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Load optimization in a planar network

Charles Bordenave* and Giovanni Luca Torrisi®

Abstract

We analyze the asymptotic properties of an Euclidean optimization problem on the plane.
Specifically, we consider a network with 3 bins and n objects spatially uniformly distributed,
each object being allocated to a bin at a cost depending on its position. Two allocations are
considered: the allocation minimizing the bin loads and the allocation allocating each object to
its less costly bin. We analyze the asymptotic properties of these allocations as the number of
objects grows to infinity. Using the symmetries of the problem, we derive a law of large numbers,
a central limit theorem and a large deviation principle for both loads with explicit expressions.
In particular, we prove that the two allocations satisfy the same law of large numbers, but they
do not have the same asymptotic fluctuations and rate functions.

Keywords: Calculus of variations; Central limit theorem; Euclidean optimization; Large deviations;
Law of the large numbers; Wireless networks.

1 Introduction

In this paper we take an interest in an Euclidean optimization problem on the plane. For ease
of notation, we shall identify the plane with the set of complex numbers C. Set A = 2(3\/3)_1/ 2,
i = v/—1 (the complex unit), j = e27/3 and consider the triangle T ¢ C with vertices By = i,
By = j%2Bs, and B3 = jB,. Note that T is an equilateral triangle with side length Av/3 and unit
area. We label by {1,...,n} n objects located in the interior of T and denote by Xy, k = 1,...,n, the
location of the k-th object. We assume that {X}j}r=1 ., are independent random variables (r.v.’s)
with uniform distribution on T. Suppose that there are three bins located at each of the vertices
of T and that each object has to be allocated to a bin. The cost of an allocation is described
by a measurable function ¢ : T — [0,00) such that ||c|lo = sup,crc(x) < oco. More precisely,
c(x) = c1(z) denotes the cost to allocate an object at © € T to the bin in Bj; the cost to allocate
an object at « € T to the bin in By is ca(x) = ¢(j%x); the cost to allocate an object at € T to the
bin in Bs is c3(z) = c¢(jz). Let

An ={A = (am)1<k<ni<i<z : ar € {0,1}, ap1 + aga + agz = 1}

be the set of allocation matrices: if ax; = 1 the k-th object is affiliated to the bin in B;. We consider
the load relative to the allocation matrix A = (ap)1<k<n,1<i<3 € An:

pn(A) = lnglla;% (; alez(Xk)) ;
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and the minimal load
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Figure 1: The triangle T, the three bins and the n objects.

Throughout this paper we refer to p, as the optimal load. This simple instance of Euclidean
optimization problem has potential applications in operations research and wireless communication
networks. Consider three processors running in parallel and sharing a pool of tasks {1,...,n}
located, respectively, at {Xy, -+, X,} C T. Suppose that ¢;(x) is the time requested by the I-th
processor to process a job located at x € T. Then p,, is the minimal time requested to process all
jobs. For example, a natural choice for the cost function is c¢(z) = 2|x — By|, i.e. the time of a
round-trip from Bj to x at unit speed. In a wireless communication scenario, the bins are base
stations and the objects are users located at {Xi,---,X,} C T. For the base station located at
By, the time needed to send one bit of information to a user located at x € T is ¢/(x). In this
context p, is the minimal time requested to send one bit of information to each user and 1/p,, is
the maximal throughput that can be achieved. We have chosen a triangle T because it is contained
in the hexagonal grid, which is a good model for cellular wireless networks.

For 1 <1 < 3, we define the Voronoi cell associated to the bin at B; by

T,={zecT: |z—B|= 1%33@ — B \Dy

where Dy = {ijt : t < 0} and, for [ = 2,3, D; = {ij't : t < 0}. Note that Ty UTo U T3 = T and
TiNTeo=T1NTyg=ToNTg = @, 1. e. {Tl,TQ,Tg} is a partition of T. Note also that 0 € T;.

Throughout the paper, we denote by |- | the Euclidean norm on C, by ¢ the Lebesgue measure
on C and by x - z the usual scalar product on C, i. e. -2z = R(z)R(2) + S(z)3(z). We suppose
that the value of the cost function is related to the distance of a point from a bin as follows:

For all z € T and | = 2,3, if |x — By| < |v — By| then ¢;(z) < ¢(x). (1)

For example, if ¢(z) = f(Jo — By|) and f : [0,00) — [0,00) is increasing then ([]) is satisfied.



In this paper, as n goes to infinity, we study the properties of an allocation which realizes the

optimal load p,, and, as a benchmark, we compare it with the suboptimal load 7,, = p,,(A4), where
A = (@i1)1<k<n,1<i<3 is the random matrix obtained affiliating each object to its less costly bin:

ap = 1(Xy, € Ty).

We shall prove that, using the strong symmetries of the system, it is possible to perform a fine
analysis of the asymptotic optimal load. It will turn out that a law of large number can be deduced
for the optimal and suboptimal load. More precisely, setting

7= /Tl c(z) dz,

we have
Theorem 1.1 Assume ([f). Then, almost surely (a.s.),

. Pn
lim — = 1i
n—oo N n—oo n

As a consequence, at the first order, the optimal and the suboptimal load perform similarly.

The next result shows that, at the second order, the two loads differ significantly. We first
introduce an extra symmetry assumption on ¢, namely, its symmetry with respect to the straight
line determined by the points 0 and By. If z = te? € T, t > 0, € [0, 2x], then its reflection with

respect to the straight line determined by the points 0 and Bj is te”0=13 € T. Formally, we assume

c(te'?) = c(te™=5) for all 6 € [0,2n] and t > 0 such that te’ e T,
and c is Lipschitz in a neighborhood of D; U Ds. (2)

02:/ A (x)de,
T,

Setting

we have:

Theorem 1.2 Assume () and (B). Then, in distribution, as n goes to infinity,
n%(pp —yn) = G

where G is a Gaussian r. v. with zero mean and variance o2 /3 — 2. Moroever, in distribution, as
n goes to infinity,
n_l/z(ﬁn — ’y’I’L) = maX{Gl, Go, Gg}

and
1
n Y25, — pn) = max{G1,Go, G3} — 5(C1+ CGa 1 Ca),

where G1, Go and G3 are independent Gaussian . v.’s with zero mean and variance o>. Finally

Elpn] =ny+o(vn) and E[p,] =ny+myn+o(v/n),

where m = E[max{G1, G2, G3}] > 0 depends linearly on o.



Theorem [I.] states that 5, is asymptotically optimal at scale n, but Theorem [[.9 says that it is
not asymptotically optimal at scale y/n. In the proof of Theorem [[.9, we shall exhibit a suboptimal
allocation which is asymptotically optimal at scale \/n (see Proposition B.1]).

We shall also prove a large deviation principle (LDP) for both the sequences {p,/n},>1 and
{Pn/n}n>1. Recall that a family of probability measures {x,}n>1 on a topological space (M, Tyr)
satisfies a LDP with rate function I if I : M — [0, 0] is a lower semi-continuous function such that
the following inequalities hold for every Borel set B:

1 1
— inf I(y) < liminf — log p, (B) < limsup — log p, (B) < — inf I(y),
e e ro 25

where E denotes the interior of B and B denotes the closure of B. Similarly, we say that a
family of M-valued random variables {V},},>1 satisfies an LDP if {j,},>1 satisfies an LDP and
tn(-) = P(V, € -). We point out that the lower semi-continuity of I means that its level sets
{y € M : I(y) < a} are closed for all a > 0; when the level sets are compact the rate function I(-)
is said to be good. For more insight into the large deviations theory, see, for instance, the book by
Dembo and Zeitouni [ff].

We introduce an assumption on the level sets of the cost function:

(e ({t}) =0 forallt >0, (3)

an assumption on the regularity of c:
¢ is continuous on T, (4)

and two further geometric conditions:
¢(By) < ¢(x) < ¢(0), for any z € Ty \ {0, By}, (5)
cl(x)CQ(a;)c—i((i)((j)(cxg)(cj)(? 2 (@)ea () < c(;)) < /Tg c(z)dz, for any x € T\ {0}. (6)

Assumption (f]) fixes the extrema of the cost function on Ty. The left hand side inequality of
(B) imposes that 0 is the most costly position in terms of load (for a more precise statement, we
postpone to ([B7)). For § € R, define the functions

A(0) = log <3/ ode() dx) and K(@) =log </ @) 4 4 2/3)
Ty T,

and, for y € R, their Fenchel-Legendre transforms

A*(y) = sup(fy — A(0)) and A (y) = sup(dy — A(9)).
9eR R
The following LDPs hold:
Theorem 1.3 Assume (), (B). @), @) and ({). Then
(7)) {pn/n}n>1 satisfies an LDP on R with good rate function

J(y) = { A*(3y) if y € (e(B1)/3,¢(0)/3) (7)

+00 otherwise.

(1) {p,/n}n>1 satisfies an LDP on R with good rate function

N ARy ify e (e(B1)/3.7]
Jy)=4q A(y) ifye(y,¢0)) (8)
400 otherwise.



Next proposition gives a more explicit expression for the rate functions.

Proposition 1.4 Assume (), (f) and ¢ continuous at 0 and By. Then A* and N~ are continuous
on (¢(B1),c(0)) and
(4)
A*(y) = Y0, — A0y) if ¢(B1) <y < ¢(0)
+00 if ¢(B1) >y or y > ¢(0)

where 0, is the unique solution of

le c(x)e?“®) dx
le efc(r) do

=y. 9)

e ~A(ny) if ¢(B1) <y < ¢(0)
A (y) —{ i”;’o " if c(Bi) >§ory > ¢(0)

where 1y is the unique solution of

I, c(x)e?®) dz
Jr, efe@ dz +2/3 B

Y. (10)

(i11) If v <y < ¢(0)/3 then N (y) < A*(3y).

Note that: J(y) = A*(3y) except possibly at y € {c(B1),c(0)}; J(y) = A*(3y) on (—o0,7] except

possibly at y = ¢(B1), and J(y) = A" (y) on (v,00) except possibly at y = ¢(0). These gaps are

treated in Proposition [L.4 with extra regularity assumptions on c. See Figure [ for a schematic plot

of the rate functions. A simple consequence of Theorem and Proposition is the following:
log P(pn, > nt)  J(t) P(pn > nt)

== lim —— = 7 — t )
n—oco log P(p,, > nt)  J(t) and i P(p, > nt) 0, Vte (v,¢(0)/3)

In words, it means that the probability of an exceptionally large optimal load is significantly lower
than the probability of an exceptionally large suboptimal load; although, on a logarithmic scale, the
probability of an exceptionally small optimal load does not differ significantly on the probability
of an exceptionally small suboptimal load. It is not in the scope of this paper to discuss the trade-
off between algorithmic complexity and asymptotic performance. Moreover, we do not know if
the allocation that is asymptotically optimal at scale /n used in the proof of Theorem [[.9 (see
Proposition B.1) has the same rate function than p, /n.

Unlike it may appear, we shall not prove Theorem by first computing the Laplace transform
of p, and p,, and then applying Girtner-Ellis theorem (see e. g. Theorem 2.3.6 in [H]). We shall
follow another route. First, we combine Sanov theorem (see e. g. Theorem 6.2.10 in [[l]) and the
Contraction Principle (see e. g. Theorem 4.2.1 in [fl]) to prove that the sequences {p,/n},>1 and
{Pn/n}n>1 obey a LDP, with rate functions given in variational form. Then, we provide the explicit
expression of the rate functions solving the related variational problems. It is worthwhile to remark
that, using Theorem and Varadhan lemma (see e. g. Theorem 4.3.1 in []) it is easily seen that

lim l10g E[e’"] = J*(#) and lim ! log E[e?Pn] =T (0), VocR

n—oo N n—oo N



where J* and J are the Fenchel-Legendre transforms of .J and J, respectively. A nice consequence
of Theorems [[.1 and is that, in terms of law of the large numbers and central limit theorem, p,
has the same asymptotic behavior as

3 n
P = ézz 1{Xy, € Ti}er(Xe).

=1 k=1

Moreover, if the cost function satisfies extra regularity assumptions (see Proposition [£.4), by Theo-
rem and the Géartner-Ellis theorem, we have that p, and p,, have the same asymptotic behavior
even in terms of large deviations.

As it can be seen from the proofs, if the left hand side of assumption (f]) does not hold then we
have an explicit rate function J(y) only for y < ¢(0)/3. If neither the right hand side of assumption
(B) holds, then we have an explicit rate function J(y) only for y < yo for some yo > . We also
point out that the statements of Theorems [[.3[.3 concerning p,, do not require the use of (f) and
@.

In wireless communication, the typical cost function is the inverse of signal to noise plus inter-
ference ratio (see e.g. Chapter IV in Tse and Viswanath []]), which has the following shape:

a + min{b, |x — Ba|~*} + min{b, |x — B3|~}

, zeT
min{b, |z — B1|~%} v

c(x) =

where o > 2, a > 0 and b > (\/3/2)~% (recall that A\ = 2(3v/3)"'/2 and A\V/3 = |B; — Bs|). We
shall check in the Appendix that this cost function satisfies ([ll), (B), (), (@) and (f). Moreover,
the first inequality in (f]) will be checked numerically and, for arbitrarily fixed a > 2 and a > 0,
we shall determine values of the parameter b > (A\v/3/2)~® such that the second inequality in ()
holds.

The remainder of the paper is organized as follows. In Section f| we analyze the sample path
properties of the optimal allocation and we prove Theorem [[.1. In Section f] we show Theorem
.3 Section [ is devoted to the proof of Theorem and Proposition [[.4. In Section [, we discuss
some generalizations of the model. We include also an Appendix where we prove some technical
lemmas and provide an illustrative example.

2 Sample Path Properties

2.1 Structural properties of the optimal allocation

Throughout this paper we denote by M3(T) the space of Borel measures on T with total mass less
than or equal to 1 and by M;(T) the space of probability measures on T. These spaces are both
equipped with the topology of weak convergence (see e. g. Billingsley [[]). For a Borel function h
and a Borel measure p on T, we set u(h) = [ h(z) u(dz). Consider the functional from M, (T)? to
R defined by

¢(aq, g, a3) = max(ag(c1), as(ca), as(cs)). (11)
Letting a|p denote the restriction of a measure o to a Borel set B, we define the functionals ¢ and
U from M;(T) to R by

d(a) = inf gb a1, 09,03
(@) () 1<1<3€Mp(T)3: a1 +astaz=a (a1, a3),

and
U(a) = d(oyr,, oy, Ty )-

6
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Figure 2: The rate functions J and J.

Note that if §, denotes the Dirac measure with total mass at z € T, then
p RS
e - é . 12
c-o (i) "

Lemma 2.1 Under assumption (f]) we have that ¢ is continuous on My(T)? and ¥ and ® are
continuous on My(T) (for the topology of the weak convergence).

The proof of Lemma P.]| is postponed in Appendix; the continuity of ¢ and W is essentially trivial,
the continuity of ® requires more work. Define the set of matrices

By = {B = (br)1<k<n,1<i<3 : by € [0,1], by + b + bz = 1}
and

Pn = Bnelin pn(B).

n

Given a matrix B = (by;) € B, we define the associated measures (a1, oo, a3) € My(T)? by setting
a; = (1/n) > % budx, (I=1,2,3). Due to this correspondence, it is straightforward to check that

~ n
Pn 1
— = - .
. (n ) :axk) (13)
k=1
Next lemma is a collection of elementary statements, whose proofs are given in Appendix.

Lemma 2.2 Fizn > 1 and let B* = (b};) € By, be an optimal allocation matriz for p,. Then:

(i) For all & € My(T), there exists (a1, g, a3) € My(T)? such that a = a1 +as + a3 and ®(a) =
o(aq, ag,a3). Moreover, whenever such equality holds, we have (1) = aa(ca) = ag(es) and,
i particular,

D biier(Xp) =Y braca(Xi) = biges(Xg).
k=1 k=1 k=1



(ii) If assumption (B)) holds then
Pn — 3||C||oo < ﬁn < pn as.

(iit) If assumption (B) holds then the sequences {pn/n} and {p,/n} are exponentially equivalent.

For the definition of exponential equivalence see [H].

2.2 Proof of Theorem [.]]
The law of large numbers yields, for all [ = 1,2, 3,

n

1
lim — g (X)X e} = | glx)de=7v as.
n—oo n T
k=1 !

Therefore from the identity
1
— = max ; Cl(Xk)I[{Xk S T[},

we get lim,, o0 §,,/n = 7 a.s.. We also have to prove that lim, .~ pn/n = v a.s.. Let A = (ay) € A,
be an allocation matrix. By assumption ([]), if z € T; then ¢;(z) = minj<y,<3 ¢ (). Therefore

n

3 3 n
3pn(A) > Z:k ape(Xp) 2> D a(Xy) = 3 min (Z a(Xp)1{X;, € m) . (14)

1 k=1 =1 X,€T,

So taking the minimum over all the allocation matrices we deduce:

' < pn <D,
Join, (Z a(Xe)1{Xy € Tz}) < pn < Dp

Thus by applying the law of large numbers, we have a.s.

v < liminfp—" < limsupp—" <.
n

n—oo n n—oo

Remark 2.3 Assume that conditions (fl), (B) and () hold. By Theorem [L.1] we have lim,, . p,,/7 =
v a.s.. So by Lemma P.], equation ([2) and the a.s. weak convergence of (1/n)> }_,dx, to
¢ we get W(¢) = ~. Similarly, using equation ([[J) in place of equation ([J), we deduce that
limy, 00 pn/n = ®(¢) a.s.. So by Lemma P.2(i) lim, o0 pn/n = ®(¢) a.s., and by Theorem [[]]
we have ®(£) = .

3 Proof of Theorem

Consider the random signed measure

1 n
Wy = v/n(un —¢) where p, = Ekz_:l&)(k.



The standard Brownian bridge W on T is a random signed measure specified by the centered
Gaussian process {W(f)} (indexed on the set of square integrable functions on T, with respect to
¢), with covariance given by

EW(f)W(9)] = £(fg) — £(f)E(9),

see e.g. Dudley [[]. By construction

or equivalently

Pn =Y _ g < /T | cl(a;)Wn(dx)> . (15)

Let f be a square integrable function on T, in distribution, as n — oo,

21 [ (X)) — nl(f)
NG

indeed by the central limit theorem W,,(f) converges in distribution to a Gaussian r.v. with zero
mean and variance equal to £(f2) — 2(f), which is exactly the law of W (f). Using Lévy continuity
theorem and the inversion theorem, we have, in distribution, for all square integrable functions fi,

f2 and f3:

Wa(f) =

= W(f),

(Wn(f1): Wa(f2), Wa(f3)) = (W (f1), W(f2), W(f3))-

Therefore, by the continuous mapping theorem we have, in distribution, as n goes to infinity,

ﬁn\;ﬁnv = max </Tl cl(x)W(dx)> . (16)

We shall show later on that the r.v. in the right-hand side of ([[f]) has the claimed distribution. Now
we consider the optimal load p,. By the second inequality in ([4) we have

and therefore

3
- "’Y > Z/ Wi (d). (17)

The following proposition is the heart of the proof. It will be showed later on.

Proposition 3.1 Under the assumptions of Theorem [L.9, for any 1/4 < a < 1/2, there emists
an allocation matriz A = (ag)i1<k<ni<i<3 € An with associated load p, = pn(A) such that with
probability at least 1 — Ly exp(—Lon'=2%)

)

Z/ n(dx) < pl/2-2e
T,

1<I<3

for some positive constants Ly and L1, not dependent of n.



Using this result, p, > p, and ([[]), we have that with probability at least 1 — Ly exp(—Lon'~2%)

Pn — 1Y 1/2—2a
3 — / c(x)Wy(dx)| <n . 18
T X W (18)

Therefore, as n goes to infinity, in distribution

Pn\;ﬁn’}’ _ % Z /T ¢ (x)Wy(dx) = 0.

1<i<3

The continuous mapping theorem yields
Z / c(z)Wy(dx) = Z / c(z)W(dz).
1<i<3 /T 1<i<z’ T

So combining these latter two limits we get, as n goes to infinity,

Pn =117 13 clx x
v iggjm (@)W (da),

i. e. n=Y2(p, — ny) converges weakly to a centered Gaussian random variable with variance o2 /3 —
72. We have considered so far, the normalized sequences p, and p,, separately. However, we can
carry the same analysis on the normalized difference p,, — p,. More precisely, by equation ([L5) we
have a.s.

I

"\/_ﬁpn - | uax </1rl Cz(x)Wn(dw)> —% > /Tl o (z) Wy (da)

1<i<3

IN

P ([ [+ |22 25 5 [ et

1<I<3

= pn\;ﬁn’}’_% Z /Ecl(x)Wn(dJE) .

1<I<3

Thus, by equation ([1§), we obtain, with probability at least 1 — L; exp(—Lon!'~2%),

Pt = s ([ o) =5 >

1<i<3

pl/2—2a

1
/T alrWaldn)|| < 5

Therefore, in distribution, as n — oo,

Pt = s ([ o) =5 >

1<i<3

/ @)W (da) | = 0.
T

The continuous mapping theorem yields

s, < /T | cl(x)Wn(dx)>—% 3 /T )W) = o < /T | cl(x)W(dx)>—% 3 /T (@)W (d)

1<I<3 1<i<3v 7

10



and therefore, in distribution, as n — oo,

ﬁ"\;ﬁpn - max < /T | cl(x)W(dx)> _ %f: / (@)W (dz).

For | € {1,2,3}, set

3
N :/T c(z)W(dx) — %Z/T c(z)W(dz).

By definition {W(f)} is a centered Gaussian process indexed on the set of square integrable func-
tions, therefore N = (Np, N9, N3) follows a multivariate Gaussian distribution with mean 0. A
simple computation shows that the covariance matrix of NV is

o2 2 -1 -1
3 -1 2 -1
-1 -1 2
It implies that N has the same distribution as
(Gl — (Gl + Go + G3)/3,G2 — (G1 + G + Gg)/3, Gs3 — (Gl + Gy + G3)/3)
where G1,G5 and G35 are independent Gaussian r. v.” s with mean 0 and variance o2.
It remains to compute the asymptotic behavior of the expectation of the loads. A direct com-
putation gives, for any [ = 1,2, 3,

E [</Tl cl(az)Wn(dx)>2] = %2 - % < %2.

Thus the sequences { le c(z)Wy(dx)} (I = 1,2,3) are uniformly integrable. This implies that the
sequence {maxlglgg < le cl(:z:)Wn(d:E)) } is uniformly integrable and so using equation ([L§) we have

Tim E(p, —n9] /v = lim E [max (/T cl(x)Wn(d:E)>]

n—00 1<I<3

s  ctoian)] =

Now we give the asymptotic behavior of E[p,]. Note that by (I[§) we have

ZA

1<i<3

E

<nl/?7% 4 |3

Z/T (d2)| 1. > nt/22)

1<i<3
< 0272 4 10 el Lyv/n exp(—Lonl—Q%
=n'/272% L L /nexp(—Lon'~2®) (19)
where the latter inequality follows since v < ||¢|loo, prn < ||¢]|con and | le () Wy(do)| < 2[l¢|looyv/n-
Clearly, the term in ([[d) goes to zero as n — oo. Therefore, since E [ le c/(x)Wy(dx)| = 0, we have

lim E[p, —n]/vn = 0.

n—oo

11



Proof of Proposition [3.]. We start describing the allocation matrix A. For I,m € {1,2,3} and
t € [-A\V/3/2,2v/3/2], denote by By, (t) the point on the segment B;B,, at distance ¢+ \v/3/2 from
B;. We extend the definition of By, (t) for all t € [-Av/3, \v/3] by following the edges of T. More
precisely, we set

B (t) _ { Bgl()\\/g—l-t) if te [—)\\/g,—)\\/g/Q]
12 Bas(MW3 —1t) if ¢ e [AW3/2,\W3].

For I,m € {1,2,3}, By,(t) is defined similarly by a circular permutation of the indices. For t =
(', 12, 8%) € [-AV3, AV3]?, let

c't) = {oy | J <{z €C: 2z (Ba(tHe ™2) >0} N{z € C: z- (By (t3)e™/?) > 0})

be the (possibly empty) cone delimited by the straight straight line determined by the points 0 and
Bs1(t3). We define D! (t) = C*(t)NT. Similarly, let D?(t) = C?(t)NT and D3(t) = C3(t) N T with

C3(t) ={z€C:z- (Ba(t")e™?) >0} N{z € C: z- (Baoz(t?)e™™?) > 0},
C3(t) ={z€C: 2z (By(t?)e™?) >0} N{z € C:z- (B3 (t3)e™?) > 0}.

By construction, the sets D*(t), D?(t) and D3(t) are disjoint and their union is T. For [ € {1,2, 3},

set
n

ph(t) = ch(Xk)]l{Xk e D'(t)}
k=1
and consider the following recursion. At step 0: for to = (0,0,0), define

mo = arg ming), (to)
1<i<3

(breaking ties with the lexicographic order) and

My = arg maxgh (to)
1<i<3

(again breaking ties with the lexicographic order). If pMo(ty) — pm(tg) < 2[/c|ls, the recur-
sion stops. Otherwise, pA°(tg) — p(tg) > 2|/c/|oc and there is at least one point X; (i =
1,...,n) in DMo(tg). Note also that, a.s., for all # € [0,2n], there is at most one point of
{X1,---,X,} on the straight line (ze?,z > 0). As a consequence there exists a random vari-
able 0 < t; < A\/3 such that, a.s., there is exactly one point X; (¢ = 1,...,n) in the triangle
with vertices {0, By, (t1), Bmoa, (0)} for 0 < 3 < A\V/3/2, or in the polygon with vertices
{OaBmoMo(tl)aBMo7BmoMo(O)} for )\\/g/Q <t < )\\/g We then set t; = (tl,0,0) if mg = 1,
My = 2; t1 = (—t1,0,0) if mg = 2, My = 1; t1 = (0,%1,0) if mg = 2, My = 3; t1 = (0,—¢t1,0)
if moy = 3, M() = 2; tl = (0,0,—tl) if mo = 1, MO = 3; tl = (0,0,tl) if mo = 3, M() = 1. By
construction, we have

mo (¢ Mo (¢ Lt Lt in pl(t in pl (to).
P (81) < pp°(t1) fﬂglaé)pn( 1) < @a;g’pn( 0) and @lggpn( 1) > @lggpn( 0)

At step 1: define

my = argming, (t)
1<1<3

(breaking ties with the lexicographic order) and

M, = arg maxpl, (t;)
1<i<3

12



(again breaking ties with the lexicographic order). Similarly to step 0, if pM* (t1) — p™ (t1) > 2||c//00,
then there is at least one point of {X7,---, X,,} in DM1(t1) and we build the random vector to. The
recursion stops at the first step k£ > 0 such that

P (k) = P () < 2]lelloo,

(where my, My, and tj are defined similarly to mg, my,..., My, Mi,... and t1,t9,...). As we shall
check soon, the recursion stops after at most n steps. When the recursion stops, say at step k, < n,
we set D! = D!(t,,) and t,, = t;, . The allocation matrix A is defined by allocating X}, to the bin
in By if X;, € D, i.e.

A = (a1)1<k<n1<i<s where a = 1{X; € D}}.

By construction, we have for all I, m € {1,2,3}

195 (60) = o7 (£0)] < 2[l¢|oo- (20)

We now analyze the recursion more closely. Assume that at step 0 we have mg = 3 and My = 1,
i. e. pl(to) > p2(to) > p3(to). Then, for all k < ky,

pn(te) > pi(te) = leloo  and  pj(tr) < pi(tr) + [Iclco- (21)

Indeed, if for all k < k,,, mj, = 3 and M}, = 1, there is nothing to prove since |p!, (tx11) — o, (tr)] <
llclloo- Assume that there exists k < k;, such that my # 3 or My # 1. We define

ko = min{k > 1:my # 3 or My, # 1}.

For concreteness, assume for example that My, # 1. By construction, kg — 1 < k, so that
Pr(tro—1) > Py (tro—1) + 2[|clloc- Since pp(tro—1) > pi(tro—1) > pj (tro—1), we deduce that My, = 2
and my, = 3. Recall that, for k < ky, pM* (tr) — ||clloo < pM* (tr11) < pMr(ty,). Thus, for k = ko—1,
from pl (tr,) < p2(tr,) = P2(tko—1) < pL(tk,—1), We obtain

Pin(tr) = llelloo < o (o)

Similarly, for k < kn, pI%(64) + lloo > ol (bre1) > I (64). Thus, from p3(tr, 1) < P2 (tr,) =
P2 (tko—1), We have
pi(tko) < HCHOO + p%(tko)’
We have proved so far that the inequalities in (RT]) hold for all k < k. Since |pl, (tx41) — o4 (tr)] <
lellos and py, (tky—1) — P (tro—1) > 2lclloc we get
P (try) — i (try) > 0.
Thus my, = 3 and p3 (tr,) < pL(tr,) < p2(tk,). Define
k1 = min{k,, min{k > ko : my # 3 or My # 2}}.

For k = ko, k1 — 1, p2(txr1) < p2(tx) and pl(tri1) = pk(ty) is constant, so the left hand side
inequality of (R]) holds. Also, since ki < ky, for k € {ko+1,--- ,ki—1}, p3(tx) < p2(tr)+4/|¢/|oo- SO
finally, (R1)) holds for k = 0,--- , k;. Moreover, if k1 < ky, then My, =1 and my, = 3. Indeed, as
above, pp(tk,—1) — Ptk 1) > 2||c[loo implies

p%z (tk1) > p?z (tk1)'

13



So My, # 3 and my, # 2. If my, = 1 and My, = 2, then we write, by (R1)),

Ioiz(tlﬁ) + HCHOO > p%(tlﬁ) > pi(tlﬁ) > pi(tlﬁ)'

So ki =k, a contradiction. Therefore, we necessarily have My, = 1 and my, = 3. By recursion,
it shows that for all k¥ < k,,, my = 3. Hence, at each step one point is added to the bin at B3. No
point is added to the bins at B; and By, points may only be removed from the bins at By and
Bs. Since there are at most n points, we deduce k,, < n, as claimed. Also, since Dl(to) =Ty, we
obtain, for all k = 1,--- , k,, T3 C D3(t}), T2 D D?(t;) and T; D D'(t;). The other case, where
my, = 2 could be treated similarly. So more generally, if, at some step, [ = my, then [ # M; for all
k < j < ky, and conversely, if | = M}, then [ # m; for all k < j < ky,. It implies that D(t) is a
monotone sequence in k. Since D'(tg) = Ty, for all I € {1,2,3},

DLCcT;, or T,CD.. (22)

Assume now, that tL > 2n~% with z > 0 then, from (£3), T; C D} and D2 C Ts. For t € R, define
the set V(t) = D'(¢,0,0)\Ty. On the event {t. > 2n=} we have

phitn) 20 [ clahmdn)tn [ culde) and () <n [ cohun(da)
T, Vi(zn—2) Ty
So, by inequality (B(), we deduce that on {t} > zn=2}
2eloc

/Tl c(x)ﬂn(dx)+/‘/l(zna)c(az),un(dx) g/ e2(2) pin (da) +

T2

Or equivalently,

{ty >} C {ﬁ a@Wale) = [ o) + Al

c(o)un(de) < [ i NG

V1(zn—) To

(23)
Let A be a Borel set in T, by Hoeffding concentration inequality (see e. g. []]) we have, for all s > 0
and [ € {1,2,3},
P </ ¢ (x) pn (dz) —/ ¢(xz)dz > s) < exp(—Kos?n), (24)
A A
P (/ e (x) pn (dz) —/ c(x)de < —s) < exp(—Kos*n) (25)
A A

@ where y > 0, we have

where Ko = 2||c||2. Taking s = yn~
P (/ () Wy (dz) > yn%—a> < exp(—Koy?n'~2), (26)
T,
P (/ c(x)Wy(dx) < —yn%—a> < exp(—Koy?nl=2).
T;

Similarly, by (R5) we deduce, for s > 0,

P </ c(x)pn(dz) < / c(x)dx — s> < exp(—Kps?n).
Vi(zn—«) Vi(zn=o)
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By assumption ([}, there exists ¢y > 0 such that c(x) > cg, for all z € V1(z2n™). If 0 < s < \/3/2,
the area of V1(s) is equal to As/4. Therefore, for all 0 < z < \/3n%/2,

Kizn™® < / c(x)dz < Kozn™ @,
Vi(zn—9)
with K1 = cg\/4 and K3 = ||c[|eoA/4. So, taking s = K12n~%/2, we get, for all 0 < z < A\/3n®,

P (ﬁ (@) pn (dz) < %Zﬂé_a> < exp(—K3z°n' %) (27)
Vi(zn—®)

where K3 = KOK%/4. Similarly, for ¢t > 0, define

Ul(t) = (Dl(t,O, 0)\1&) U (Dl(_t,o, 0)\11,(”) ,

where o = (123) is the cyclic permutation. By (4) we have, for all s > 0,

P </ c(x)pn (dz) > / c(x)dz + s> < exp(—Kos®n).
Ul(zn—) Ul(zn—)

Thus, setting s = zn™¢

, we get
P (,un(Ul(zn_a)) > Kyzn™®) < exp(—Koz*n!2%) (28)
with K4 = 1+ 2K5. Now, note that by (), from the union bound, for y > 0,

c(@)pn(dz) < yné‘a} U {— /Tl 1 (z)Wo(dz) + llelloe %yn;—a}

{tn, >2n""} C {ﬁ NG

Vi(zn—e)

U {/Tz co(2)Wh(dz) + % > %yné_a} .

Now take y = K12/2, by (£§) and (27) we deduce, if 4||c[oon® K171 < 2 < A\V/3n®

K
P(tl >2n™®) < exp (—K322n1_2a) + 2exp <—1—gn1_2°‘ (Klz — 4|]c|]oon°‘_1)2>

< 3exp <—K5n1_2°‘ (Kiz — 4Hc\|oon°‘_1)2> ;

with K5 = min{ K3K; 2, K(/16}. Therefore, by symmetry, for all n.and z > 0 such that 4||c|lon® 1K' <
2z < A\3nY/2

P <111<1la<><3 It > zn_o‘> < 18exp (—K5n1_2°‘ (Kiz — 4”0”00710‘_1)2) . (29)

Note that p, = pn(A) = max; <<z p4(t4), so by (B0) we have
3pn — 4|clloe < p%z(tn) + pi(tn) + pi(tn) < 3pn.

Subtracting 3./n7, it follows

o=y Al _ oy e () pn — 1y
N iy éfé(/% (@)1 (da) fy>§3 NI
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Then we subtract the quantity

lZ [ ctomatan =S (| atwman )

2

and we get
n’y 4 elloo
E/ n(dx) lcl ) pp (dx) — g/T ‘—l—ﬁ
(30)

Set Cmin(r) = min(cy (), c2(x), c3(x)), and note that if x € T; then cpin(z) = (). If tL > 0, we
set Vil = Vi(t) = DL\ Ty, and, if £}, < 0, we set V! = D7)\ Ty, where o = (123) is the cyclic
permutation. So

3 3 3
> /D REZCEEDY / w)in(an) =3 [ () = inls)) )

Z G20} [ (@) e Din(da) + 3" 148, < 0} / ot () — Cmin(®)) pin(da).
=1 =1

(31)
Note that if z € Ty, with m # [, then |¢(2) — cmin(2)| = [c(x) — em(z)|. For example, assume
l=1,m=2and z = te'st? € Ty, with 0 < 0 < /3, we then have
e1(2) = emin(2)] = [e1(x) — ca(@)] = [e(te TH) — c(te'TH0e71F))

‘ (te 6+19) c(te_25+29)].
By the symmetry assumption (f), we deduce
le1(x) — cmin(2)] = |c(tei%+i9) (tela Z9)|

Again by assumption (f]), ¢ is Lipschitz in a neighborhood of D; U Dj3. Letting L > 0 denote the
Lipschitz constant, if z is close enough to Dy, say the distance d(x, D7) from x to D; is less than
or equal to 0 < & < A\V/3/2, we have

le1 () — emin(z) < Lt|e'5 T — 1579 = Lt[e?? — 7|
= 2Ltsin6 = 2Ld(z, Dy).
By symmetry, for all [ € {1,2,3}, if d(z, D;) < ¢, then
lei(z) — cmin(?)] < 2Ld(z,D;)  and  [coy(7) — emin(z)| < 2Ld(x, Dy).
Fix a € (1/4,1/2), z > 0 and choose n large enough so that 4||c||on® ' K; ' < 2z < en®. Then, by
(B9) with probability at least 1—18 exp <—K5n1_2°‘ (Kiz — 4HcHoon°‘_1)2>, we have max;<;<3 [t} | <

zn~. On this event, if x € V!(t) then d(z, D;) < zn~® < . It follows by (B1)) that, with probability
at least 1 — 18 exp (—Kg,nl_%‘ (Klz — 4HCHoonO‘_1)2>,

3
Cl )b (dx) Z / ) iy (d)

3
< Vn) 2Lz pn (V)
=1
) 3
< 2Lzn2 > (U (zn™®)),

16



By (B9), with probability at least 1—3 exp(—Kpz?n'~2%), it holds 213:1 pn (U (zn™®)) < 3K42n~%. Us-
ing that for all events A, B it holds P(AN B) > 1 — P(A°) — P(B¢), we obtain, for all n large
enough so that 4HcHoona_1K1_1 <z <en?,

3
Cl ) (d) — Z / ) pip (A7)

with probability at least 1—21 exp <—K6n1_2‘” (Kiz — 4Hc\|oona_1)2) , where K = min{ Ko K12, K5}. By
this latter inequality and (B{), with the same probability,

_ Z/T n(dx)

Fix z = (24LK2)_§ so that 12LK5z?
4 cfloon® T KTt < 2 < en® and 8||¢l|oon”

gPn =7 23:/ (@)W (dz)
Voo =y,

< 12LK4z2n%_20‘,

< 12LKy2%n2 2 + 4| cl|con” 2,

1/ Then there exists ng such that, for all n > ng,
< nz72% Then, for all n > ny,

ww ||

< n1/2—2a (32)

with probability at least
12« a—1 2 _ 1-2a
1 —2lexp < Kgn <K1(24LK2) 2 — 4|c|loony > > =1— Krexp (—Kgn )

Finally, we set Ly = Kg and Ly = max{K7y, K9}, where K9 = exp (Kgnl 20‘) With this choice of
Lo and Ly, (BY) holds for all n > 1 with probability at least 1 — Ly exp(—Lon!'=2%).

4 Large deviation principles

In this section we provide LDPs for the optimal and suboptimal load. Letting < denote absolute
continuity between measures, we define by

Hw o < | FrGi@log @)l ifv <t
+00 otherwise

the relative entropy of v € M; (T) with respect to the Lebesgue measure ¢. Moreover, if f is a non-
negative measurable function on T, we denote by £; the measure on T with density f. In particular,
if [ f(z)dz =1, we set

H(f) = H(ty | 0) = /T f(x)log f(z) dx

4.1 Combining Sanov theorem and the Contraction Principle

Next Theorem follows combining Sanov theorem and the Contraction Principle.

Theorem 4.1 Assume (), (f) and (). Then
(2) {pn/n}n>1 satisfies an LDP on R with good rate function

J(y) = inf H(a| ). 33
(y) U (a| ) (33)
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(1) {pp/n}n>1 satisfies an LDP on R with good rate function

J(y) = inf H(a|?). 34
(v) et s (a|0) (34)

Proof. By Sanov theorem the sequence {1 "7 | 6y, },>1 satisfies an LDP on M, (T), with good rate
function H(-|¢). Recall that the space M;(T), equipped with the topology of weak convergence,
is a Hausdorff topological space (refer to [fl]). By Lemma P.1] the function ® is continuous on
M; (T). Therefore, using ([[J) and the Contraction Principle we deduce that the sequence {p;,/n}n>1
satisfies an LDP on R with good rate function given by (BJ). Consequently, by Lemma PR.9(iii) and

Theorem 4.2.13 in [A], {pn/n}n>1 obeys the same LDP. The proof of (ii) is identical and follows
from ([[2). O

Remark 4.2 It is worthwhile noticing that one can prove Theorem L1 also applying Lemma P.1],
Lemma R.4(7i7) and the results in O’Connell [f.

4.2 Computing A* and A

In this subsection we compute the Fenchel-Legendre transforms A* and A"

4.2.1 Proof of Proposition [L.4

We only compute A* in (i). The expression of A" in (i) can be computed similarly. Clearly, for
0 € R,
le c(x)e?®) dz

AN (0) =
( ) le e@c(x) dx ’

and
e@c(x) ch(x)

2
A//92/62$7dl‘— /Ciﬂidiﬂ > 0,
( ) T ( )le efc(@) 4 T, ( )le efe(z) do

(the strict inequality comes from the assumption that ¢(-) is not constant on Ty). Therefore, the
function A’ is strictly increasing. Consider the probability measure on T;:

e@c(m) dz

Next Lemma [£.d is classical; we give a proof for completeness.
Lemma 4.3 Under the assumptions of Proposition [[.4, the following weak convergence holds:
Pg =09 as 0 — +oo and Py= 6p, as — —oco.

Proof of Lemma We only prove the first limit. Indeed, the second limit can be showed similarly. We
need to show:

Pyg(A) — 0p(A) as 8 — +oo, for any Borel set A C Ty such that 0 ¢ 0A.

If 0 ¢ A C Ty then, by assumption (f), c(z) < ¢(0) for any # € A. So A C I, for some t > 0,
where Iy = {z € T; : ¢(x) < ¢(0) —t}. By assumption c is continuous at 0, so there exists an open
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neighborhood of 0, say V;, such that, for all z € V;, ¢(x) > ¢(0) — t/2. Note that, for any 6 > 0,

obe(@)
Po(l;) = : 7f1r1 I Ao dx
obc(0)—6t
< v Ty, €002 dz
< AVinTy) " te 02,

Thus, for all ¢ > 0, limy_, y~ Po(I;) = 0. This guarantees the claim in the case when the Borel set
A C Ty does not contain 0. Suppose now 0 € A, then 0 ¢ T1\ A and we get Pg(A) = 1-Py(T:\A) —
1 as 0 goes to infinity. O

We can now continue the proof of the proposition. Let ¢(B;) < y < ¢(0). By Lemma 2.3.9(b)
in [], we need to show that there exists a unique solution 6, of A’(f) = y. To this end, note that
N(9) = [;, c(z) Pp(dx). By assumption c is continuous at 0 and By, so by Lemma [.J and Theorem
5.2 in [ it follows

lim A'(0) = c¢(By) <y <c(0)= lim A'(6).

60— —oco 6—+oco

Since A’ is continuous and strictly increasing, the mean value theorem implies the existence and
uniqueness of #,. Consider now y > ¢(0). Note that, for § > 0, A(#) < 8¢(0). Therefore

0y — A(0) = 0(y — ¢(0)).

It follows that A*(y) = +oo. Similarly, for y < ¢(Bj), we use that, for 8 < 0, A(f) < 0c¢(B;) and
deduce A*(y) = +o0. Finally we prove (iii). We first show that

A(0/3) < A(#), forall & > 0. (35)

Showing (Bj) amounts to show that, for all 6 > 0,

/ efc(®@) 44 +2/3 — 3/ e?c@)/3 41 > 0. (36)
Tl Tl

By Jensen’s inequality it follows that

3
< / o0el@)/3 da;) < 1 / o) gy
Tl 9 Tl

(the strict inequality derives from the strict convexity of the cubic power on [0,00), and the fact
that ¢ is not constant on Tp). Hence the left hand side of (Bf) is larger than

9 </Tl Q0c@)/3 4y >3 _3/Tl oPe@)/3 g0 4 ; —9 </Tl o0e(@)/3 . % )2< /Tl 9e@)/3 4 4 ; )’

and the inequality (Bf) follows. Now, let v < y < ¢(0)/3. By Theorem [L1, lim, o0 pn/n =
limy, .00 §,,/7 = v < y. Thus, by Lemma 2.2.5 in [{] we have

A*(3y) = 31;18(@ —A(0/3)) and A'(y) = 3213(@ —A(9)) = nyy — A(ny),

where 7, is the unique positive solution of ([L(). Finally, (B9) yields:

A (y) = yny — Nny) < yny — A(my/3) < supgso(By — A(6/3)) = A*(3y).
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4.2.2 Value of the Fenchel-Legendre transforms at the extrema

In this paragraph, for the sake of completeness, we deal with the value of A* and A" at ¢(By) and
c(0). If ¢ is differentiable as a function from T C C to R, we denote by grad,(c) its gradient at
x. The following proposition holds:

Proposition 4.4 Suppose that the assumptions of Proposition [[.4 hold and that c is differentiable
at 0 and By. If moreover, for all w € [—7/2,7/6], grady(c) - € < 0 and, for all w € [27/3,7],
gradp, (c) - €™ > 0, then

A*(e(B1)) = K (e(B1)) = A*(c(0)) = K"(c(0)) = +o.

Proof. We show the proposition only for A*(¢(0)). The other three cases can be proved similarly. Us-
ing polar coordinates, we have:

/6 )
/ @ dr = / / ™) drdw
Ty —x/2J1,

for some segment I, = [0,a,]. The Laplace’s method (see e.g. Murray [d]) gives, for all w €

[_ﬂ—/27 7T/6]7
e@c(O)

Oc(ret) dr ~ . 0
Aﬁ " Plgrady(e) o] U0 T

where we write f ~ ¢ if f and g are two functions such that, as z — +oo, the ratio f(z)/g(x)
converges to 1. We deduce that, as 8 — o0,

/ be() 0¢(0) —2/7r/6 1
e’ dx ~ "M —  dw.
T, —x/2 lgrady(c) - e™|

Since the integral in the right hand side is a finite positive constant, we have A(6) = 6¢(0)—2log 0+
o(log #), and therefore

A*(c(0)) = 22%(60(0) —A(0)) = Zg£(2log9 + o(log#)) = +o0.

Od
In the next two subsections, we solve some variational problems. We refer the reader to the
book by Buttazzo, Giaquinta and Hildebrandt [[J] for a survey on calculus of variations.

4.3 Proof of Theorem [.3(7)
We divide the proof of Theorem [[.J(7) in 5 steps.
Step 1: Case y ¢ (¢(B1)/3,¢(0)/3). We have to prove that J(y) = co. Denote by M{¢(T) C

M (T) the set of probability measures on T which are absolutely continuous with respect to ¢. For
a € M{¢(T), define the measures in M (T):

o2(1) () o) (2)
c1(x)ea(x) + e (x)es(x) + ca(x)es(x)

ay(dx) = a(dz), 1€{1,2,3}

where o = (1 2 3) is the cyclic permutation. Clearly ag + a2 + a3 = @ and

P(a) < ¢(ag,ag,a3) < c(0)/3 (37)
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where the strict inequality follows by assumption () and the fact that « is a probability measure
on T such that o < ¢. The above argument shows that {a € M{*(T) : ®(a) = y} = 0, for all
y > ¢(0)/3. Therefore, by Theorem [.1(7), we have J(y) = +oc if y > ¢(0)/3. Using assumptions ([l)
and (f]), one can easily realize that, for any measure 3 € M,(T), 8(¢;) > ¢(B1)B(T) and the equality
holds only if § = dp,. By Lemma P.9(i) we deduce that, for all @ € M;(T), 3®(«) > ¢(By). This
gives J(y) = oo for all y < ¢(B1)/3, and concludes the proof of this step.

Step 2: the set function v and an alternative expression for A*(3y). For the remainder
of the proof we fix y € (¢(B1)/3,¢(0)/3). For this we shall often omit the dependence on y of the
quantities under consideration. In this step we give an alternative expression for A*(3y) that will
be used later on. Let B C T be a Borel set with positive Lebesgue measure. Define the function of

(7707771) € R2:
m(B,no,m) =/ e 1mmmme®) g,
B

It turns out that m(B,-) is strictly convex on R? (the second derivatives with respect to 19 and 1
are strictly bigger than zero). Define the strictly concave function

F(B,n9,m) = —no — 3yn — 3m(B, no,m)
and the set function

V(B) = sup F(B>7707771)-
(no,m )€ER?

Arguing as in the proof of Lemma 2.2.31(b) in [, we have:
grad,, ) (3m(B, ")) = (=1, =3y) = v(B) = (y0,71) - (=1, =3y) — 3m(B, 0, M)

where - denotes the scalar product on R2. Therefore, if there exist 79 = 70(B) and 71 = v1(B) such
that

/ e—ylc(m)dx — elt0 /3 and / c(x)e—’hC(w)dx = ye1+“/o (38)
B B

then it is easily seen that
v(B) = —(1+(B)) — 3y71(B).

In particular, by Proposition [[.4(i), setting 1 (T;) = —63, and 4o(T1) = A(63,) — 1, one has

A*(3y) = v(T1) = —(1 +7(T1)) — 3ym(T1), (39)

and 7o(Ty) and 1(T;) are the unique solutions of the equations in (B§) with B = T;. Note also
that, for Borel sets A and B such that A C B C T, we have for all g, € R,

m(B,mo,m) — m(A,no,m) = /(13(56) — 1a(x))e” ' 7m0-me@) 4z > 0.
T

In particular, for all ng,n; € R, F(A,no,m) > F(B,no,n1). This proves that the set function v is
non-increasing (for the set inclusion). An easy consequence is the following lemma. For B C T and
z € C, define zB = {zx : © € B} and

T = {Borel sets B C T: {(B) > 0and /(BN (jB)) = (BN (j2B)) = £((jB) N (2B)) = 0}.
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Lemma 4.5 Under the foregoing assumptions and notation, it holds:
inf{v(B): BeT}=inf{v(B): B€T and {(B) =1/3} < +oc.

Proof of Lemma The monotonicity of v implies v(T) < v(T;). So the finiteness of the infimum
follows by v(T1) < 4oc that we proved above. Note that if B € T then BU (jB) U (j2B) C T and
1> ¢(BU(jB)U (j°B)) = {(B) + £(jB) + £(j*B) = 3{(B). So

inf{v(B): Be T} =inf{v(B): Be€ T and ¢(B) <1/3}.

Now, if B € T is such that £(B) < 1/3, define the set C = T \ (B U (jB) U (j2B)), note that
((C)=1-3¢(B) > 0and C = jC = j2C. Set C; = CNT; and define D = BUC}. Clearly, B C D
and therefore v(B) > v(D). Moreover, it is easily checked that D € T. Indeed, ¢(D) > ¢(B) > 0
and, for instance,

(DN (D)) =
<

(BuCi)n((GB) U (iC1))
(BN (GB)) +4BN(JC1)) +£Cr1N(jB)) +(CL N (jC1)) = 0.

SN S

The claim follows since
U(D) = 4(B) + £(C1) = {(B) + £(C)/3 =1/3.
O

Step 3: the related variational problem. As above, we fix y € (¢(B1)/3,¢(0)/3). Recall that
H(a|€) = 400 if a is not absolutely continuous with respect to £. So, by Theorem [.1)(7),

J(y) = inf H(al¥f).
(y) aeM§e(T): ®(a)=y ( | )

Define the following functional spaces:
B = {measurable functions defined on T with values in [0, 00)}

and

3
B = {(fl,fz,fs) eB’:l <Z fz) =1land ¢(Cy,, Ly, L) = O(Ly, + Ly, +€f3)}

=1

recall that £ is the measure with density f). By Lemma 1) it follows
f

3
J(y)=  inf 3H<Zfz($)) (40)
JERS =

(f1,f2,f3

where
R?I) = {(f17f27f3) € B?D : ¢(£f17€f27€f3) = y}

(note that the upper script ”3” in B% and R% is to remind that these spaces are defined on triplets
of functions in B; it is not related to the Cartesian product of three spaces). Computing the value
of J(y) from () is far from obvious, indeed R3, is not a convex set and the standard machinery of
calculus of variations cannot be applied directly. The key idea is the following: consider the same
minimization problem on a larger convex space, defined by linear constraints; compute the solution

22



of this simplified variational problem; show that this solution is in Rg To this end, note that, again
by Lemma RA(i), if (f1, f2, f3) € B3 then £g, (c1) = C4,(c2) = €f3(63) Therefore, we have iR3 C 83

where

3

8% = {(fl,fg,fg) eB3: ¢ <Z fl> =1 and, for all I € {1,2,3},¢;,(¢;) = y} .

=1

It follows that

Jy)=  inf (Zfl )

(f1.f2,f3)€83

Step 4: the simplified variational problem. Recall that y € (¢(B1)/3,¢(0)/3) is fixed in this
part of the proof. In this step, we prove that

1) = (fl,lef}g (Z fil@ ) 1)

is equal to A*(3y). Clearly, the set Sg; is convex. Therefore, if S‘;’) is not empty, due to the strict
convexity of the relative entropy, the solution of the variational problem ([), say £* = (f7, f3, f3) €
8357 is unique, up to functions which are null /-almost everywhere (a. e. ). We now compute f* and

check retrospectively that 835 is not empty. Consider the Lagrangian £ defined by

3 3
L(f1, f2s f3: A0, A1, Az, As) (2 <Z filz ) log (Z fz(:v)) + Ao (Z filx) = 1)
=1 =1
+ Z Ai(a(z) filz) —y)
=1

where the \;’s (i =0,--- ,3) are the Lagrange multipliers. For [ € {1,2,3}, define the Borel sets:
Aj={xeT: fi(x) > 0}.

Since f* is the solution of (1), by the Euler equations we have, for [ € {1,2,3},

(5)
ofi
We deduce that, for all x € A,
fi(@) + f3(@) + f5(x) = e 'R0 hale), (42)

Define the functions g (z) := f5(jx), g2(x) := fi(jz) and g3(z) := f{(jz). By a change of variable,
it is straightforward to check that (g1,¢92,93) € S‘;’) and

3 3 3 3
/ (Z gl(x)> log (Z gl(x)> dr = / <Z fl*(x)> log <Z fl*(x)> dz
T =1 =1 T =1 =1

The uniqueness of the solution implies that a. e.

fo(z) = fi(2), f3(z) = f3(x) and f(jz) = f3(z).

=0 on Al.
(f1,f2,f3)=Ff*
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In particular, up to a null measure set, A; = j*"1A;. Moreover, on Aj, the equality, a. e. 213:1 g(x) =
S fi(z) applied to ({J) gives, a. e. on Ay, exp(—1 — Xg — Aec2(jz)) = exp(—1 — Ao — Aici(z))
(indeed x € Ay implies jx € Ay). We deduce that Ao = A\;. The same argument on Ajs carries over
by symmetry, so finally A\ = Ay = A3. We now use the following lemma that will be proved at the
end of the step.

Lemma 4.6 Under the foregoing assumptions and notation, up to a Borel set of null Lebesgue
measure it holds Ay C Ty.

By Lemma [L.§ and the a. e. equality 4; = 4171 Ay, we deduce that A; € T, up to a Borel set of null
Lebesgue measure. So, by equation ([[J) and the equality Ay = A = A3, it follows

fi(x) = e 170 Ne@(z € A)),  ae.

and f3(x) = f7(5%x), fi(z) = f{(jz). Note that the constraints

3
1 <Z fl*) =1 and flp(c1) =y
=1

read respectively
/ e—l—)\o—)\lc(:v) df]}' — 1/3 and / c(x)e—l—)\o—)\lc(w) dx = y
Ay A

This implies that the Lagrange multipliers \g and A; are solutions of the equations in (B§) with
B = A;. Moreover

3 3
/ <§j fz*(:v)) log <§j fl*<:c>) da
T \i=1 =1

Therefore (see the beginning of step 2)

3 3
I(y) = / S @) og (S fr(@) ) de = v(ay).
T \ =1 =1

Since A1 € T we deduce that

3/ (=1 — Ao — Ae(z)) e o~ hel®@) gy
Aq

= —(1+Xo) — 3yA1.

I(y) > inf{v(B): B e T}.

For the reverse inequality, take B € T such that v(B) = sup,, , er2 F'(B,n0,m) is finite. Since
the function (ng,n1) — F(B,no,m ) is finite and strictly concave, it admits a unique point of
maximum. Arguing exactly as at the beginning of step 2, we have that the point of maximum is
(70(B),71(B)), whose components are solutions of equations in (Bg), and

v(B) = —(1+7(B)) = 3yn(B).
For [ € {1,2, 3}, define the functions on T:

g.B:T— e_l_”/O(B)—’Yl(B)Cl(m)l(x c jl_lB).
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Since vo(B) and 71 (B) solve the equations in (B), it follows easily that (g1 5, 92.5, 93.8) € 82’). There-

fore
3 3
= /1r <Z 9l,B(<E)> log <Z 9l,B($)> dz
= (f1,f213”£ €8 <Z fil )
Thus

I(y) =v(A;) =inf{v(B): BeT}.

Since A; € T, by Lemma [L.§ we get that ¢(A;) = 1/3. So, by Lemma [£.§, we deduce that A; = T
up to a Borel set of null Lebesgue measure. Then by equation (BY) we conclude

I(y) = A"(3y).
Proof of Lemma [.4. The argument is by contradiction. Define the Borel set
C = (A NT§) U (jAL N TS U (%A1 N'T)

and assume that £(4; N'TS) > 0. For | € {1,2,3}, define 4; = (4,\C) U (C N'T;) and g(z) =
(fi(x) + f3(x) + fi(x)1(z € A;). Since 4; = j""1A; up to a Borel set of null Lebesgue measure,
then j'~1C = C and A = jl_lAl up to a Borel set of null Lebesgue measure. So by (f) it follows
that (3 (c1) = €g,(c2) = {5, (c3), and therefore

3/T () gi( da:_/<Z]lxeAlcl )(Zf, ) . (43)

Now, note that ﬁl C T; and, up to a Borel set of null Lebesgue measure,
AleAZQUAVg:AlUAQUAg. (44)

So by assumption ([I]), a. e.
3
1(z € A))ey(x Z]lxeA m ()
m=1

(o] [}
and the inequality is strict if x is in CN Ty. Indeed if x € CN Ty, then a.e. x € A, for some m # [,

and so ¢;(z) < ¢p(x) by ([l). Therefore, since £(A; N'TS) > 0 then £(CN ’ﬁ‘l) > 0 and, using (),
we get

/Tcl(a;)ﬁl(a:) dz < / a(z)ff (z)dx = y.

T
For p € [0, 1], define the functions

Gip(x) =1 =p)ai(z) +pl(z € Toy),

where o = (1 2 3) is the cyclic permutation. By assumption (f) it follows
/cl(m)ﬁl,l(az) dz > ¢(0)/3 > y.
T
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We have already checked that (5, ,(c1) <y, thus, by the mean value theorem, there exists p € (0,1)
such that (g1,5,925,93,p) € 8 The convexity of the relative entropy gives

H(G1p+ G2p + 915 [0) SPH(G1 + g2+ g3 10) + (1 = p)H(C]) = pH(fT + f5 + f5 0),

where the latter equality follows by (f4) and the definition of g;. This leads to a contradiction since
f = (fy, f5, f5) minimizes the relative entropy on 835- O

Step 5: end of the proof. It remains to check that £* = (f}, f5, f3) € fR%. For this we need to
prove that ®(Cpryprypr) = ¢(lyr, Ly, y;) = y. Since £* € 83 then Ef*(cl) = Ef*(CQ) =Lz (c3) = y;
moreover, by the properties of the functions f;" it holds £ (a) fT ¢(x) fi(z) dz. So the claim
follows if we check that

D(Cprvszrsy) Z/T c1(z) fi(z) dz

1
By Lemma R.J(i) we have that there exists (91,92, 93) € B? such that: £y pxypx = Ly, + Ly, + Ly,
<1>(£f1*+f2*+f3*) = ¢(€g1’£gz’£gg) and 691(01) égz(@) Cgs (c3). In particular,

3 3
3O(Lyrypsrsr) Z/Cl z)g(x)de = Z/ ch(x)gl(x)da:

=1 Tm =1
3 3

> Z/ Z: (45)
3

> Z_:/ x)dz

=3 [ @@

Ty

where in () we used assumption ([[]). This concludes the proof of Theorem [[.3().

4.4 Proof of Theorem [[.3(i7)

Some ideas in the following proof of Theorem [[.§(ii) are similar to those one in the proof of Theorem
[[.3(7). Therefore, we shall omit some details. We divide the proof of Theorem [[.3(i%) in 3 steps.

Step 1: Case y ¢ (c(B1)/3,¢(0)). As noticed in step 1 of the proof of Theorem [L.3(i), for any
measure 3 € My(T), 5(c;) > ¢(B1)3(T) and the equality holds only if 5 = dp,. We deduce that, for
all @ € My(T), 3¥(a) > ¢(By). Therefore, by Theorem f.1(i7), J(y) = +oo if y < ¢(B1)/3. Now,
note that, for a € My (T) it holds

¥(a) = max < /T | cl(x)oz(da:)> < c(0) o, (1) < €(0)

1<i<3

where the strict inequality folli)ws by assumption (f) and o < £. Therefore, using again Theorem
f7)(4¢), we easily deduce that J(y) = +oo if y > ¢(0).
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Step 2: the set function p. For the remainder of the proof we fix y € (¢(B1)/3,¢(0)), and
we shall often omit the dependence on y of the quantities under consideration. In the following we
argue as in step 2 of the proof of Theorem [L.3(i). Let B C T be a Borel set with positive Lebesgue
measure and define the function of (ng,n1) € R%:

q(B,no,m) =2e""M(BNTy) + / o= 1=m—me(®) gg
BNTy

Clearly, q(B,-) is strictly convex on R2. Define the strictly concave function

G(B,mo,m) = —no —ym — q(B,no,m)

and the set function

M(B) = sup G(B77707771)'
(no,m )€R?

If there exist 7, = 7(B) and 7; = 7,(B) such that
/ e @ dy 4+ 20(BNTy) = e 0 and / c(z)e @) dg = yel o (46)
BNTy BNTy

then we have
w(B) = =(1+7%,(B)) — y7:1(B).
In particular, by Proposition [[.4(i7), setting 7, (T) = —n, and 7,(T) = A(n,) — 1 one has

A (y) = u(T) = —(1+755(T) —y7(T) ity <y < (0) (47)

and 7, (T) and 7, (T) are the unique solutions of the equations in ([if]) with B = T. Recall also that
in step 2 of the proof of Theorem [[.3(i) we showed:

A*(By) = —(1+70(T1)) =3y (Ty) i e(B1)/3<y<y

where v9(T1) and 71 (T) are the unique solutions of the equations in (B§) with B = T;. Note
that, for Borel sets A and B such that A C B C T, we have, for all ng,m; € R, G(A,n9,m) >
G(B,no,m ). This proves that the set function p is non-increasing (for the set inclusion). An easy
consequence is the following lemma:

Lemma 4.7 Under the foregoing assumptions and notation, it holds:

inf{u(B): BCT}=A"(y) ify <y<c0)

Step 3: the related variational problem. As above we fix y € (¢(Bj)/3,¢(0)); as in the proof
of Theorem [[.3(i) we denote by B the set of Borel functions defined on T with values in [0, 0). By
Theorem [L1|(ii), we have

T(y) = inf H(f)

where

U = {feB: (f)=1 and max </Tlcl(x)f(a;)da:> :y}.

1<I<3

Note that f € U if and only if the functions x +— f(jz) and x — f(j2x) are also in U and so

Ty) = int H(f) (48)
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where

V={reBd: lf) =1, by e) =, bypmy(2) v, Ly (es) <y}

The optimization problem ({g) is a minimization of a convex function on a convex set defined by
linear constraints. Thus it can be solved explicitly. Therefore, if V is not empty, since the relative
entropy is strictly convex, the solution of the variational problem (§g), say f* € V, is unique, up to
functions which are null /-almost everywhere. We will compute f* and show that V is not empty
at the same time. So assume that V is not empty and define the function

g(x) = f* (@), () + f* (o) lny (2) + f*(5%2) Ly (),
It is easily checked that g € V and H(g) = H(f). The uniqueness of f* implies that
for almost all z € Ty, f*(jx) = f*(x). (49)

Therefore, up to modifying f* on a set of null measure, f* € V' where
V= {feB: ) =1, L, (c1) = v, Ly (e2) S w}

and the variational problem reduces to J(y) = inf ey H(f). Consider the Lagrangian £ defined by

L(fs A0, A1, A2)(z) =f(2) log f(x) + Ao(f(x) — 1)
+ Ai(er(@) f(z)lr, (2) — y) + Aa(ca(@) f ()L, (7) — )

X ( / cafa) () - y) 0

The two cases Ao = 0 (i. e. f* is not constrained on Ts) and Ay # 0 (i. e. f* is constrained on
Ty) are treated separately. For each case, we solve the variational problem. The optimal function
is denoted by f,, for Ao = 0 and by f. for Ay # 0, so that f* = argmin(H (f,), H(f.)). Assume first
that Ay = 0 so that f* = f, and define the Borel set:

with

Ay ={ze€T: fu(z)>0}.
By the Euler equations we get, for all x € T,
fu(x) = IL']1'1014u (x)e_l_)\o_)\lcl(x) + ]l(TzUTa)ﬂAu (x)e—l—)\o' (50)

By (f9) we have (A, NTy) = ¢(A, NTs3), and so the constraints ¢(f,) = 1 and Crapr, (c1) = y read,
respectively,

/ e~ M@ qg 4 20(A, NTy) = el and / c(:n)e_’\lc(m) dz = yel+>‘°.
AuﬂTl AuﬂTl

With the notation of step 2, this implies that Ao = 7(A4,) and A\; = 7;(A,) are the solution of the
equations in ([ff)) with B = A,,. In particular,

N(Au) = _(1 +70(Au)) - yil(Au) = H(fu)

where the latter equality follows from the computation of the entropy using (f(). By Lemma [L7
we deduce that B
H(fu) > A (y) if v <y < c(0).
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By () we have H(h) = A" (y), where
h(z) = 1, (z)e" " ToM=T1De@ 4 10 o (g)e~ 170

and 7, (T), 7, (T) are the unique solutions of the equations in (f6) with B = T. Now we prove that
h eV, for v <y < ¢(0), so that

H(fu) =X (y) ity <y < c0). (51)
Recall that —7,(T) is the unique solution of

Jr, o " da
Jr, efh(r) dz +2/3

The function
f’]l‘ 90(32 dz

0 —
Jr, eec(x dz +2/3

is strictly increasing (as can be checked by a straightforward computation) and, for § = 0, it is
equal to 7. Therefore, since y > 7, we have —7,(T) > 0. It implies that

/T C($)e—1—70(T)—71(T)C(x) de =y > /T C(x)e—l—%(T) dr — 76—1—%(11‘)‘
1 1

In particular, h € V. Now we deal with the case Ay # 0. We have
Efc“rl (Cl) = Efc“b(Cg) = EfC\Tg(C:S) =v.

In particular, if we set f.;(x) = 1(x € T}) fo(x), we get (fe1, fe2, fe,3) € 835- By step 4 of the proof
of Theorem [L.4(4), it implies that

H(f:)> (fl,fif};esg H(fi+ fa+ f3) = A"(3y) = H(f{ + f3 + f3),

where f* = (ff, f5, f3) was defined above. Since f} + f5 + f € V, we deduce directly that a.e.
fe=Jf{+f;+ f3 and

H(fe) = A" (3y). (52)
It remains to find out for which values of y the Lagrange multiplier As is equal to zero. First of all
note that if y = v then the function identically equal to 1 is in V. We deduce that f* =1 and so
A2 = 0 (since the optimal solution is not constrained on Ts) and J(y) = 0 = A*(37). Now assume
v < y < ¢(0). By Proposition [L4(iii), we deduce A”(y) < A*(3y). It follows by (F1) and (F3) that
H(f,) < H(f.). Recall that f* = argmin(H (f,), H(f.)), thus Ay = 0 and J(y) = A" (y). It remains
to deal with the case ¢(B1)/3 < y < . The following lemma holds:

Lemma 4.8 Under the foregoing assumptions and notation, if ¢(By)/3 <y <~ then J(y) > J(y).
Then, by Theorem [.3(7) and (52) we get

A*(3y) = J(y) < J(y) = min(H(fu), H(fe)) < A*(3y).

This concludes the proof.

29



Proof of Lemma [f.§. Choose y < z < . By construction P(p, < nz) < P(p, < nz). Taking the
logarithm, applying Theorem [£.1] and recalling that J(y) = J(y) = +oo for y < ¢(By)/3 we have

_ 1 1
— inf J(t) < liminf —log P(p,, < nz) < limsup — log P(p, < nz) < — inf J(t).
(oW 5,0y /(D) < iminf log P(py, < n2) < limsup - log Plp ) S e a7

Therefore

J(y) > inf J(t) > inf J(t) = J(z

W) > t€(c(B1)/3,2) (t) = t€(c(B1)/3,2] ) =)
where the latter equality follows since J(y) = A*(3y) is decreasing on (¢(B7)/3,7). Recalling that
J(y) = A*(3y) is also continuous on (¢(B)/3,7), the claim follows letting z tend to y. O

5 Model Extension

5.1 The analog 1-dimensional model

The analog 1-dimensional model is obtained as follows. There are n objects on (0, 1), say {1,...,n},
and two bins located at 0 and 1, respectively. The location of the k-th object is given by a r.v. X
and it is assumed that the r.v.’s {Xj }1<x<p are i.i.d. and uniformly distributed on [0, 1]. The cost
to allocate an object at « € [0, 1] to the bin at 0, respectively at 1, is ¢(z), respectively ¢(1—x). The
asymptotic analysis of allocations which realize the optimal and the suboptimal load can be carried
on using the ideas and the techniques developed in this paper. Due to the simpler geometry of
the 1-dimensional model, many technical difficulties met in the 2-dimensional case disappear, and
with the proper assumptions on the cost function, it is possible to state and prove the analog of

Theorems [L.1], [.3 and [L.3,

5.2 Random cost function

An interesting and natural extension of the model takes into account random cost functions. Let
2 be a Polish space and Zy = (Z},Z2,Z3) (k = 1,...,n) a r.v. taking values on Z3. Assume
that: the sequences {Xj}i<k<n and {Zy}i<k<, are independent; the r.v.’s {Zy}1<x<, are ii.d.
with common distribution Q; the r.v.’s Z{, Z? and Z} are i.i.d.. Let ¢ : T x Z3 — [0,00) be a
measurable function. We consider an extension of the basic model where the cost to allocate the
k-th object to the bin at B; (I = 1,2,3) is equal to ¢;(Xy, Zy). Here, for z = (2!, 22, 2%), the cost
functions are defined in such a way that they preserve the spatial symmetry: c¢i(z,z) = c(z,z),
ca(z,2) = c(j2x, (22,23, 2Y)) and c3(x,2) = c(jz, (23, 21, 22)). The load associated to an allocation
matrix A € A, is

J(A) = X Zi) ) .
pn(A) = max (Zam( k k))

k=1
In a wireless communication scenario we have Z = R, and the typical cost function is of the form
a+ min{b, 22|z — Bs|~*} + min{b, 23|z — B3|~}

min{b, 21|z — By|~“}

c(z,z) =

where a > 0, a > 2 and b > (A\V/3/2)~%. The additional randomness in the cost function models the
fading along the channel (see e.g. [[l). The suboptimal allocation A = (@ ;)1<k<n 1<1<3 is obtained
by allocating each point to its less costly bin. To be more precise, assume that £ ® -a.s., for any
I # m, ¢(x,2) # cm(x,2z). Then, setting

apy = 1(c) (X, Zi) < min ey, (Xy, Zy)),
m=#l
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the suboptimal allocation matrix is a.s. well-defined. Consider the suboptimal load p,, = pn(A4)
and the optimal load p,, = minaea, pn(A). Exactly as in the proof of Theorem [[.T], one can prove
that, a.s.

n—oo N n—oo n

lim 22 = lim 2n :/ 1(¢(z,2z) < min ¢y, (z,2z)) dzQ(dz).
TxZ3 m#l

Deriving analogs of Theorem [[. and Theorem is an interesting issue. For the central limit
theorem, an analog of the suboptimal allocation matrix Ain Proposition B.]] should be defined. For
the large deviation principles, the contraction principle can be applied as well, but it might be more
difficult to solve the associated variational problems.

5.3 Asymmetric models

Most techniques of the present paper collapse when the symmetry of the model fails, e.g. the region
is not an equilateral triangle, the locations are not uniformly distributed on the triangle, the cost
of an allocation is not properly balanced among the bins. For a result on the law of large numbers
in the case of an asymmetric model, we refer the reader to Bordenave [J].

6 Appendix

6.1 Proof of Lemma PR.1]

Continuity of ¢. By the inequality

| max{ay, as,as} —max{by, ba,b3}| < |ag — b1|+ |ag — ba| 4+ |az — bs|, for all a1, as,as, by, be, b3 >0,
we get

[p(a1, g, a3) — ¢(B, B2, B3)] < [ai(er) — Biler)| + [az(ez) — Balca)| + |as(es) — Bs(es)]. (53)

Since c is continuous, if the sequence ((af,ad,a%))n>1 € My(T)3 converges to (81,32, 33) (With
respect to the product weak topology), then

lim |af(c1) = fi(e))| =0 lim |a5(cz) = Pa(ez)[ =0

n—oo

and
Jim_Jag(es) - B3(c3)| = 0.

The conclusion follows combining these latter three limits with (5J).

Continuity of ¥. For each [ € {1,2,3}, the projection mapping o — at, is continuous. Hence,
the continuity of ¥ follows by the continuity of ¢.

Continuity of ®. Note that, for each fixed o € My (T), it holds
O(a) = p(ag, a0, a3)  for some ag, a9, a3 € Mp(T) : a1 + e+ a3 =«

(indeed, the set {(ayi,as,a3) € My(T)® : oy + as + a3 = a} is compact with respect to the
product weak topology and the functional ¢ is continuous). For each integer K > 0, consider the
open covering of T given by the family formed by the open balls centered at x € T with radius
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1/K. Then by a classical result (see, for instance, Proposition 16 p. 200 in Royden [J])) there exists
a finite collection {¢y, }1<n<n of continuous functions from T to T such that

N
an(az) =1 foreachz e T, {(supp(¢y)) <2/K foreachn=1,...,N.

Here the symbol supp(1,) denotes the support of v,. Let f be a continuous function on T,
consider the modulus of continuity of f defined by ws(f) = sup,_y<s|f(s) — f(?)], and set
frn = SUDcsupp(u,) f(2). Note that, for all measures € My(T),

N
() D n(tn) = wz (fHu(T). (54)

n=1

N
Z (fon) = fap(thn)| < w

le

For i = 1,2, 3, define ri = @iltn) a(i,) > 0 and 7¢, = 0 otherwise. Moreover, for 3 € M,(T), set

a(wn)
N
Bi(dz) =Y ripn(z)B(dz), i=1,2,3. (55)
n=1

Since ai(¢n) + a2(¥n) + as(¥n) = a(iy,), by the properties of the sequence {9y, }1<n<ny we have
081 + B2 + B3 = B. For any continuous function f on T we have, for i = 1,2, 3,

N

16:(5) = aalF)l =| 3 (8 n) = sl Fen)) |

|

3
Il
A

M) =

IN

N
i (BUFYn) = alfn) | +| o rh (Faan) = alfv))
n=1

ap>

Il
—_

n

(rhfuc(n) = ai(fn)) | (56)

an

Note that rfll < 1, and therefore

\Z Blftbn) = ) [ N max. [B(fn) — al i) (57)

Using again that r, <1 and (§4) with 4 = «, we have

>

By the definition of v, and (B4) it follows

fn wn -« fQ/)n ‘<Z|fn wn _a(f¢n)|§ (f) (58)

NIN

||M2

N
| Z (rhfc(n) = ai(fn)) [=| 3 (faciltn) = il ) | < wa (£). (59)
n=1
Collecting (B), (b7), (59) and (F9) we have
6) — ) N max () — a(in)] + 20 (7). (60
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Now, let {3™} C M1(T) be a sequence of probability measures converging to a for the topology of
the weak convergence. We shall prove
lim (™) = ®(«).
We first prove
limsup ®(8™) < ®(«). (61)
Let K be as above and define the Borel measure 3" as in (BH), with 3™ in place of 3 (the definition
of r!, remains unchanged). By inequality (p0)) and the weak convergence of 3™ to a, it follows

limsup |5 (f) — ai(f)| < 2wz (f).

m—0o0

=|wo

Applying the above inequality for f = ci, f = ca, f = c3 and using the inequality (53), we get

limsup ‘¢(/8?175£n7/8§n) - (25(04170427043)‘ < 6w 2 (C)

m—00

=

Note that by the definition of ® and the choice of the «;’s, ®(a) = ¢(a1, a9, a3) and ®(F™) <

(BT, B3, B5"), therefore
lim sup ®(5™) < () + 6w 2 (c).

m—00

The above inequality holds for all K, and letting K tend to infinity, we obtain (E1)). We finally
check the lower semi-continuity bound

liminf ®(8™) > ®(«). (62)

m—00

Arguing as at the beginning of the proof, we have, for each fixed m > 1,
(™) = o(B7", 55", B5")  for some BT, B, B3" € My(T) : B1" + 85" + B5" = 6™,
Now, consider an extracted subsequence (myg),>1 such that

liminf ®(8") = kﬁm OB, By, By*).

m—0o0

As already pointed out, My (T)? is compact with respect to the product weak topology. Therefore,

up to extracting a subsequence of (my)r>1, we may assume that (8], 05%, 83") converges to

(B1, B2, B3) € Mp(T)3. By construction, B + 35" + 85" = 3™ and ™ converges to a, thus, we have
B1 + B2 + B3 = . Then the definition of ® gives

(61, P2, 3) > P(cv).

Also the continuity of ¢ implies
Jim o TR, By, B5F) = (B, Bz, B3)-

The matching lower bound (63) follows.
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6.2 Proof of Lemma
Proof of (i). For each a € M;(T), the set

{(a1,00,a3) € Mb(T)3 o+t a3 =al

is convex; moreover, the functional ¢ is convex on My (T)3. Therefore, by a classical result of convex
analysis, there exists, (a1, ag, a3) € My(T)3, such that ®(a) = ¢(ay, az, as).

In order to prove that ai(c1) = az(c2) = as(es), we reason by contradiction. Assume, for
example, that ®(a) = a;(c1) > max(az(c2), az(cs)). For p € (0,1), define (51, B2, 83) = (pai, (1 —
p)ag + ag,a3). We have 51 + 2 + 3 = o and

¢(B1, B2, B3) = max(pay(c1), (1 — p)ai(cz) + az(c2), as(cs)).

In particular, for p large enough, ¢(31, B2, 03) = pai(c1) < ¢(aq, @z, ). This is in contradiction
with ®(a) = ¢(a1, g, az). Now, assume, for example, that ®(«) = ay(c1) = aa(c2) > ag(cs). The
same argument carries over, by considering, for p € (0,1), (61, 52, 03) = (pa1, pae, ag+ (1 —p)(as +
ag)). All the remaining cases can be proved similarly.

Proof of (ii). Since A, C B,, we have p, < p,, and therefore we only need to establish the

claimed lower bound on p,. Let B* be an optimal allocation matrix for p, and define the set
I'={ke{l,...,n}: there exists [ € {1,2,3} such that b;; € (0,1)}.

Define the matrix A = (ay;) € A, by setting ay; = b}, for any [ € {1,2,3}, if k ¢ I, and a; = 1,
ax2 = axz = 0 if k € I. Letting |I| denote the cardinality of I, we have

Pn = IDAX (% bicr(Xy) + Z bklcl(Xk)>

kel
> max (Z ap1e(Xp) + > apie(Xy) — [Tlllelloe, max (Z aqu(Xk)>>
kel k¢l {23} k¢l

n
> max (Z aklcl(Xk)> - |I|HCHOO > pn — |I|||C||OO
k=1

T1i<3

Thus, the claim follows if we prove that |I| < 3. Reasoning by contradiction, assume that |I| > 4
and, for j = 1,2, 3,4, denote by k; € I four distinct indices in I. For each k; there exists [; € {1,2, 3}
such that szlj € (0,1). Since
Oyt + Z Ojm =1
me{1,2,31\{l;}
we deduce that there exist m; € {1,2,3} \ {/;} such that Okym,; € (0,1). Thus if |I| > 4, there
exist distinct k;, k; € {1,...,n}, distinct l;,m; € {1,2,3} and distinct [;,m; € {1,2,3} such that
bkils> Okimis Okji;5 Okjm; € (0,1). Choose ¢ € (O,min{bzili,bzimi,szlj,szmj}) and define the matrix
B* = (b},;) € By, by

3 __ K 3 %
kil; — bkili — &, bklmz - bklmz +e ’

*

£ Lk (3 —
b, = bk, +€50 Opymy = brym; — €
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and by, = by, otherwise. We define similarly B~ by replacing € by —e. By part (i) of the lemma,
the optimal allocation matrix B* satisfies

b:I:E X b:l:a o X > b* X
1<imes <; Rl k)ag o C ( k)) _Z e (Xy)

k=1

= biaca(Xp) = Y biges(Xe).
k=1 k=1

Therefore

maxi <t m<s (3 pot Ok = Oi)ct(Xn)s hey (B, — B )em (X))
= max (?5(%— (Xk,) — ¢, (X)), Te(em; (Xk;) — cm; (ij))) > 0.

It gives ¢, (X,) = ¢, (Xg;) and cm, (Xg;) = cm; (X,) but it a.s. cannot happen since, by assump-
tion, £(c71({t})) = 0 for all t > 0.

Proof of (iii). It is an immediate consequence of (7).
6.3 A particular cost function: the inverse of signal to noise plus interference

ratio

In this subsection, we prove that the following cost function

a + min{b, |x — Ba|~*} + min{b, |x — B3|~}

, zeT
min{b, |z — B1|~%} v

c(x) =

where a > 2, a > 0 and b > (A\V3/2)72, satisfies (), @), @), () and (). To avoid lengthy
computations we only checked numerically the first inequality in (f]). The typical shape of the
function
ci(z)ea(x)es(x)

c1(x)eo(x) + e1(z)cs(x) + co(z)es(x)
is plotted in Figure B, which shows that L attains the supremum at 2 = 0. Finally, we show that,
for fixed a > 2 and a > 0, for all b large enough, the second inequality in (f) holds.

We first check assumption ([[J). We consider only the case I = 2, being the case | = 3 similar. Let
x € T be such that |z — By| < |z — Bs|. Then necessarily, |z — Bs| > Av/3/2. With our choice of b,
we deduce that

L(x) =

min{b, |zt — Ba| ™"} = |z — Ba|™% < min{b, |z — By|"*}.
By construction

a + min{b, |z — By|~*} 4+ min{b, |x — B3|~}

T
min{b, [z — Ba|°} 2 FS

co(z) =

and so (f) follows easily.
It is immediate to check that ¢ is a Lipschitz function, and the axial symmetry around the
straight line determined by 0 and B; maps Bs into Bs. Thus assumptions () and (f]) follow.
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In order to check (), we note that if z € Ty, then, for I = 2,3, |z — Bj| > |z — By|. Thus, for
I =2,3, min{b, |z — B)|~*} < min{b, |z — B1|~*}, and we deduce

a + min{b, |x — Ba|~*} 4+ min{b, |x — B3|~}
min{b, |z — B1|=“}

+2

c(x)
a
min{b, |x — By|~*}
< A% +2=¢(0),

where the last inequality is strict if  # 0. Similarly, a + min{b, |x — Ba|™*} + min{b, |z — B3|~*} is
minimized for x = B; and min{b, |z —B;|~“} is maximized for z = Bj. So, for z # By, ¢(x) > ¢(By).
Now we check assumption (). Define

Aj={zeT:|z—B|<b "/}, 1=1,23.
With our choice of b, if [ # m, we have A; N A,, = (). Define
Ay :T\(Al UAQUAg).

Note that, by construction, on each set A;, [ =0, 1,2, 3, the sign of b — |x — B,,|™ is constant for
each m = 1,2,3. To prove (f}), we shall check that, for all t > 0 and [ = 0,1, 2,3,

(AN ({t)) =o0. (63)
We shall only prove the above equality for [ = 0, the other cases can be shown similarly. Note that
clx) =|r—Bi|%a+|r— Ba| “+ |z — Bs|™%), Vze A.

Using polar coordinates we have

2w [e'9)
C(Agne ' ({t}) = /0 dH/O 1{re? € Ag}i{c(re?) = t}rdr.

We shall check that, for an arbitrarily fixed 6 € [0, 27), the function

10 « 6 «
i0 o |7‘e’ —Bl| |re —B1|
- _B fre = =l e — ) e
CG(T) a]re 1’ + <|T‘€Z€ _ B2| + |,r.eZG _ B3| r ¢

is strictly monotone, where
Ip={r:r>0,re?cT}.

So, for any fixed 6 € [0, 27), the function 1{re? € Ag}1{c(re??) = t} is different from 0 for at most
one r, and therefore the equality (63) for [ = 0 follows. In the following we shall only prove that cg
is strictly decreasing on Iy for 6 € [—7/6,7/6], the other cases can be treated similarly. First, note

that since 6 € [—7/6,7/6], as r increases, |re? — B;|* decreases, while |re? — B3|* increases. Thus,
|re® — By |
|re?? —Bs|

increases, |re® — By|® increases. Thus it suffices to prove that, for a fixed 6 € (0,7/6], the function

Lo(r) = }:ZZ%;;; re [O,)\ <2COS (% — 6))_1]

. (0%
r— alre? — By|* and r ( ) are decreasing. Note also that, for § € [—7/6,0], as r
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. . . . . . ;T 4 .
is non-increasing. Consider the orthonormal basis {e1,e2} with e; = €'c and ey = e '3. Setting

B=m/6—0¢c[0,7/6), y1 =\/2 and y2 = \V/3/2, we have

re’ = rcos fe; +rsinfBes, By =yier +yses, Ba=yie; — yzes

and
(y1 — rcos )% + (y2 — rsin §)?
(y1 —rcosB)? + (y2 + rsin 3)?°

The derivative Lj(r) of Ly(r) has the same sign of

LQ(T) =

— (cos B(y1 — 7 cos B) + sin B(y2 — 7sin B)) ((y1 — rcos B)* + (y2 + 7sin B)?)
+ (cos B(y1 — 7 cos B) — sin B(yz + rsin B)) ((y1 — r cos B+ (y2 — rsinﬁ)2) .

After simplification, we get easily that Ly(r) has the same sign of
—2rcos Bsin 8 — ((yl — 7COoS 6)2 + y% — 2 gin? ﬂ) sin (.

This last expression is less than or equal to 0. Indeed, for r € [0, A(2cos 3) 1], we have 0 < rsin 3 <
y2. Hence Ly is non-increasing on its domain.

Finally, we check that, for fixed a > 2 and a > 0, it is possible to determine b > ()\\/§ /2)7% so
that the second inequality in (ff]) holds. We deduce

a + min{b, |x — By|~*} + min{b, |z — B3|~}
/b C(l‘) dz > /]1‘2 ()\\/g/z)—oe dz (64)

/ a + min{b, |x — Ba| ™} + |z — Bs|™¢
= d
T, (\WV3/2)=
a/3 w2/ /6 _
> + +(W3/2)* | |z — B3| da. 66
()\\/§/2)_a ()\\/g/2)_a ( / ) T2| 3| ( )
Here (f4) and (65) follow since on Ty we have |z — B;|=® < (A\/3/2)™® < b for | = 1,3; (B6) is

consequence of the inequality |x — Ba|™ > b, for any x € Ay N'Ty. The claim follows noticing that,
due to our choice of «, ¢(0)/3 is strictly less than the quantity in (6d), for b large enough.

x (65)
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1.5

Figure 3: The function L with a = 2.5, a =1 and b = 10.
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