Alain Chenciner 
email: chenciner@imcce.fr
  
¸ois Laudenbach 
email: francois.laudenbach@univ-nantes.fr
  
  
  
  
MORSE 2-JET SPACE AND h-PRINCIPLE
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A section in the 2-jet space of Morse functions is not always homotopic to a holonomic section. We give a necessary condition for being the case and we discuss the sufficiency.

Introduction

Given a submanifold Σ in an r-jet space (of smooth sections of a bundle over a manifold M), it is natural to look at the associated differential relation R(Σ) formed by the (r + 1)-jets transverse to Σ. For j r f being transverse to Σ at x ∈ M is detected by j r+1

x f . This is an open differential relation in the corresponding (r + 1)-jet space. One can ask whether the Gromov h-principle holds: is any section with value in R(Σ) homotopic to a holonomic section of R(Σ)? (We recall that a holonomic section of a (r + 1)-jet space is a section of the form j r+1 f .)

According to M. Gromov, the answer is yes when M is an open manifold and Σ is natural, that is, invariant by a lift of Dif f (M) to the considered jet space (see [START_REF] Gromov | Partial Differential Relations[END_REF] p. 79, [START_REF] Eliashberg | Introduction to the h-principle[END_REF] ch. [START_REF] Maller | Fitted diffeomorphisms of non-simply connected manifolds[END_REF]).

The answer is also yes when the codimension of Σ is higher than the dimension n of M; this case follows easily from Thom's transversality theorem in jet spaces (see [START_REF] Laudenbach | De la tranversalité de Thom au h-principe de Gromov[END_REF]). In the case of jet space of functions and when Σ is natural and codimΣ ≥ n + 1, it also can be seen as a baby case of a theorem of Vassiliev [9].

In this note we are interested in a codimension n case when M is a compact n-dimensional manifold. Let J r (M) denote the space of r-jets of real functions; when the boundary of M is not empty, it is meant that we speak of jets of functions which are locally constant on the boundary. We take Σ ⊂ J 1 (M) the set of critical 1-jets. Then R(Σ) ⊂ J 2 (M) is the open set of 2-jets of Morse functions. We shall analyze the obstructions preventing the h-principle to hold with this differential relation.

Index cocycles

It is more convenient to work with the reduced jet spaces J r (M), quotient of J r (M) by R which acts by translating the value of the jet. It is a vector bundle whose linear structure is induced by that of C ∞ (M). For instance, J 1 (M) is isomorphic to the cotangent space T * M. Let M denote the reduced 2-jets of Morse functions, that is the 2-jets which are transverse to the zero section 0 M of T * M (in the sequel, jet will mean reduced jet). Let π : J 2 (M) → J 1 (M) be the projection and π 0 : J 2 0 (M) → 0 M be its restriction over the zero section of the cotangent space. Since it is formed of critical 2-jets, it is a vector bundle whose fiber is the space of quadratic forms, S 2 (T * x M), x ∈ M. Let M 0 := M ∩ J 2 0 (M); it is a bundle over 0 M whose fiber consists of non-degenerate quadratic forms. Its complement in J 2 0 (M) is denoted D (like discriminant); it is formed of 2-jets which are not transverse to 0 M . When M is connected, M 0 has a connected component M i 0 for each index i ∈ {1, ..., n} of quadratic forms.

2.1. Tranverse orientation. Each M i 0 is a proper submanifold of codimension n in M. Moreover the differential dπ gives rise to an isomorphism of normal fiber bundles

ν(M i 0 , M) ∼ = π * (ν(0 M , T * M))|M i 0 .
Of course, ν(0 M , T * M) is canonically isomorphic to the cotangent bundle τ * M, whose total space is T * M. When M is oriented, so is the bundle τ * M. When M is not orientable, one has a local system of orientations of τ * M. Pulling it back by π yields a local system of orientations of ν(M i 0 , M) (that is, co-orientations of M i 0 ). Let us denote M even 0 (resp. M odd 0 ) the union of the M i 0 's for i even (resp. odd). We endow M even 0 with the above local system of co-orientations. For reasons which clearly appear below, it is more natural to equip M odd 0 with the opposite system of co-orientations. Lemma 2.2. Let s = j 2 f be a holonomic section of M meeting M 0 transversally. Then each intersection point of s(M) with M 0 is positive. The same statement holds when s is a local holonomic section only.

Proof. Let a be such an intersection point in s(M) ∩ M i 0 ; so i is the index of the corresponding critical 2-jet. We can calculate in local coordinates (x, y ′ , y ′′ ), where x = (x 1 , ..., x n ) are local coordinates of M,y ′ = (y ′ 1 , ..., y ′ n ) (resp. y ′′ = (y ′′ jk ) 1≤j≤k≤n ) are the associated coordinates of T *

x M (resp. S 2 T * x M). Since f is holonomic, we have y ′′ jk (a) = ∂y ′ j ∂x k (a). Finally, the sign of det y ′′ (a) (positive if i is even and negative if not) gives the sign of the Jacobian determinant at a of the map x → y ′ (x), that is the sign of the intersection point when M i 0 is co-oriented by the canonical orientation of the y ′ -space. As we have reversed this co-orientation when i is odd, the intersection point is positive whatever the index is.

Proposition 2.3. 1) Each M i 0 defines a degree n cocycle of M with coefficients in the local system Z or of integers twisted by the orientation of M. Let µ i be its cohomology class in

H n (M, Z or ); in particular, if s : M → M is a section, < µ i , [s] > is an integer. 2) When s is homotopic to a holonomic section j 2 f , then < µ i , [s]
> is positive and equals the number c i (f ) of critical points of the Morse function f . In particular the total number |Z| of zeroes of the section π • s (which, by construction, is transverse to the 0-section) satisfies:

|Z| ≥ n i=0 c i (f ) .
Proof. 1) Let σ be a singular n-cycle with twisted coefficients of M. It can be C 0 -approximated by σ ′ , an n-cycle which is transverse to M i 0 . As M i 0 is a proper submanifold, there are finitely many intersections points in σ ′ ∩ M i 0 , each one having a sign with respect to the local system of coefficients. The algebraic sum of these signs defines an integer c(σ ′ ). One easily checks that c(σ ′ ) = 0 if σ ′ is a boundary. As a consequence, if σ ′ 0 and σ ′ 1 are two approximations of σ, as σ ′ 1σ ′ 0 is a boundary, we have c(σ ′ 1 )c(σ ′ 0 ) = 0 which allows us to uniquely define c(σ) as the value of an n-cocycle on σ. Typically, the image of a section carries an n-cycle with twisted coefficients and this algebraic counting applies.

2) Since c defined in 1) is a cocycle, it takes the same value on s and on j 2 f . According to lemma 2.2, it counts +1 for each intersection point in j 2 f ∩ M i 0 , that is, for each index i critical point of f . Corollary 2.4. If s is a section of M which is homotopic to a holonomic section, the integers

m i :=< µ i , [s] > fulfill the Morse inequalities m 0 ≥ β 0 (F ) m 1 -m 0 ≥ β 1 (F ) -β 0 (F ) ... ... m 0 -m 1 + ... + (-1) n m n = β 0 (F ) -β 1 (F )... + (-1) n β n (F ) =: χ(M)
where F is a field of coefficients, β i (F ) = dim F H i (M, F or ) is the i-th Betti number with coeffcients in F or (F twisted by the orientation) and χ(M) is the Euler characteristic (independent of the field F ).

Corollary 2.5. The h-principle does not hold true for the sections of M.

Proof. It is sufficient to construct a section s of M which violates the Morse inequalities, for example a section which does not intersect M 0 0 . Leaving the case of the circle as an exercise, we may assume n > 1. One starts with a section s 1 of T * M tranverse to O M . Each zero of s 1 has a sign (if the local orientation of M is changed, so are both local orientations of s 1 and 0 M the sign of the zero in unchanged). For each zero a, one can construct a homotopy fixing a, with arbitrary small support, which makes s 1 linear in a small neighborhood of a. As GL(n, R) has exactly two connected components, one can even suppose that after the homotopy, s 1 is near a the derivative of a non degenerate quadratic fonction whose index can be chosen arbitrarily provided it is even (resp. odd) if a is a positive (resp. a negative) zero. Finally, one can achieve by homotopy that near each zero a, one has s 1 = df with a a non-degenerate critical point of f of index 2 (resp. 1) if a is a positive (resp. negative) zero.

Near the zeroes s 1 has a canonical lift to M by s 2 = j 2 f . Away from the zeroes, the lift s 2 extends as a lift of s 1 since the fibers of π are contractible over T * M \ 0 M . By construction, we have < µ 0 , [s 2 ] >= 0, violating the first Morse inequality.

Remark 2.6. Denote µ even = µ 0 + µ 2 + ... and µ odd = µ 1 + ... . The following statement holds true: µ even = µ odd if and only if the Euler characteristic vanishes.

Proof. Assume first µ even = µ odd . Proposition 2.3 yields for any holonomic section in M: m even = m odd , that is χ(M) = 0. Conversely, if χ(M) = 0, there exists a non-vanishing 1-form on M and hence, by lifting it to J 2 (M), a section v 0 in M avoiding M 0 . We form

W = {z ∈ J 2 (M) | z = z 0 + tv 0 , z 0 ∈ M 0 , t ≥ 0 or z 0 ∈ D, t > 0}.
It is a proper submanifold in M whose boundary (with orientation twisted coefficients) is M even 0 -M odd 0 . Therefore, every cycle c satisfies < µ even , c >=< µ odd , c >, which implies the wanted equality.

Are Morse inequalities sufficient?

This question is closely related to the problem of minimizing the number of critical points of a Morse function. This problem was solved by S. Smale in dimension higher than 5 for simply connected manifolds, as a consequence of the methods he developped for proving his famous h-cobordism theorem (see [START_REF] Smale | Notes on differentiable dynamical systems[END_REF] or chapter 2 in [START_REF] Franks | Homology and Dynamical Systems[END_REF]). Under the same topological assumptions we can answer our question positively. But there are other cases, discussed later, where the answer is negative. Proposition 3.1. Two sections s, t of M ⊂ J 2 (M) are homotopic as sections of M if and only if their algebraic intersection numbers m i with M i 0 are the same. Proof. According to proposition 2.3 1), the condition is necessary. Let us prove that it is sufficient. Leaving the 1-dimensional case to the reader, we assume dim M ≥ 2. Denote s 1 = π • s. Each zero of s 1 is given an index due to its lifting by s to a point of some

M i 0 . For each index i choose |m i | zeroes of s 1 , a 1 i , . . . , a |m i | i
, among its zeroes of index i; when m i > 0 (resp. m i < 0), we choose the a j i so that the corresponding intersection points of s(M) with M i 0 are positive (resp. negative). When m i = 0, no points are selected. In the same way,

|m i | zeros b 1 i , . . . , b |m i | i
of t 1 are chosen. The intersection signs being the same, one can find a homotopy of t in M, which brings the b j i to coincide with the a j i and makes the two sections s and t coincide in the neighborhood of these points.

The other zeroes of s 1 of index i can be matched into pairs of points {a j+ i , a j- i } of opposite sign. A Whitney type lemma allows us to cancel all these pairs by a suitable homotopy of s in M, reducing to the case when s 1 has no other zeroes than the a j i 's, j = 1, . . . , |m i |. A similar reduction may be assumed for t. Let us finish the proof in this case before stating and proving this lemma.

Both sections s 1 and t 1 of T * M are homotopic (among sections) by a homotopy which is stationary on a neighborhood N(a j i ). Making this homotopy h : M × [0, 1] → T * M transverse to the zero section, the preimage of 0 M consists of arcs {a j i } × [0, 1] and finitely many closed curves γ k . Each of these closed curves can be arbitrarily decorated with an index i. This choice allows us to lift h to J 2 (M) as a homotopy h from s to t; this h is the desired homotopy. More precisely, we proceed as follows for getting h. First h|γ k is lifted to M i 0 by using that the fiber of π : M i 0 → 0 M is connected. The transversality of h to 0 M allows us to extend this lifting to a neighborhood of γ k , making h transverse to M i 0 . Now it is easy to extend h to M × [0, 1], since the fiber of π over any point outside 0 M is contractible.

A Whitney type lemma. Let (b + , b -) be a pair of transverse intersection points of s with M i 0 having opposite sign when they are thought of as zeroes of s 1 in M. Let α be a simple path in M joining them avoiding the other zeroes of s 1 and let N be a neighborhood of α. Then there exists a homotopy S = (s u ) u∈[0,1] of s 0 = s into M, supported in N and cancelling the pair (b + , b -), that is, π • s 1 has no zeroes in N.

Proof. We choose an embedded 2-disk (with corners) ∆ in N × [0, 1[ meeting N × {0} transversally along α. We first construct the homotopy S 1 := π • S of s 1 among the sections of T * M, following the cancellation process of Whitney which we are going to recall. We require S 1 to be transverse to 0 M with (S 1 ) -1 (0 M ) = β, where α ∪ β = ∂∆. Using a trivialization of T * M|N, S 1 |N × [0, 1] reads S 1 (x, u) = (x, g(x, u)). The requirement is that g vanishes transversally along the arc β; it is possible exactly because dim M ≥ 2 and the end points have opposite signs. Let T be a small tubular neighborhood of β; its boundary traces an arc β ′ on ∆, "parallel" to β. Let α ′ be the subarc of α whose end points are those of β ′ . The restriction g|T is required to be a trivialization of T , but this latter may be chosen freely. We choose it so that the loop (g|β ′ ) ∪ (s 1 |α ′ ) be homotopic to 0 in (R n ) * \ {0}; of course, when n > 2 this condition is automatically fulfilled. Now g can be extended to the rest of ∆ as a non-vanishing map. As N × [0, 1] collapses onto N × {0} ∪ ∆ ∪ T , the extension of g can be completed without adding zeroes outside β, yielding the desired homotopy S 1 .

It remains to lift S 1 to M. The lifting is first performed along β with value in M i 0 . Then it is globally extended in the same way as in the above lifting process. Corollary 3.2. Let s be a section of M ⊂ J 2 (M) and m i be its algebraic intersection number with M i 0 . Let f : M → R be a Morse function whose number c i (f ) of critical points of index i satisfies c i (f ) = m i for all i ∈ {0, . . . , n}. Then s and j 2 (f ) are homotopic as sections of M. Corollary 3.3. We assume dim M ≥ 6 and π 1 (M) = 0. Let s be a section of M ⊂ J 2 (M) whose algebraic intersection numbers m i fulfills the Morse inequalities for every field of coefficients. In particular, they are non-negative. Then s is homotopic through sections in M to a holonomic section.

Proof. Under these topological assumptions the following result holds true: For any set of non-negative integers {c 0 , c 1 , • • • , c n } satisfying the Morse inequalities for any field of coefficients, there exists a Morse function on M with c i critical points of index i (see theorem 2.3 in [START_REF] Franks | Homology and Dynamical Systems[END_REF]). So we have a Morse function f : M → R with m i critical points of index i. According to corollary 3.2, s is homotopic in M to j 2 f . 3.4. We end this section by recalling that the Morse inequalities are not sharp for estimating the number of critical points of a Morse function on a non-simply connected closed manifold. Typically when π 1 (M) equals its subgroup of commutators (perfect group), some critical points of index 1 are required for generating the fundamental group, but the Morse inequalities allow c 1 = 0 (see [START_REF] Maller | Fitted diffeomorphisms of non-simply connected manifolds[END_REF] for more details). On the other hand, the only constraint for a section of M with intersection numbers m i is the Euler-Poincaré identity:

m 0 -m 1 + ... = χ(M).
So it is possible to find a section s whose intersection number m i is the minimal rank in degree i of a free complex whose homology is H * (M, Z), that is,

m i = β i + τ i + τ i-1 ,
where β i stands for the rank of the free quotient of H i (M, Z) and τ i denotes the minimal number of generators of its torsion subgroup ([2] p. 15). Such a set of integers satisfies the Morse inequalities but is far from being realizable by a Morse function. Finally this section s is not homotopic in M to a holonomic section.

Failure of the 1-parametric version of the h-principle

We thank Yasha Eliashberg who pointed out to us the failure of the h-principle in the 1parametric version of the problem under consideration.

Here M is assumed to be a product

] be the projection. When M is not 1-connected and dim M ≥ 6, according to Allen Hatcher the so-called pseudoisotopy problem has always a negative answer: there exists f without critical points which is not joinable to f 0 among the Morse functions (see [4]). But j 2 f can be joined to j 2 f 0 by a path γ in M. Indeed, take a generic homotopy γ 1 joining df to df 0 ; then arguing as in the proof of proposition 3.1 it is possible to lift it to M. When M is the n-torus T n , A. Douady showed very simply the stronger fact that the path γ 1 can be taken among the non-singular 1-forms (see appendix to [5]). This γ is not homotopic in M with end points fixed to a path of holonomic sections.