0

16
n1−2α

(
K1z − 4‖c‖∞nα−1

)2
)

≤ 3 exp
(
−K5n

1−2α
(
K1z − 4‖c‖∞nα−1

)2)
,

withK5 = min{K3K
−2
1 ,K0/16}. Therefore, by symmetry, for all n and z > 0 such that 4‖c‖∞nα−1K−1

1 ≤
z ≤ λ

√
3nα/2

P

(
max
1≤l≤3

|tln| > zn−α
)

≤ 18 exp
(
−K5n

1−2α
(
K1z − 4‖c‖∞nα−1

)2)
. (29)

Note that ρ̂n = ρn(Â) = max1≤l≤3 ρ
l
n(t

l
n), so by (20) we have

3ρ̂n − 4‖c‖∞ ≤ ρ1
n(tn) + ρ2

n(tn) + ρ3
n(tn) ≤ 3ρ̂n.

Subtracting 3
√
nγ, it follows

3
ρ̂n − nγ√

n
− 4‖c‖∞√

n
≤ √

n
3∑

l=1

(∫

Dl
n

cl(x)µn(dx) − γ

)
≤ 3

ρ̂n − nγ√
n

.
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Then we subtract the quantity

3∑

l=1

∫

Tl

cl(x)Wn(dx) =
√
n

3∑

l=1

(∫

Tl

cl(x)µn(dx) − γ

)

and we get
∣∣∣∣∣3
ρ̂n − nγ√

n
−

3∑

l=1

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣ ≤
√
n

∣∣∣∣∣

3∑

l=1

∫

Dl
n

cl(x)µn(dx) −
3∑

l=1

∫

Tl

cl(x)µn(dx)

∣∣∣∣∣+
4‖c‖∞√

n
.

(30)
Set cmin(x) = min(c1(x), c2(x), c3(x)), and note that if x ∈ Tl then cmin(x) = cl(x). If tln ≥ 0, we

set V l
n = V l(tln) = Dl

n \ Tl, and, if tln < 0, we set V l
n = D

σ(l)
n \ Tl, where σ = (1 2 3) is the cyclic

permutation. So

3∑

l=1

∫

Dl
n

cl(x)µn(dx) −
3∑

l=1

∫

Tl

cl(x)µn(dx) =

3∑

l=1

∫

Dl
n

(cl(x) − cmin(x))µn(dx)

=

3∑

l=1

11{tln ≥ 0}
∫

V l
n

(cl(x) − cmin(x))µn(dx) +

3∑

l=1

11{tln < 0}
∫

V l
n

(
cσ(l)(x) − cmin(x)

)
µn(dx).

(31)

Note that if x ∈ Tm, with m 6= l, then |cl(x) − cmin(x)| = |cl(x) − cm(x)|. For example, assume
l = 1, m = 2 and x = tei

π
6
+iθ ∈ T2, with 0 ≤ θ ≤ π/3, we then have

|c1(x) − cmin(x)| = |c1(x) − c2(x)| = |c(teiπ
6
+iθ) − c(tei

π
6
+iθe−i

2π
3 )|

= |c(teiπ
6
+iθ) − c(te−i

π
2
+iθ)|.

By the symmetry assumption (2), we deduce

|c1(x) − cmin(x)| = |c(teiπ
6
+iθ) − c(tei

π
6
−iθ)|.

Again by assumption (2), c is Lipschitz in a neighborhood of D1 ∪D3. Letting L > 0 denote the
Lipschitz constant, if x is close enough to D1, say the distance d(x,D1) from x to D1 is less than
or equal to 0 < ε < λ

√
3/2, we have

|c1(x) − cmin(x) ≤ Lt|eiπ
6
+iθ − ei

π
6
−iθ| = Lt|eiθ − e−iθ|

= 2Lt sin θ = 2Ld(x,D1).

By symmetry, for all l ∈ {1, 2, 3}, if d(x,Dl) ≤ ε, then

|cl(x) − cmin(x)| ≤ 2Ld(x,Dl) and |cσ(l)(x) − cmin(x)| ≤ 2Ld(x,Dl).

Fix α ∈ (1/4, 1/2), z > 0 and choose n large enough so that 4‖c‖∞nα−1K−1
1 ≤ z ≤ εnα. Then, by

(29) with probability at least 1−18 exp
(
−K5n

1−2α
(
K1z − 4‖c‖∞nα−1

)2)
, we have max1≤l≤3 |tln| ≤

zn−α. On this event, if x ∈ V l(tln) then d(x,Dl) ≤ zn−α ≤ ε. It follows by (31) that, with probability

at least 1 − 18 exp
(
−K5n

1−2α
(
K1z − 4‖c‖∞nα−1

)2)
,

√
n

∣∣∣∣∣

3∑

l=1

∫

Dl
n

cl(x)µn(dx) −
3∑

l=1

∫

Tl

cl(x)µn(dx)

∣∣∣∣∣ ≤ √
n

3∑

l=1

2Lzn−αµn(V
l
n)

≤ 2Lzn
1

2
−α

3∑

l=1

µn(U
l(zn−α)),
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By (28), with probability at least 1−3 exp(−K0z
2n1−2α), it holds

∑3
l=1 µn(U

l(zn−α)) ≤ 3K4zn
−α. Us-

ing that for all events A,B it holds P (A ∩ B) ≥ 1 − P (Ac) − P (Bc), we obtain, for all n large
enough so that 4‖c‖∞nα−1K−1

1 ≤ z ≤ εnα,

√
n

∣∣∣∣∣

3∑

l=1

∫

Dl
n

cl(x)µn(dx) −
3∑

l=1

∫

Tl

cl(x)µn(dx)

∣∣∣∣∣ ≤ 12LK4z
2n

1

2
−2α,

with probability at least 1−21 exp
(
−K6n

1−2α
(
K1z − 4‖c‖∞nα−1

)2)
, whereK6 = min{K0K1

−2,K5}. By

this latter inequality and (30), with the same probability,

∣∣∣∣∣3
ρ̂n − γ√

n
−

3∑

l=1

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣ ≤ 12LK2z
2n

1

2
−2α + 4‖c‖∞n−

1

2 .

Fix z = (24LK2)
− 1

2 so that 12LK2z
2 = 1/2. Then there exists n0 such that, for all n ≥ n0,

4‖c‖∞nα−1K−1
1 ≤ z ≤ εnα and 8‖c‖∞n−

1

2 ≤ n
1

2
−2α. Then, for all n ≥ n0,

∣∣∣∣∣3
ρ̂n − γ√

n
−

3∑

l=1

∫

Tl

cl(x)Wn(dx)

∣∣∣∣∣ ≤ n1/2−2α (32)

with probability at least

1 − 21 exp

(
−K6n

1−2α
(
K1(24LK2)

− 1

2 − 4‖c‖∞nα−1
0

)2
)

= 1 −K7 exp
(
−K8n

1−2α
)
.

Finally, we set L0 = K8 and L1 = max{K7,K9}, where K9 = exp
(
K8n

1−2α
0

)
. With this choice of

L0 and L1, (32) holds for all n ≥ 1 with probability at least 1 − L1 exp(−L0n
1−2α).

4 Large deviation principles

In this section we provide LDPs for the optimal and suboptimal load. Letting ≪ denote absolute
continuity between measures, we define by

H(ν | ℓ) =

{ ∫
T

dν
dℓ (x) log dν

dℓ (x) dℓ if ν ≪ ℓ
+∞ otherwise

the relative entropy of ν ∈ M1(T) with respect to the Lebesgue measure ℓ. Moreover, if f is a non-
negative measurable function on T, we denote by ℓf the measure on T with density f . In particular,
if
∫

T
f(x) dx = 1, we set

H(f) = H(ℓf | ℓ) =

∫

T

f(x) log f(x) dx.

4.1 Combining Sanov theorem and the Contraction Principle

Next Theorem 4.1 follows combining Sanov theorem and the Contraction Principle.

Theorem 4.1 Assume (1), (3) and (4). Then

(i) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J(y) = inf
α∈M1(T): Φ(α)=y

H(α | ℓ). (33)
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(ii) {ρn/n}n≥1 satisfies an LDP on R with good rate function

J(y) = inf
α∈M1(T): Ψ(α)=y

H(α | ℓ). (34)

Proof. By Sanov theorem the sequence { 1
n

∑n
i=1 δXi

}n≥1 satisfies an LDP on M1(T), with good rate
function H(· | ℓ). Recall that the space M1(T), equipped with the topology of weak convergence,
is a Hausdorff topological space (refer to [1]). By Lemma 2.1 the function Φ is continuous on
M1(T). Therefore, using (13) and the Contraction Principle we deduce that the sequence {ρ̃n/n}n≥1

satisfies an LDP on R with good rate function given by (33). Consequently, by Lemma 2.2(iii) and
Theorem 4.2.13 in [4], {ρn/n}n≥1 obeys the same LDP. The proof of (ii) is identical and follows
from (12). 2

Remark 4.2 It is worthwhile noticing that one can prove Theorem 4.1 also applying Lemma 2.1,
Lemma 2.2(iii) and the results in O’Connell [7].

4.2 Computing Λ∗ and Λ
∗

In this subsection we compute the Fenchel-Legendre transforms Λ∗ and Λ
∗
.

4.2.1 Proof of Proposition 1.4

We only compute Λ∗ in (i). The expression of Λ
∗

in (ii) can be computed similarly. Clearly, for
θ ∈ R,

Λ′(θ) =

∫
T1
c(x)eθc(x) dx
∫

T1
eθc(x) dx

,

and

Λ′′(θ) =

∫

T1

c2(x)
eθc(x)∫

T1
eθc(x) dx

dx−
(∫

T1

c(x)
eθc(x)∫

T1
eθc(x) dx

dx

)2

> 0,

(the strict inequality comes from the assumption that c(·) is not constant on T1). Therefore, the
function Λ′ is strictly increasing. Consider the probability measure on T1:

Pθ(dx) =
eθc(x) dx∫

T1
eθc(x) dx

.

Next Lemma 4.3 is classical; we give a proof for completeness.

Lemma 4.3 Under the assumptions of Proposition 1.4, the following weak convergence holds:

Pθ ⇒ δ0 as θ → +∞ and Pθ ⇒ δB1
as θ → −∞.

Proof of Lemma We only prove the first limit. Indeed, the second limit can be showed similarly. We
need to show:

Pθ(A) → δ0(A) as θ → +∞, for any Borel set A ⊆ T1 such that 0 /∈ ∂A.

If 0 /∈ A ⊆ T1 then, by assumption (5), c(x) < c(0) for any x ∈ A. So A ⊆ It, for some t > 0,
where It = {x ∈ T1 : c(x) ≤ c(0) − t}. By assumption c is continuous at 0, so there exists an open
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neighborhood of 0, say Vt, such that, for all x ∈ Vt, c(x) ≥ c(0) − t/2. Note that, for any θ > 0,

Pθ(It) =

∫

It

eθc(x)∫
T1

eθc(x) dx
dx

≤
∫

T1

eθc(0)−θt∫
Vt∩T1

eθc(0)−θt/2 dx
dx

≤ ℓ(Vt ∩ T1)
−1e−θt/2.

Thus, for all t > 0, limθ→+∞ Pθ(It) = 0. This guarantees the claim in the case when the Borel set
A ⊆ T1 does not contain 0. Suppose now 0 ∈ A, then 0 /∈ T1\A and we get Pθ(A) = 1−Pθ(T1\A) →
1 as θ goes to infinity. 2

We can now continue the proof of the proposition. Let c(B1) < y < c(0). By Lemma 2.3.9(b)
in [4], we need to show that there exists a unique solution θy of Λ′(θ) = y. To this end, note that
Λ′(θ) =

∫
T1
c(x) Pθ(dx). By assumption c is continuous at 0 and B1, so by Lemma 4.3 and Theorem

5.2 in [1] it follows
lim

θ→−∞
Λ′(θ) = c(B1) < y < c(0) = lim

θ→+∞
Λ′(θ).

Since Λ′ is continuous and strictly increasing, the mean value theorem implies the existence and
uniqueness of θy. Consider now y > c(0). Note that, for θ ≥ 0, Λ(θ) ≤ θc(0). Therefore

θy − Λ(θ) ≥ θ(y − c(0)).

It follows that Λ∗(y) = +∞. Similarly, for y < c(B1), we use that, for θ ≤ 0, Λ(θ) ≤ θc(B1) and
deduce Λ∗(y) = +∞. Finally we prove (iii). We first show that

Λ(θ/3) < Λ(θ), for all θ > 0. (35)

Showing (35) amounts to show that, for all θ > 0,

∫

T1

eθc(x) dx+ 2/3 − 3

∫

T1

eθc(x)/3 dx > 0. (36)

By Jensen’s inequality it follows that

(∫

T1

eθc(x)/3 dx

)3

<
1

9

∫

T1

eθc(x) dx

(the strict inequality derives from the strict convexity of the cubic power on [0,∞), and the fact
that c is not constant on T1). Hence the left hand side of (36) is larger than

9
( ∫

T1

eθc(x)/3 dx
)3

−3

∫

T1

eθc(x)/3 dx+
2

3
= 9

( ∫

T1

eθc(x)/3 dx− 1

3

)2( ∫

T1

eθc(x)/3 dx+
2

3

)
,

and the inequality (36) follows. Now, let γ < y < c(0)/3. By Theorem 1.1, limn→∞ ρn/n =
limn→∞ ρn/n = γ < y. Thus, by Lemma 2.2.5 in [4] we have

Λ∗(3y) = sup
θ>0

(θy − Λ(θ/3)) and Λ
∗
(y) = sup

θ>0
(θy − Λ(θ)) = ηyy − Λ(ηy),

where ηy is the unique positive solution of (10). Finally, (35) yields:

Λ
∗
(y) = yηy − Λ(ηy) < yηy − Λ(ηy/3) ≤ supθ>0(θy − Λ(θ/3)) = Λ∗(3y).
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4.2.2 Value of the Fenchel-Legendre transforms at the extrema

In this paragraph, for the sake of completeness, we deal with the value of Λ∗ and Λ
∗

at c(B1) and
c(0). If c is differentiable as a function from T ⊂ C to R, we denote by gradx(c) its gradient at
x. The following proposition holds:

Proposition 4.4 Suppose that the assumptions of Proposition 1.4 hold and that c is differentiable

at 0 and B1. If moreover, for all ω ∈ [−π/2, π/6], grad0(c) · eiω < 0 and, for all ω ∈ [2π/3, π],
gradB1

(c) · eiω > 0, then

Λ∗(c(B1)) = Λ
∗
(c(B1)) = Λ∗(c(0)) = Λ

∗
(c(0)) = +∞.

Proof. We show the proposition only for Λ∗(c(0)). The other three cases can be proved similarly. Us-
ing polar coordinates, we have:

∫

T1

eθc(x) dx =

∫ π/6

−π/2

∫

Iω

eθc(re
iω)r drdω

for some segment Iω = [0, aω ]. The Laplace’s method (see e.g. Murray [6]) gives, for all ω ∈
[−π/2, π/6], ∫

Iω

eθc(re
iω)r dr ∼ eθc(0)

θ2|grad0(c) · eiω|
as θ → +∞

where we write f ∼ g if f and g are two functions such that, as x → +∞, the ratio f(x)/g(x)
converges to 1. We deduce that, as θ → +∞,

∫

T1

eθc(x) dx ∼ eθc(0)θ−2

∫ π/6

−π/2

1

|grad0(c) · eiω|
dω.

Since the integral in the right hand side is a finite positive constant, we have Λ(θ) = θc(0)−2 log θ+
o(log θ), and therefore

Λ∗(c(0)) = sup
θ∈R

(θc(0) − Λ(θ)) = sup
θ∈R

(2 log θ + o(log θ)) = +∞.

2

In the next two subsections, we solve some variational problems. We refer the reader to the
book by Buttazzo, Giaquinta and Hildebrandt [3] for a survey on calculus of variations.

4.3 Proof of Theorem 1.3(i)

We divide the proof of Theorem 1.3(i) in 5 steps.

Step 1: Case y /∈ (c(B1)/3, c(0)/3). We have to prove that J(y) = ∞. Denote by Mac
1 (T) ⊆

M1(T) the set of probability measures on T which are absolutely continuous with respect to ℓ. For
α ∈ Mac

1 (T), define the measures in Mb(T):

αl(dx) =
cσ2(l)(x)cσ(l)(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)
α(dx), l ∈ {1, 2, 3}

where σ = (1 2 3) is the cyclic permutation. Clearly α1 + α2 + α3 = α and

Φ(α) ≤ φ(α1, α2, α3) < c(0)/3 (37)
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where the strict inequality follows by assumption (6) and the fact that α is a probability measure
on T such that α ≪ ℓ. The above argument shows that {α ∈ Mac

1 (T) : Φ(α) = y} = ∅, for all
y ≥ c(0)/3. Therefore, by Theorem 4.1(i), we have J(y) = +∞ if y ≥ c(0)/3. Using assumptions (1)
and (5), one can easily realize that, for any measure β ∈ Mb(T), β(cl) ≥ c(B1)β(T) and the equality
holds only if β = δBl

. By Lemma 2.2(i) we deduce that, for all α ∈ M1(T), 3Φ(α) > c(B1). This
gives J(y) = ∞ for all y ≤ c(B1)/3, and concludes the proof of this step.

Step 2: the set function ν and an alternative expression for Λ∗(3y). For the remainder
of the proof we fix y ∈ (c(B1)/3, c(0)/3). For this we shall often omit the dependence on y of the
quantities under consideration. In this step we give an alternative expression for Λ∗(3y) that will
be used later on. Let B ⊂ T be a Borel set with positive Lebesgue measure. Define the function of
(η0, η1) ∈ R

2:

m(B, η0, η1) =

∫

B
e−1−η0−η1c(x) dx.

It turns out that m(B, ·) is strictly convex on R
2 (the second derivatives with respect to η0 and η1

are strictly bigger than zero). Define the strictly concave function

F (B, η0, η1) = −η0 − 3yη1 − 3m(B, η0, η1)

and the set function
ν(B) = sup

(η0,η1)∈R2

F (B, η0, η1).

Arguing as in the proof of Lemma 2.2.31(b) in [4], we have:

grad(γ0,γ1)(3m(B, ·)) = (−1,−3y) ⇒ ν(B) = (γ0, γ1) · (−1,−3y) − 3m(B, γ0, γ1)

where · denotes the scalar product on R
2. Therefore, if there exist γ0 = γ0(B) and γ1 = γ1(B) such

that ∫

B
e−γ1c(x)dx = e1+γ0/3 and

∫

B
c(x)e−γ1c(x)dx = ye1+γ0 (38)

then it is easily seen that
ν(B) = −(1 + γ0(B)) − 3yγ1(B).

In particular, by Proposition 1.4(i), setting γ1(T1) = −θ3y and γ0(T1) = Λ(θ3y) − 1, one has

Λ∗(3y) = ν(T1) = −(1 + γ0(T1)) − 3yγ1(T1), (39)

and γ0(T1) and γ1(T1) are the unique solutions of the equations in (38) with B = T1. Note also
that, for Borel sets A and B such that A ⊆ B ⊆ T, we have for all η0, η1 ∈ R,

m(B, η0, η1) −m(A, η0, η1) =

∫

T

(11B(x) − 11A(x))e−1−η0−η1c(x) dx ≥ 0.

In particular, for all η0, η1 ∈ R, F (A, η0, η1) ≥ F (B, η0, η1). This proves that the set function ν is
non-increasing (for the set inclusion). An easy consequence is the following lemma. For B ⊂ T and
z ∈ C, define zB = {zx : x ∈ B} and

T = {Borel sets B ⊂ T : ℓ(B) > 0 and ℓ(B ∩ (jB)) = ℓ(B ∩ (j2B)) = ℓ((jB) ∩ (j2B)) = 0}.
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Lemma 4.5 Under the foregoing assumptions and notation, it holds:

inf{ν(B) : B ∈ T} = inf{ν(B) : B ∈ T and ℓ(B) = 1/3} < +∞.

Proof of Lemma The monotonicity of ν implies ν(T) ≤ ν(T1). So the finiteness of the infimum
follows by ν(T1) < +∞ that we proved above. Note that if B ∈ T then B ∪ (jB) ∪ (j2B) ⊂ T and
1 ≥ ℓ(B ∪ (jB) ∪ (j2B)) = ℓ(B) + ℓ(jB) + ℓ(j2B) = 3ℓ(B). So

inf{ν(B) : B ∈ T} = inf{ν(B) : B ∈ T and ℓ(B) ≤ 1/3}.

Now, if B ∈ T is such that ℓ(B) < 1/3, define the set C = T \ (B ∪ (jB) ∪ (j2B)), note that
ℓ(C) = 1− 3ℓ(B) > 0 and C = jC = j2C. Set C1 = C ∩T1 and define D = B∪C1. Clearly, B ⊂ D
and therefore ν(B) ≥ ν(D). Moreover, it is easily checked that D ∈ T. Indeed, ℓ(D) ≥ ℓ(B) > 0
and, for instance,

ℓ(D ∩ (jD)) = ℓ((B ∪C1) ∩ ((jB) ∪ (jC1))

≤ ℓ(B ∩ (jB)) + ℓ(B ∩ (jC1)) + ℓ(C1 ∩ (jB)) + ℓ(C1 ∩ (jC1)) = 0.

The claim follows since

ℓ(D) = ℓ(B) + ℓ(C1) = ℓ(B) + ℓ(C)/3 = 1/3.

2

Step 3: the related variational problem. As above, we fix y ∈ (c(B1)/3, c(0)/3). Recall that
H(α | ℓ) = +∞ if α is not absolutely continuous with respect to ℓ. So, by Theorem 4.1(i),

J(y) = inf
α∈Mac

1
(T): Φ(α)=y

H(α | ℓ).

Define the following functional spaces:

B = {measurable functions defined on T with values in [0,∞)}

and

B
3
Φ =

{
(f1, f2, f3) ∈ B

3 : ℓ

(
3∑

l=1

fl

)
= 1 and φ(ℓf1 , ℓf2 , ℓf3) = Φ(ℓf1 + ℓf2 + ℓf3)

}

(recall that ℓf is the measure with density f). By Lemma 2.2(i) it follows

J(y) = inf
(f1,f2,f3)∈R3

Φ

H

(
3∑

l=1

fl(x)

)
(40)

where
R

3
Φ =

{
(f1, f2, f3) ∈ B

3
Φ : φ(ℓf1 , ℓf2, ℓf3) = y

}

(note that the upper script ”3” in B3
Φ and R3

Φ is to remind that these spaces are defined on triplets
of functions in B; it is not related to the Cartesian product of three spaces). Computing the value
of J(y) from (40) is far from obvious, indeed R3

Φ is not a convex set and the standard machinery of
calculus of variations cannot be applied directly. The key idea is the following: consider the same
minimization problem on a larger convex space, defined by linear constraints; compute the solution
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of this simplified variational problem; show that this solution is in R3
Φ. To this end, note that, again

by Lemma 2.2(i), if (f1, f2, f3) ∈ B3
Φ then ℓf1(c1) = ℓf2(c2) = ℓf3(c3). Therefore, we have R3

Φ ⊂ S3
φ

where

S
3
φ =

{
(f1, f2, f3) ∈ B

3 : ℓ

(
3∑

l=1

fl

)
= 1 and, for all l ∈ {1, 2, 3}, ℓfl

(cl) = y

}
.

It follows that

J(y) ≥ inf
(f1,f2,f3)∈S3

φ

H

(
3∑

l=1

fl(x)

)
.

Step 4: the simplified variational problem. Recall that y ∈ (c(B1)/3, c(0)/3) is fixed in this
part of the proof. In this step, we prove that

I(y) := inf
(f1,f2,f3)∈S3

φ

H

(
3∑

l=1

fl(x)

)
(41)

is equal to Λ∗(3y). Clearly, the set S3
φ is convex. Therefore, if S3

φ is not empty, due to the strict
convexity of the relative entropy, the solution of the variational problem (41), say f∗ = (f∗1 , f

∗
2 , f

∗
3 ) ∈

S3
φ, is unique, up to functions which are null ℓ-almost everywhere (a. e. ). We now compute f∗ and

check retrospectively that S3
φ is not empty. Consider the Lagrangian L defined by

L(f1, f2, f3, λ0, λ1, λ2, λ3)(x) =

(
3∑

l=1

fl(x)

)
log

(
3∑

l=1

fl(x)

)
+ λ0

(
3∑

l=1

fl(x) − 1

)

+

3∑

l=1

λl(cl(x)fl(x) − y)

where the λi’s (i = 0, · · · , 3) are the Lagrange multipliers. For l ∈ {1, 2, 3}, define the Borel sets:

Al = {x ∈ T : f∗l (x) > 0}.

Since f∗ is the solution of (41), by the Euler equations we have, for l ∈ {1, 2, 3},
(
∂L

∂fl

) ∣∣∣
(f1,f2,f3)=f∗

= 0 on Al.

We deduce that, for all x ∈ Al,

f∗1 (x) + f∗2 (x) + f∗3 (x) = e−1−λ0−λlcl(x). (42)

Define the functions g1(x) := f∗2 (jx), g2(x) := f∗3 (jx) and g3(x) := f∗1 (jx). By a change of variable,
it is straightforward to check that (g1, g2, g3) ∈ S3

φ and

∫

T

(
3∑

l=1

gl(x)

)
log

(
3∑

l=1

gl(x)

)
dx =

∫

T

(
3∑

l=1

f∗l (x)

)
log

(
3∑

l=1

f∗l (x)

)
dx.

The uniqueness of the solution implies that a. e.

f∗2 (jx) = f∗1 (x), f∗3 (jx) = f∗2 (x) and f∗1 (jx) = f∗3 (x).
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In particular, up to a null measure set, Al = jl−1A1. Moreover, onA1, the equality, a. e.
∑3

l=1 gl(x) =∑3
l=1 f

∗
l (x) applied to (42) gives, a. e. on A1, exp(−1 − λ0 − λ2c2(jx)) = exp(−1 − λ0 − λ1c1(x))

(indeed x ∈ A1 implies jx ∈ A2). We deduce that λ2 = λ1. The same argument on A3 carries over
by symmetry, so finally λ1 = λ2 = λ3. We now use the following lemma that will be proved at the
end of the step.

Lemma 4.6 Under the foregoing assumptions and notation, up to a Borel set of null Lebesgue

measure it holds A1 ⊂ T1.

By Lemma 4.6 and the a. e. equality Al = jl−1A1, we deduce that A1 ∈ T, up to a Borel set of null
Lebesgue measure. So, by equation (42) and the equality λ1 = λ2 = λ3, it follows

f∗1 (x) = e−1−λ0−λ1c(x)11(x ∈ A1), a.e.

and f∗2 (x) = f∗1 (j2x), f∗3 (x) = f∗1 (jx). Note that the constraints

ℓ

(
3∑

l=1

f∗l

)
= 1 and ℓf∗

1
(c1) = y

read respectively

∫

A1

e−1−λ0−λ1c(x) dx = 1/3 and

∫

A1

c(x)e−1−λ0−λ1c(x) dx = y.

This implies that the Lagrange multipliers λ0 and λ1 are solutions of the equations in (38) with
B = A1. Moreover

∫

T

(
3∑

l=1

f∗l (x)

)
log

(
3∑

l=1

f∗l (x)

)
dx = 3

∫

A1

(−1 − λ0 − λ1c(x)) e−1−λ0−λ1c(x) dx

= −(1 + λ0) − 3yλ1.

Therefore (see the beginning of step 2)

I(y) =

∫

T

(
3∑

l=1

f∗l (x)

)
log

(
3∑

l=1

f∗l (x)

)
dx = ν(A1).

Since A1 ∈ T we deduce that
I(y) ≥ inf{ν(B) : B ∈ T}.

For the reverse inequality, take B ∈ T such that ν(B) = sup(η0,η1)∈R2 F (B, η0, η1) is finite. Since
the function (η0, η1) 7→ F (B, η0, η1) is finite and strictly concave, it admits a unique point of
maximum. Arguing exactly as at the beginning of step 2, we have that the point of maximum is
(γ0(B), γ1(B)), whose components are solutions of equations in (38), and

ν(B) = −(1 + γ0(B)) − 3yγ1(B).

For l ∈ {1, 2, 3}, define the functions on T:

gl,B : x 7→ e−1−γ0(B)−γ1(B)cl(x)11(x ∈ jl−1B).
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Since γ0(B) and γ1(B) solve the equations in (38), it follows easily that (g1,B , g2,B , g3,B) ∈ S3
φ. There-

fore

ν(B) =

∫

T

(
3∑

l=1

gl,B(x)

)
log

(
3∑

l=1

gl,B(x)

)
dx

≥ inf
(f1,f2,f3)∈S3

φ

H

(
3∑

l=1

fl(x)

)
.

Thus
I(y) = ν(A1) = inf{ν(B) : B ∈ T}.

Since A1 ∈ T, by Lemma 4.5 we get that ℓ(A1) = 1/3. So, by Lemma 4.6, we deduce that A1 = T1

up to a Borel set of null Lebesgue measure. Then by equation (39) we conclude

I(y) = Λ∗(3y).

Proof of Lemma 4.6. The argument is by contradiction. Define the Borel set

C := (A1 ∩ T
c
1) ∪ (jA1 ∩ T

c
2) ∪ (j2A1 ∩ T

c
3)

and assume that ℓ(A1 ∩ T
c
1) > 0. For l ∈ {1, 2, 3}, define Ãl = (Al\C) ∪ (C ∩ Tl) and g̃l(x) =

(f∗1 (x) + f∗2 (x) + f∗3 (x))11(x ∈ Ãl). Since Al = jl−1A1 up to a Borel set of null Lebesgue measure,

then jl−1C = C and Ãl = jl−1Ã1 up to a Borel set of null Lebesgue measure. So by (42) it follows
that ℓeg1(c1) = ℓeg2(c2) = ℓeg3(c3), and therefore

3

∫

T

cl(x)g̃l(x) dx =

∫

T

(
3∑

l=1

11(x ∈ Ãl)cl(x)

)(
3∑

l=1

f∗l (x)

)
dx. (43)

Now, note that Ãl ⊆ Tl and, up to a Borel set of null Lebesgue measure,

Ã1 ∪ Ã2 ∪ Ã3 = A1 ∪A2 ∪A3. (44)

So by assumption (1), a. e.

11(x ∈ Ãl)cl(x) ≤
3∑

m=1

11(x ∈ Am)cm(x)

and the inequality is strict if x is in C∩
◦
Tl. Indeed if x ∈ C∩

◦
Tl, then a.e. x ∈ Am for some m 6= l,

and so cl(x) < cm(x) by (1). Therefore, since ℓ(A1 ∩ T
c
1) > 0 then ℓ(C∩

◦
Tl) > 0 and, using (43),

we get ∫

T

cl(x)g̃l(x) dx <

∫

T

cl(x)f
∗
l (x) dx = y.

For p ∈ [0, 1], define the functions

g̃l,p(x) = (1 − p) g̃l(x) + p 11(x ∈ Tσ(l)),

where σ = (1 2 3) is the cyclic permutation. By assumption (6) it follows
∫

T

cl(x)g̃l,1(x) dx > c(0)/3 > y.
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We have already checked that ℓegl,0
(cl) < y, thus, by the mean value theorem, there exists p̄ ∈ (0, 1)

such that (g̃1,p̄, g̃2,p̄, g̃3,p̄) ∈ S3
φ. The convexity of the relative entropy gives

H(g̃1,p̄ + g̃2,p̄ + g̃1,p̄ | ℓ) ≤ p̄H(g̃1 + g̃2 + g̃3 | ℓ) + (1 − p̄)H(ℓ | ℓ) = p̄H(f∗1 + f∗2 + f∗3 | ℓ),

where the latter equality follows by (44) and the definition of g̃l. This leads to a contradiction since
f = (f∗1 , f

∗
2 , f

∗
3 ) minimizes the relative entropy on S3

φ. 2

Step 5: end of the proof. It remains to check that f∗ = (f∗1 , f
∗
2 , f

∗
3 ) ∈ R3

Φ. For this we need to
prove that Φ(ℓf∗

1
+f∗

2
+f∗

3
) = φ(ℓf∗

1
, ℓf∗

2
, ℓf∗

3
) = y. Since f∗ ∈ S3

φ then ℓf∗
1
(c1) = ℓf∗

2
(c2) = ℓf∗

3
(c3) = y;

moreover, by the properties of the functions f∗l it holds ℓf∗
l
(cl) =

∫
Tl
cl(x)fl(x) dx. So the claim

follows if we check that

Φ(ℓf∗
1
+f∗

2
+f∗

3
) ≥

∫

T1

c1(x)f1(x) dx.

By Lemma 2.2(i) we have that there exists (g1, g2, g3) ∈ B3 such that: ℓf∗
1
+f∗

2
+f∗

3
= ℓg1 + ℓg2 + ℓg3,

Φ(ℓf∗
1
+f∗

2
+f∗

3
) = φ(ℓg1 , ℓg2, ℓg3) and ℓg1(c1) = ℓg2(c2) = ℓg3(c3). In particular,

3Φ(ℓf∗
1
+f∗

2
+f∗

3
) =

3∑

l=1

∫

T

cl(x)gl(x) dx =
3∑

m=1

∫

Tm

3∑

l=1

cl(x)gl(x) dx

≥
3∑

m=1

∫

Tm

cm(x)
3∑

l=1

gl(x) dx (45)

≥
3∑

m=1

∫

Tm

cm(x)f∗m(x) dx

= 3

∫

T1

c1(x)f
∗
1 (x) dx

where in (45) we used assumption (1). This concludes the proof of Theorem 1.3(i).

4.4 Proof of Theorem 1.3(ii)

Some ideas in the following proof of Theorem 1.3(ii) are similar to those one in the proof of Theorem
1.3(i). Therefore, we shall omit some details. We divide the proof of Theorem 1.3(ii) in 3 steps.

Step 1: Case y /∈ (c(B1)/3, c(0)). As noticed in step 1 of the proof of Theorem 1.3(i), for any
measure β ∈ Mb(T), β(cl) ≥ c(B1)β(T) and the equality holds only if β = δBl

. We deduce that, for
all α ∈ M1(T), 3Ψ(α) > c(B1). Therefore, by Theorem 4.1(ii), J(y) = +∞ if y ≤ c(B1)/3. Now,
note that, for α ∈ M1(T) it holds

Ψ(α) = max
1≤l≤3

(∫

Tl

cl(x)α(dx)

)
< c(0) max

1≤l≤3
α(Tl) ≤ c(0)

where the strict inequality follows by assumption (5) and α ≪ ℓ. Therefore, using again Theorem
4.1(ii), we easily deduce that J(y) = +∞ if y ≥ c(0).
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Step 2: the set function µ. For the remainder of the proof we fix y ∈ (c(B1)/3, c(0)), and
we shall often omit the dependence on y of the quantities under consideration. In the following we
argue as in step 2 of the proof of Theorem 1.3(i). Let B ⊂ T be a Borel set with positive Lebesgue
measure and define the function of (η0, η1) ∈ R

2:

q(B, η0, η1) = 2e−1−η0ℓ(B ∩ T2) +

∫

B∩T1

e−1−η0−η1c(x) dx.

Clearly, q(B, ·) is strictly convex on R
2. Define the strictly concave function

G(B, η0, η1) = −η0 − yη1 − q(B, η0, η1)

and the set function
µ(B) = sup

(η0,η1)∈R2

G(B, η0, η1).

If there exist γ0 = γ0(B) and γ1 = γ1(B) such that

∫

B∩T1

e−γ1c(x)dx+ 2ℓ(B ∩ T2) = e1+γ0 and

∫

B∩T1

c(x)e−γ1c(x)dx = ye1+γ0 (46)

then we have
µ(B) = −(1 + γ0(B)) − yγ1(B).

In particular, by Proposition 1.4(ii), setting γ1(T) = −ηy and γ0(T) = Λ(ηy) − 1 one has

Λ
∗
(y) = µ(T) = −(1 + γ0(T)) − yγ1(T) if γ < y < c(0) (47)

and γ0(T) and γ1(T) are the unique solutions of the equations in (46) with B = T. Recall also that
in step 2 of the proof of Theorem 1.3(i) we showed:

Λ∗(3y) = −(1 + γ0(T1)) − 3yγ1(T1) if c(B1)/3 < y ≤ γ

where γ0(T1) and γ1(T) are the unique solutions of the equations in (38) with B = T1. Note
that, for Borel sets A and B such that A ⊆ B ⊆ T, we have, for all η0, η1 ∈ R, G(A, η0, η1) ≥
G(B, η0, η1). This proves that the set function µ is non-increasing (for the set inclusion). An easy
consequence is the following lemma:

Lemma 4.7 Under the foregoing assumptions and notation, it holds:

inf{µ(B) : B ⊆ T} = Λ
∗
(y) if γ < y < c(0)

Step 3: the related variational problem. As above we fix y ∈ (c(B1)/3, c(0)); as in the proof
of Theorem 1.3(i) we denote by B the set of Borel functions defined on T with values in [0,∞). By
Theorem 4.1(ii), we have

J(y) = inf
f∈U

H(f)

where

U =

{
f ∈ B : ℓ(f) = 1 and max

1≤l≤3

(∫

Tl

cl(x)f(x)dx

)
= y

}
.

Note that f ∈ U if and only if the functions x 7→ f(jx) and x 7→ f(j2x) are also in U and so

J(y) = inf
f∈V

H(f) (48)

27



where
V =

{
f ∈ B : ℓ(f) = 1, ℓf |T1

(c1) = y, ℓf |T2
(c2) ≤ y, ℓf |T3

(c3) ≤ y
}
.

The optimization problem (48) is a minimization of a convex function on a convex set defined by
linear constraints. Thus it can be solved explicitly. Therefore, if V is not empty, since the relative
entropy is strictly convex, the solution of the variational problem (48), say f∗ ∈ V, is unique, up to
functions which are null ℓ-almost everywhere. We will compute f∗ and show that V is not empty
at the same time. So assume that V is not empty and define the function

g(x) = f∗(x)11T1
(x) + f∗(jx)11T2

(x) + f∗(j2x)11T3
(x).

It is easily checked that g ∈ V and H(g) = H(f). The uniqueness of f∗ implies that

for almost all x ∈ T2, f
∗(jx) = f∗(x). (49)

Therefore, up to modifying f∗ on a set of null measure, f∗ ∈ V′ where

V
′ =

{
f ∈ B : ℓ(f) = 1, ℓf |T1

(c1) = y, ℓf |T2
(c2) ≤ y

}

and the variational problem reduces to J(y) = inff∈V′ H(f). Consider the Lagrangian L defined by

L(f, λ0, λ1, λ2)(x) =f(x) log f(x) + λ0(f(x) − 1)

+ λ1(c1(x)f(x)11T1
(x) − y) + λ2(c2(x)f(x)11T2

(x) − y)

with

λ2

(∫

T2

c2(x)f
∗(x) dx− y

)
= 0.

The two cases λ2 = 0 (i. e. f∗ is not constrained on T2) and λ2 6= 0 (i. e. f∗ is constrained on
T2) are treated separately. For each case, we solve the variational problem. The optimal function
is denoted by fu for λ2 = 0 and by fc for λ2 6= 0, so that f∗ = arg min(H(fu),H(fc)). Assume first
that λ2 = 0 so that f∗ = fu and define the Borel set:

Au = {x ∈ T : fu(x) > 0}.

By the Euler equations we get, for all x ∈ T,

fu(x) = 11T1∩Au(x)e−1−λ0−λ1c1(x) + 11(T2∪T3)∩Au
(x)e−1−λ0 . (50)

By (49) we have ℓ(Au ∩T2) = ℓ(Au ∩T3), and so the constraints ℓ(fu) = 1 and ℓfu |T1
(c1) = y read,

respectively,
∫

Au∩T1

e−λ1c(x) dx+ 2ℓ(Au ∩ T2) = e1+λ0 and

∫

Au∩T1

c(x)e−λ1c(x) dx = ye1+λ0 .

With the notation of step 2, this implies that λ0 = γ0(Au) and λ1 = γ1(Au) are the solution of the
equations in (46) with B = Au. In particular,

µ(Au) = −(1 + γ0(Au)) − yγ1(Au) = H(fu)

where the latter equality follows from the computation of the entropy using (50). By Lemma 4.7
we deduce that

H(fu) ≥ Λ
∗
(y) if γ < y < c(0).
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By (47) we have H(h) = Λ
∗
(y), where

h(x) = 11T1
(x)e−1−γ0(T)−γ1(T)c(x) + 11T2∪T3

(x)e−1−γ0(T)

and γ0(T), γ1(T) are the unique solutions of the equations in (46) with B = T. Now we prove that
h ∈ V, for γ < y < c(0), so that

H(fu) = Λ
∗
(y) if γ < y < c(0). (51)

Recall that −γ1(T) is the unique solution of

∫
T1
c(x)eθc(x) dx

∫
T1

eθc(x) dx+ 2/3
= y.

The function

θ 7→
∫

T1
c(x)eθc(x) dx

∫
T1

eθc(x) dx+ 2/3

is strictly increasing (as can be checked by a straightforward computation) and, for θ = 0, it is
equal to γ. Therefore, since y > γ, we have −γ1(T) > 0. It implies that

∫

T1

c(x)e−1−γ0(T)−γ1(T)c(x) dx = y >

∫

T1

c(x)e−1−γ0(T) dx = γe−1−γ0(T).

In particular, h ∈ V. Now we deal with the case λ2 6= 0. We have

ℓfc |T1
(c1) = ℓfc |T2

(c2) = ℓfc |T3
(c3) = y.

In particular, if we set fc,l(x) = 11(x ∈ Tl)fc(x), we get (fc,1, fc,2, fc,3) ∈ S3
φ. By step 4 of the proof

of Theorem 1.3(i), it implies that

H(fc) ≥ inf
(f1,f2,f3)∈S3

φ

H(f1 + f2 + f3) = Λ∗(3y) = H(f∗1 + f∗2 + f∗3 ),

where f∗ = (f∗1 , f
∗
2 , f

∗
3 ) was defined above. Since f∗1 + f∗2 + f∗3 ∈ V, we deduce directly that a.e.

fc = f∗1 + f∗2 + f∗3 and
H(fc) = Λ∗(3y). (52)

It remains to find out for which values of y the Lagrange multiplier λ2 is equal to zero. First of all
note that if y = γ then the function identically equal to 1 is in V. We deduce that f∗ ≡ 1 and so
λ2 = 0 (since the optimal solution is not constrained on T2) and J(γ) = 0 = Λ∗(3γ). Now assume
γ < y < c(0). By Proposition 1.4(iii), we deduce Λ

∗
(y) < Λ∗(3y). It follows by (51) and (52) that

H(fu) < H(fc). Recall that f∗ = arg min(H(fu),H(fc)), thus λ2 = 0 and J(y) = Λ
∗
(y). It remains

to deal with the case c(B1)/3 < y < γ. The following lemma holds:

Lemma 4.8 Under the foregoing assumptions and notation, if c(B1)/3 < y < γ then J(y) ≥ J(y).

Then, by Theorem 1.3(i) and (52) we get

Λ∗(3y) = J(y) ≤ J(y) = min(H(fu),H(fc)) ≤ Λ∗(3y).

This concludes the proof.
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Proof of Lemma 4.8. Choose y < z < γ. By construction P (ρn ≤ nz) ≤ P (ρn ≤ nz). Taking the
logarithm, applying Theorem 4.1 and recalling that J(y) = J(y) = +∞ for y ≤ c(B1)/3 we have

− inf
t∈(c(B1)/3,z)

J(t) ≤ lim inf
n→∞

1

n
log P (ρn ≤ nz) ≤ lim sup

n→∞

1

n
logP (ρn ≤ nz) ≤ − inf

t∈(c(B1)/3,z]
J(t).

Therefore
J(y) ≥ inf

t∈(c(B1)/3,z)
J(t) ≥ inf

t∈(c(B1)/3,z]
J(t) = J(z)

where the latter equality follows since J(y) = Λ∗(3y) is decreasing on (c(B1)/3, γ). Recalling that
J(y) = Λ∗(3y) is also continuous on (c(B1)/3, γ), the claim follows letting z tend to y. 2

5 Model Extension

5.1 The analog 1-dimensional model

The analog 1-dimensional model is obtained as follows. There are n objects on (0, 1), say {1, . . . , n},
and two bins located at 0 and 1, respectively. The location of the k-th object is given by a r.v. Xk

and it is assumed that the r.v.’s {Xk}1≤k≤n are i.i.d. and uniformly distributed on [0, 1]. The cost
to allocate an object at x ∈ [0, 1] to the bin at 0, respectively at 1, is c(x), respectively c(1−x). The
asymptotic analysis of allocations which realize the optimal and the suboptimal load can be carried
on using the ideas and the techniques developed in this paper. Due to the simpler geometry of
the 1-dimensional model, many technical difficulties met in the 2-dimensional case disappear, and
with the proper assumptions on the cost function, it is possible to state and prove the analog of
Theorems 1.1, 1.2 and 1.3.

5.2 Random cost function

An interesting and natural extension of the model takes into account random cost functions. Let
Z be a Polish space and Zk = (Z1

k , Z
2
k , Z

3
k) (k = 1, . . . , n) a r.v. taking values on Z3. Assume

that: the sequences {Xk}1≤k≤n and {Zk}1≤k≤n are independent; the r.v.’s {Zk}1≤k≤n are i.i.d.
with common distribution Q; the r.v.’s Z1

1 , Z2
1 and Z3

1 are i.i.d.. Let c : T × Z3 → [0,∞) be a
measurable function. We consider an extension of the basic model where the cost to allocate the
k-th object to the bin at Bl (l = 1, 2, 3) is equal to cl(Xk,Zk). Here, for z = (z1, z2, z3), the cost
functions are defined in such a way that they preserve the spatial symmetry: c1(x, z) = c(x, z),
c2(x, z) = c(j2x, (z2, z3, z1)) and c3(x, z) = c(jx, (z3, z1, z2)). The load associated to an allocation
matrix A ∈ An is

ρn(A) = max
1≤l≤3

(
n∑

k=1

aklcl(Xk,Zk)

)
.

In a wireless communication scenario we have Z = R+, and the typical cost function is of the form

c(x, z) =
a+ min{b, z2|x−B2|−α} + min{b, z3|x−B3|−α}

min{b, z1|x−B1|−α}

where a > 0, α ≥ 2 and b > (λ
√

3/2)−α. The additional randomness in the cost function models the
fading along the channel (see e.g. [9]). The suboptimal allocation A = (ak,l)1≤k≤n,1≤l≤3 is obtained
by allocating each point to its less costly bin. To be more precise, assume that ℓ⊗Q-a.s., for any
l 6= m, cl(x, z) 6= cm(x, z). Then, setting

ak,l = 11(cl(Xk,Zk) < min
m6=l

cm(Xk,Zk)),

30



the suboptimal allocation matrix is a.s. well-defined. Consider the suboptimal load ρn = ρn(A)
and the optimal load ρn = minA∈An

ρn(A). Exactly as in the proof of Theorem 1.1, one can prove
that, a.s.

lim
n→∞

ρn
n

= lim
n→∞

ρn
n

=

∫

T×Z3

11(cl(x, z) < min
m6=l

cm(x, z)) dxQ(dz).

Deriving analogs of Theorem 1.2 and Theorem 1.3 is an interesting issue. For the central limit
theorem, an analog of the suboptimal allocation matrix Â in Proposition 3.1 should be defined. For
the large deviation principles, the contraction principle can be applied as well, but it might be more
difficult to solve the associated variational problems.

5.3 Asymmetric models

Most techniques of the present paper collapse when the symmetry of the model fails, e.g. the region
is not an equilateral triangle, the locations are not uniformly distributed on the triangle, the cost
of an allocation is not properly balanced among the bins. For a result on the law of large numbers
in the case of an asymmetric model, we refer the reader to Bordenave [2].

6 Appendix

6.1 Proof of Lemma 2.1

Continuity of φ. By the inequality

|max{a1, a2, a3}−max{b1, b2, b3}| ≤ |a1 − b1|+ |a2 − b2|+ |a3 − b3|, for all a1, a2, a3, b1, b2, b3 ≥ 0,

we get

|φ(α1, α2, α3) − φ(β1, β2, β3)| ≤ |α1(c1) − β1(c1)| + |α2(c2) − β2(c2)| + |α3(c3) − β3(c3)|. (53)

Since c is continuous, if the sequence ((αn1 , α
n
2 , α

n
3 ))n≥1 ∈ Mb(T)3 converges to (β1, β2, β3) (with

respect to the product weak topology), then

lim
n→∞

|αn1 (c1) − β1(c1)| = 0 lim
n→∞

|αn2 (c2) − β2(c2)| = 0

and
lim
n→∞

|αn3 (c3) − β3(c3)| = 0.

The conclusion follows combining these latter three limits with (53).

Continuity of Ψ. For each l ∈ {1, 2, 3}, the projection mapping α 7→ α|Tl
is continuous. Hence,

the continuity of Ψ follows by the continuity of φ.

Continuity of Φ. Note that, for each fixed α ∈ M1(T), it holds

Φ(α) = φ(α1, α2, α3) for some α1, α2, α3 ∈ Mb(T) : α1 + α2 + α3 = α

(indeed, the set {(α1, α2, α3) ∈ Mb(T)3 : α1 + α2 + α3 = α} is compact with respect to the
product weak topology and the functional φ is continuous). For each integer K > 0, consider the
open covering of T given by the family formed by the open balls centered at x ∈ T with radius
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1/K. Then by a classical result (see, for instance, Proposition 16 p. 200 in Royden [8])) there exists
a finite collection {ψn}1≤n≤N of continuous functions from T to T such that

N∑

n=1

ψn(x) = 1 for each x ∈ T, ℓ(supp(ψn)) ≤ 2/K for each n = 1, . . . , N.

Here the symbol supp(ψn) denotes the support of ψn. Let f be a continuous function on T,
consider the modulus of continuity of f defined by wδ(f) = sup|s−t|≤δ |f(s) − f(t)|, and set
fn = supx∈supp(ψn) f(x). Note that, for all measures µ ∈ Mb(T),

N∑

n=1

|µ(fψn) − fnµ(ψn)| ≤ w 2

K
(f)

N∑

n=1

µ(ψn) = w 2

K
(f)µ(T). (54)

For i = 1, 2, 3, define rin = αi(ψn)
α(ψn) if α(ψn) > 0 and rin = 0 otherwise. Moreover, for β ∈ Mb(T), set

βi(dx) =

N∑

n=1

rinψn(x)β(dx), i = 1, 2, 3. (55)

Since α1(ψn) + α2(ψn) + α3(ψn) = α(ψn), by the properties of the sequence {ψn}1≤n≤N we have
β1 + β2 + β3 = β. For any continuous function f on T we have, for i = 1, 2, 3,

|βi(f) − αi(f)| =
∣∣∣
N∑

n=1

(
rinβ(fψn) − αi(fψn)

) ∣∣∣

≤
∣∣∣
N∑

n=1

rin (β(fψn) − α(fψn))
∣∣∣ +

∣∣∣
N∑

n=1

rin (fnα(ψn) − α(fψn))
∣∣∣

+
∣∣∣
N∑

n=1

(
rinfnα(ψn) − αi(fψn)

) ∣∣∣ . (56)

Note that rin ≤ 1, and therefore

∣∣∣
N∑

n=1

rin (β(fψn) − α(fψn))
∣∣∣≤ N max

1≤n≤N
|β(fψn) − α(fψn)|. (57)

Using again that rin ≤ 1 and (54) with µ = α, we have

∣∣∣
N∑

n=1

rin (fnα(ψn) − α(fψn))
∣∣∣≤

N∑

n=1

|fnα(ψn) − α(fψn)| ≤ w 2

K
(f). (58)

By the definition of rin and (54) it follows

∣∣∣
N∑

n=1

(
rinfnα(ψn) − αi(fψn)

) ∣∣∣=
∣∣∣
N∑

n=1

(fnαi(ψn) − αi(fψn))
∣∣∣≤ w 2

K
(f). (59)

Collecting (56), (57), (58) and (59) we have

|βi(f) − αi(f)| ≤ N max
1≤n≤N

|β(fψn) − α(fψn)| + 2w 2

K
(f). (60)
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Now, let {βm} ⊂ M1(T) be a sequence of probability measures converging to α for the topology of
the weak convergence. We shall prove

lim
m→∞

Φ(βm) = Φ(α).

We first prove
lim sup
m→∞

Φ(βm) ≤ Φ(α). (61)

Let K be as above and define the Borel measure βmi as in (55), with βm in place of β (the definition
of rin remains unchanged). By inequality (60) and the weak convergence of βm to α, it follows

lim sup
m→∞

|βmi (f) − αi(f)| ≤ 2w 2

K
(f).

Applying the above inequality for f = c1, f = c2, f = c3 and using the inequality (53), we get

lim sup
m→∞

|φ(βm1 , β
m
2 , β

m
3 ) − φ(α1, α2, α3)| ≤ 6w 2

K
(c).

Note that by the definition of Φ and the choice of the αi’s, Φ(α) = φ(α1, α2, α3) and Φ(βm) ≤
φ(βm1 , β

m
2 , β

m
3 ), therefore

lim sup
m→∞

Φ(βm) ≤ Φ(α) + 6w 2

K
(c).

The above inequality holds for all K, and letting K tend to infinity, we obtain (61). We finally
check the lower semi-continuity bound

lim inf
m→∞

Φ(βm) ≥ Φ(α). (62)

Arguing as at the beginning of the proof, we have, for each fixed m ≥ 1,

Φ(βm) = φ(βm1 , β
m
2 , β

m
3 ) for some βm1 , β

m
2 , β

m
3 ∈ Mb(T) : βm1 + βm2 + βm3 = βm.

Now, consider an extracted subsequence (mk)k≥1 such that

lim inf
m→∞

Φ(βm) = lim
k→∞

φ(βmk

1 , βmk

2 , βmk

3 ).

As already pointed out, Mb(T)3 is compact with respect to the product weak topology. Therefore,
up to extracting a subsequence of (mk)k≥1, we may assume that (βmk

1 , βmk

2 , βmk

3 ) converges to
(β1, β2, β3) ∈ Mb(T)3. By construction, βm1 +βm2 +βm3 = βm and βm converges to α, thus, we have
β1 + β2 + β3 = α. Then the definition of Φ gives

φ(β1, β2, β3) ≥ Φ(α).

Also the continuity of φ implies

lim
k→∞

φ(βmk

1 , βmk

2 , βmk

3 ) = φ(β1, β2, β3).

The matching lower bound (62) follows.
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6.2 Proof of Lemma 2.2

Proof of (i). For each α ∈ M1(T), the set

{(α1, α2, α3) ∈ Mb(T)3 : α1 + α2 + α3 = α}

is convex; moreover, the functional φ is convex on Mb(T)3. Therefore, by a classical result of convex
analysis, there exists, (α1, α2, α3) ∈ Mb(T)3, such that Φ(α) = φ(α1, α2, α3).

In order to prove that α1(c1) = α2(c2) = α3(c3), we reason by contradiction. Assume, for
example, that Φ(α) = α1(c1) > max(α2(c2), α3(c3)). For p ∈ (0, 1), define (β1, β2, β3) = (pα1, (1 −
p)α1 + α2, α3). We have β1 + β2 + β3 = α and

φ(β1, β2, β3) = max(pα1(c1), (1 − p)α1(c2) + α2(c2), α3(c3)).

In particular, for p large enough, φ(β1, β2, β3) = pα1(c1) < φ(α1, α2, α3). This is in contradiction
with Φ(α) = φ(α1, α2, α3). Now, assume, for example, that Φ(α) = α1(c1) = α2(c2) > α3(c3). The
same argument carries over, by considering, for p ∈ (0, 1), (β1, β2, β3) = (pα1, pα2, α3 +(1−p)(α1 +
α3)). All the remaining cases can be proved similarly.

Proof of (ii). Since An ⊂ Bn, we have ρ̃n ≤ ρn, and therefore we only need to establish the
claimed lower bound on ρ̃n. Let B∗ be an optimal allocation matrix for ρ̃n and define the set

I = {k ∈ {1, . . . , n} : there exists l ∈ {1, 2, 3} such that b∗kl ∈ (0, 1)}.

Define the matrix A = (akl) ∈ An by setting akl = b∗kl, for any l ∈ {1, 2, 3}, if k /∈ I, and ak1 = 1,
ak2 = ak3 = 0 if k ∈ I. Letting |I| denote the cardinality of I, we have

ρ̃n = max
1≤l≤3

(
∑

k∈I

b∗klcl(Xk) +
∑

k/∈I

b∗klcl(Xk)

)

≥ max

(
∑

k∈I

ak1c(Xk) +
∑

k/∈I

ak1c(Xk) − |I|‖c‖∞, max
l∈{2,3}

(
∑

k/∈I

aklcl(Xk)

))

≥ max
1≤l≤3

(
n∑

k=1

aklcl(Xk)

)
− |I|‖c‖∞ ≥ ρn − |I|‖c‖∞.

Thus, the claim follows if we prove that |I| ≤ 3. Reasoning by contradiction, assume that |I| ≥ 4
and, for j = 1, 2, 3, 4, denote by kj ∈ I four distinct indices in I. For each kj there exists lj ∈ {1, 2, 3}
such that b∗kj lj

∈ (0, 1). Since

b∗kj lj +
∑

m∈{1,2,3}\{lj}

b∗kjm = 1

we deduce that there exist mj ∈ {1, 2, 3} \ {lj} such that b∗kjmj
∈ (0, 1). Thus if |I| ≥ 4, there

exist distinct ki, kj ∈ {1, . . . , n}, distinct li,mi ∈ {1, 2, 3} and distinct lj ,mj ∈ {1, 2, 3} such that
bkili , bkimi

, bkj lj , bkjmj
∈ (0, 1). Choose ε ∈ (0,min{b∗kili

, b∗kimi
, b∗kj lj

, b∗kjmj
}) and define the matrix

Bε = (bεkl) ∈ Bn by

bεkili = b∗kili − ε , bεkimi
= b∗kimi

+ ε ,

bεkj lj = b∗kj lj + ε , bεkjmj
= b∗kjmj

− ε ,
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and bεkl = b∗kl otherwise. We define similarly B−ε by replacing ε by −ε. By part (i) of the lemma,
the optimal allocation matrix B∗ satisfies

max
1≤l,m≤3

(
n∑

k=1

b±εkl cl(Xk),
n∑

k=1

b±εkmcm(Xk)

)
≥

n∑

k=1

b∗k1c1(Xk)

=
n∑

k=1

b∗k2c2(Xk) =
n∑

k=1

b∗k3c3(Xk).

Therefore

max1≤l,m≤3

(∑n
k=1(b

±ε
kl − b∗kl)cl(Xk),

∑n
k=1(b

±ε
km − b∗km)cm(Xk)

)

= max
(
∓ε(cli(Xki

) − clj (Xkj
)),±ε(cmi

(Xki
) − cmj

(Xkj
))
)
≥ 0.

It gives cli(Xki
) = clj (Xkj

) and cmi
(Xki

) = cmj
(Xkj

) but it a.s. cannot happen since, by assump-
tion, ℓ(c−1({t})) = 0 for all t ≥ 0.

Proof of (iii). It is an immediate consequence of (ii).

6.3 A particular cost function: the inverse of signal to noise plus interference

ratio

In this subsection, we prove that the following cost function

c(x) =
a+ min{b, |x −B2|−α} + min{b, |x−B3|−α}

min{b, |x −B1|−α}
, x ∈ T

where α ≥ 2, a > 0 and b > (λ
√

3/2)−α, satisfies (1), (2), (3), (4) and (5). To avoid lengthy
computations we only checked numerically the first inequality in (6). The typical shape of the
function

L(x) =
c1(x)c2(x)c3(x)

c1(x)c2(x) + c1(x)c3(x) + c2(x)c3(x)

is plotted in Figure 3, which shows that L attains the supremum at x = 0. Finally, we show that,
for fixed α > 2 and a > 0, for all b large enough, the second inequality in (6) holds.

We first check assumption (1). We consider only the case l = 2, being the case l = 3 similar. Let
x ∈ T be such that |x−B1| < |x−B2|. Then necessarily, |x−B2| > λ

√
3/2. With our choice of b,

we deduce that
min{b, |x−B2|−α} = |x−B2|−α < min{b, |x−B1|−α}.

By construction

c2(x) =
a+ min{b, |x−B1|−α} + min{b, |x −B3|−α}

min{b, |x−B2|−α}
, x ∈ T

and so (1) follows easily.
It is immediate to check that c is a Lipschitz function, and the axial symmetry around the

straight line determined by 0 and B1 maps B2 into B3. Thus assumptions (2) and (4) follow.
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In order to check (5), we note that if x ∈ T1, then, for l = 2, 3, |x − Bl| ≥ |x − B1|. Thus, for
l = 2, 3, min{b, |x−Bl|−α} ≤ min{b, |x −B1|−α}, and we deduce

c(x) =
a+ min{b, |x−B2|−α} + min{b, |x−B3|−α}

min{b, |x−B1|−α}
≤ a

min{b, |x −B1|−α}
+ 2

≤ λαa+ 2 = c(0),

where the last inequality is strict if x 6= 0. Similarly, a+ min{b, |x−B2|−α}+ min{b, |x−B3|−α} is
minimized for x = B1 and min{b, |x−B1|−α} is maximized for x = B1. So, for x 6= B1, c(x) > c(B1).

Now we check assumption (3). Define

Al = {x ∈ T : |x−Bl| < b−1/α}, l = 1, 2, 3.

With our choice of b, if l 6= m, we have Al ∩Am = ∅. Define

A0 = T\ (A1 ∪A2 ∪A3) .

Note that, by construction, on each set Al, l = 0, 1, 2, 3, the sign of b− |x−Bm|−α is constant for
each m = 1, 2, 3. To prove (3), we shall check that, for all t ≥ 0 and l = 0, 1, 2, 3,

ℓ
(
Al ∩ c−1({t})

)
= 0. (63)

We shall only prove the above equality for l = 0, the other cases can be shown similarly. Note that

c(x) = |x−B1|α(a+ |x−B2|−α + |x−B3|−α), ∀x ∈ A0.

Using polar coordinates we have

ℓ
(
A0 ∩ c−1({t})

)
=

∫ 2π

0
dθ

∫ ∞

0
11{reiθ ∈ A0}11{c(reiθ) = t}r dr.

We shall check that, for an arbitrarily fixed θ ∈ [0, 2π), the function

cθ(r) = a|reiθ −B1|α +

( |reiθ −B1|
|reiθ −B2|

)α
+

( |reiθ −B1|
|reiθ −B3|

)α
, r ∈ Iθ

is strictly monotone, where
Iθ = {r : r ≥ 0, reiθ ∈ T}.

So, for any fixed θ ∈ [0, 2π), the function 11{reiθ ∈ A0}11{c(reiθ) = t} is different from 0 for at most
one r, and therefore the equality (63) for l = 0 follows. In the following we shall only prove that cθ
is strictly decreasing on Iθ for θ ∈ [−π/6, π/6], the other cases can be treated similarly. First, note
that since θ ∈ [−π/6, π/6], as r increases, |reiθ−B1|α decreases, while |reiθ−B3|α increases. Thus,

r 7→ a|reiθ − B1|α and r 7→
(
|reiθ−B1|
|reiθ−B3|

)α
are decreasing. Note also that, for θ ∈ [−π/6, 0], as r

increases, |reiθ −B2|α increases. Thus it suffices to prove that, for a fixed θ ∈ (0, π/6], the function

Lθ(r) =
|reiθ −B1|2
|reiθ −B2|2

, r ∈
[
0, λ

(
2 cos

(π
6
− θ
))−1

]
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is non-increasing. Consider the orthonormal basis {e1, e2} with e1 = ei
π
6 and e2 = e−i

π
3 . Setting

β = π/6 − θ ∈ [0, π/6), y1 = λ/2 and y2 = λ
√

3/2, we have

reiθ = r cos βe1 + r sin βe2, B1 = y1e1 + y2e2, B2 = y1e1 − y2e2

and

Lθ(r) =
(y1 − r cos β)2 + (y2 − r sin β)2

(y1 − r cos β)2 + (y2 + r sin β)2
.

The derivative L′
θ(r) of Lθ(r) has the same sign of

− (cos β(y1 − r cos β) + sinβ(y2 − r sin β))
(
(y1 − r cos β)2 + (y2 + r sinβ)2

)

+ (cos β(y1 − r cos β) − sin β(y2 + r sinβ))
(
(y1 − r cos β)2 + (y2 − r sin β)2

)
.

After simplification, we get easily that L′
θ(r) has the same sign of

−2r cos β sin β −
(
(y1 − r cos β)2 + y2

2 − r2 sin2 β
)
sin β.

This last expression is less than or equal to 0. Indeed, for r ∈ [0, λ(2 cos β)−1], we have 0 ≤ r sinβ ≤
y2. Hence Lθ is non-increasing on its domain.

Finally, we check that, for fixed α > 2 and a > 0, it is possible to determine b > (λ
√

3/2)−α so
that the second inequality in (6) holds. We deduce

∫

T2

c(x) dx ≥
∫

T2

a+ min{b, |x−B2|−α} + min{b, |x−B3|−α}
(λ
√

3/2)−α
dx (64)

=

∫

T2

a+ min{b, |x−B2|−α} + |x−B3|−α
(λ
√

3/2)−α
dx (65)

≥ a/3

(λ
√

3/2)−α
+
πb1−(2/α)/6

(λ
√

3/2)−α
+ (λ

√
3/2)α

∫

T2

|x−B3|−α dx. (66)

Here (64) and (65) follow since on T2 we have |x − Bl|−α < (λ
√

3/2)−α < b for l = 1, 3; (66) is
consequence of the inequality |x−B2|−α > b, for any x ∈ A2 ∩T2. The claim follows noticing that,
due to our choice of α, c(0)/3 is strictly less than the quantity in (66), for b large enough.
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