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Drawing disconnected graphs on the Klein bottle
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We prove that two disjoint graphs must always be drawn separately on the Klein bottle in order to minimize the crossing number of the whole drawing.

Introduction

All graphs in this paper are finite, undirected and without loops. A path of G is a sequence of vertices v 0 , . . . , v k of G such that for each integer i between 1 and k -1, v i v i+1 is an edge of G and all edges are distinct. A circuit of G is a path v 0 , . . . , v k such that v 0 = v k . A graph with a circuit that visits each of its edges exactly once is called eulerian. A graph is connected if for every pair of vertices u and v there is a path v 0 , . . . , v k such that v 0 = u and v k = v. We refer to [START_REF] Bollobás | Modern Graph Theory[END_REF] for an introduction to graph theory.

A surface is a two-dimensional manifold, with or without boundary. According to [START_REF] Brahana | Systems of circuits of two-dimensional manifolds[END_REF], there are two infinite classes of compact connected surfaces without boundary: the orientable surfaces homeomorphic to a sphere with handles attached, and the non-orientable surfaces homeomorphic to a connected sum of projective planes. For an orientable surface, the number of handles is called the orientable genus. For a non-orientable surface, the number of projective planes is called the non-orientable genus. The non-orientable surfaces of genus 1 and 2 are the projective plane and the Klein bottle, respectively. Formal definitions of these surfaces can be found in [START_REF] Stillwell | Classical topology and combinatorial group theory[END_REF].

Every curve considered throughout this paper is undirected and we do not distinguish between a curve and its image. A drawing of a graph G on a surface Σ is a representation Ψ of G on Σ where vertices are distinct points of Σ, and edges are curves of Σ joining the points corresponding to their endvertices. A drawing is proper if edges are simple curves without vertices of the graph in their interiors. A crossing is a transversal intersection of two curves on Σ. In this paper, we restrict our attention to proper drawings where two incident edges do not cross each other, two non-incident edges cross at most once and no more than two edges cross at a single point. The crossing number of a drawing Ψ, denoted by cr(Ψ), is the number of crossings between each pair of curves in Ψ. The crossing number of a graph G on a surface Σ is the minimum crossing number among all drawing of G on Σ. A drawing that achieves the crossing number of a graph is said optimal. By definition, a drawing with no crossing is an embedding. For background material about topological graph theory, the reader can refer to [START_REF] Mohar | Graphs on surfaces[END_REF].

The crossing number of a graph on a surface leads to many unsolved problems, see [START_REF] Erdös | Crossing number problems[END_REF][START_REF] Pach | Thirteen problems on crossing numbers[END_REF]. DeVos, Mohar and Samal conjectured the following in [START_REF] Devos | Open Problems Garden[END_REF].

Conjecture 1. Let G be the disjoint union of two connected graphs H and K and let Σ be a surface. For every optimal drawing of G on Σ, the restrictions to H and K do not intersect. This conjecture is obviously true for the sphere or equivalently for the Euclidean plane. It was announced proved for the projective plane in [START_REF] Devos | Open Problems Garden[END_REF]. The problem remains open in the general case. In this paper, we prove that Conjecture 1 holds if Σ is the Klein bottle.

Theorem 2. Let G be the disjoint union of two connected graphs H and K. For every optimal drawing of G on the Klein bottle, the restrictions to H and K do not cross.

We introduce the following notations. A closed curve is one-sided if its neighborhood is a Möbius strip, two-sided otherwise. There exist two non freely homotopic one-sided simple curves a and b on the Klein bottle, a two-sided simple curve m that cuts open the Klein bottle into a cylinder, and a twosided simple curve e that separates the Klein bottle into two Möbius strips. A closed curve not contractible is called essential. According to Kawrencenko and Negami in [START_REF] Kawrencenko | Irreducible triangulations of the Klein Bottle[END_REF], each essential simple closed curve on the Klein bottle is freely homotopic to either a, b, m or e.

For each curve c on Σ, [c] denotes the set of curves freely homotopic to c. are called e-circuits.

We will apply the following result.

Theorem 3. (De Graaf, Schrijver [START_REF] De Graaf | Decomposition on surfaces[END_REF]) Let Ψ be an embedding of an eulerian graph on a metrizable surface Σ. Then Ψ can be decomposed into a collection of circuits I such that for each closed curve c on Σ,

cr([c], Ψ) = d∈I cr([c], [d]).
Decomposing a drawing Ψ of a graph G into a collection of circuits I means that each edge of G in Ψ is visited by exactly once by one single element of I. A related result has been obtained by Lins [START_REF] Lins | A minimax theorem on circuits in projective graphs[END_REF] for the projective plane and generalized by Schrijver [START_REF] Schrijver | The Klein bottle and multicommodity flows[END_REF] for the Klein bottle: the maximum number of pairwise edge-disjoint one-sided circuits equals the minimum number of edges intersecting all one-sided circuits. We provide another expression of this number in 7. Similarly, we express the maximum number of edge-disjoint a-circuits in 8.

This paper is organized as follows. We express the maximum number of circuits of given homotopy class in section 2. Therefore we get a lower bound on the crossing number of a drawing. A case study in Section 3 guaranties that suitable transformations, defined in Section 1, yield a representation with strictly fewer crossings.

Drawing graphs on surfaces of smaller genus

In this section, starting with a drawing of a graph on a surface, we define new drawings of the same graph on surfaces of smaller genus. We compute the crossing numbers of these drawings.

Removing a crosscap

Let Σ be the non-orientable surface of genus g and Σ ′ be the non-orientable surface of genus g -1.

Proposition 4. Let Ψ denote a drawing of a graph G on Σ. Let c be a simple closed one-sided curve on Σ which does not contain any vertex of G. There is a drawing

Ψ ′ of G on Σ ′ such that cr(Ψ ′ ) = cr(Ψ) + cr(c, Ψ)(cr(c, Ψ) -1) 2 .
Proof. We cut open Σ along c and we obtain the non-orientable surface Σ ′ with one hole. We can glue a disk D along the boundary component to obtain Σ ′ . Let Ψ ′ be the drawing of G defined by restricting Ψ to Σ \ c and redrawing the edges of Ψ that crossed c on D, crossing exactly once pairwise. The crossings of these edges add to the crossings of Ψ to give the correct number of crossings of Ψ ′ stated in Proposition 4.

The non-orientable surface of genus g can be seen as a sphere with g crosscaps attached. Attaching a crosscap to a surface Σ means removing an open disk D of Σ and identifying opposite points on the boundary of D.

Corollary 5. Let G be the disjoint union of two eulerian connected graphs H and K. If G has a drawing on the projective plane such that the restrictions to H and K are embeddings that cross each other, then we can find another drawing of G on the projective plane with strictly fewer crossings such that the restrictions to H and K do not cross.

Proof. Let Ψ be a drawing of G on the projective plane such that the restriction Ψ H to H and the restriction Ψ K to K are embeddings.

All one-sided simple essential closed curves on the projective plane are freely homotopic. Let c be such a curve. By a theorem of Lins [START_REF] Lins | A minimax theorem on circuits in projective graphs[END_REF], the maximum number of edge-disjoint one-sided circuits of Ψ H and Ψ K are cr([c], Ψ H ) and cr([c], Ψ K ), respectively. We may assume that cr(

[c], Ψ H ) is smaller than cr([c], Ψ K ).
Two one-sided circuits cross at least once. Hence, each one-sided circuit of Ψ H crosses each one-sided circuit of Ψ K , and

cr(Ψ) ≥ cr([c], Ψ H ) × cr([c], Ψ K ).
Let c ′ be an one-sided closed curve on the projective plane that achieves cr([c], Ψ H ). By Proposition 4, there exists a drawing Ψ ′ H of G on the Euclidean plane such that

cr(Ψ ′ H ) = 1 2 cr(c ′ , Ψ H ) × (cr(c ′ , Ψ H ) -1) < cr([c], Ψ H ) × cr([c], Ψ K ) ≤ cr(Ψ).
Let Ψ ′ denote the drawing of G on the projective plane obtained by disjoint union of the drawings Ψ ′ H and Ψ K . The drawings Ψ ′ H and Ψ K do not cross each other and since Ψ K is an embedding, all crossings of Ψ ′ are crossings of Ψ ′ H . It follows that the drawing Ψ ′ of G on the projective plane has strictly fewer crossings than Ψ and the restrictions to H and K do not cross.

Removing the two crosscaps of the Klein bottle

Proposition 6. Let Ψ denote a drawing of a graph G on the Klein bottle. Let a ′ be a simple curve freely homotopic to a and m ′ a simple curve freely homotopic to m such that neither a ′ nor m ′ contains any vertex of G, and such that a ′ and m ′ cross only once. Then there is a drawing Ψ ′ of G on the Euclidean plane such that

cr(Ψ ′ ) = cr(Ψ) + cr(a ′ , Ψ) × cr(m ′ , Ψ) + 1 2 cr(m ′ , Ψ) × (cr(m ′ , Ψ) -1).
Proof. We cut the Klein bottle open along m ′ , disconnecting cr(m ′ , Ψ) edges of Ψ. By definition of m, the resulting surface is a cylinder. We reconnect the cut edges such that their new part remains in a small neighborhood of a ′ , creating exactly cr(a ′ , Ψ) crossings for each cut edge. Moreover, we can draw the cr(m ′ , Ψ) edges so that they cross each other only once. We obtain a drawing of G on the cylinder with the desired crossing number, therefore a drawing Ψ ′ on the Euclidean plane with the same crossing number.

Maximum number of pairwise edge-disjoint circuits

In this section we estimate the number of essential circuits of the representation. Moreover, we can decompose Ψ into a collection of circuits I that achieves the maximum number of one-sided circuits and such that the number of m-circuits in I is Let I be a collection of circuits given by Theorem 3, with n a a-circuits, n b b-circuits, n m m-circuits and n e e-circuits. By definition of I, the following equalities hold:

One-sided circuits

cr

([a], Ψ) = n a + n m , cr([b], Ψ) = n b + n m , cr([m], Ψ) = n a + n b + 2n e . (1) 
If n m or n e equals zero, then the result follows. Now assume that n m and n e are positive.

Let r = min {n m , n e }. Consider r distinct m-circuits m 1 , . . . , m r and r distinct e-circuits e 1 , . . . , e r in I. For every integer i between 1 and r, the circuits m i and e i intersect and can be decomposed into an a-circuit a i and an b-circuit b i . Thus, we get n a + r a-circuits, n b + r b-circuits, n m -r m-circuits and n e -r e-circuits. The resulting collection of circuits I ′ still decomposes Ψ. By ( 1 Thus I ′ is the desired collection of circuits. To complete the proof of Proposition 8, it remains to exhibit min {cr([a], Ψ), cr([m], Ψ)} a-circuits.

a-circuits

Let I be a collection of circuits of Ψ as stated in Theorem 3, with n a acircuits, n b b-circuits, n m m-circuits and n e e-circuits. If n a or n m equals zero, then the result follows. Now assume that n a and n m are positive.

Let r = min {n m , n e }. Consider r distinct m-circuits m 1 , . . . , m r and r distinct e-circuits e 1 , . . . , e r in I. For every integer i between 1 and r, the circuits m i and e i intersect and can be decomposed into an a-circuit a i and an b-circuit b i . Consequently, we get n a + r a-circuits, n b + r b-circuits, n m -r m-circuits and n e -r e-circuits. The resulting collection of circuits I ′ still decomposes Ψ.

Let s = min {n m -r, n b + r}. If n m ≤ n e , then s equals zero and we have found cr([a], Ψ) a-circuits. Otherwise, consider s distinct b-circuits b 1 , . . . , b s and s distinct m-circuits m ′ 1 , . . . , m ′ s of I ′ . For every integer i between 1 and r, the circuits b i and m ′ i intersect and can be decomposed into an a-circuit a ′ i . And so, we get n a + r + s a-circuits.

By [START_REF] Bollobás | Modern Graph Theory[END_REF],

n a + r + m = n a + r + min {n m -r, n b + r} = n a + min {n m , n b + 2n e } = min {cr([a], Ψ), cr([m], Ψ)} .
Proposition 8 is proved.

Note that Proposition 8 still holds when replacing a by b.

Main result

This section is devoted to the proof of our main result. First, we need to prove the following special case of the theorem.

Lemma 9. Let G be the disjoint union of two eulerian connected graphs H and K. If G has a drawing on the Klein bottle such that the restrictions to H and K are embeddings that cross each other, then we can find another drawing of G on the Klein bottle with strictly fewer crossings such that the restrictions to H and K do not cross.

Proof. Let Ψ be a drawing of G on the Klein bottle such that the restrictions Ψ H to H and Ψ K to K are embeddings. To prove Lemma 9, it is enough to find two drawings Ψ ′ H and Ψ ′ K of H and K on two disjoint subsurfaces of the Klein bottle such that the sum of the crossings of Ψ ′ H and the crossings of Ψ ′ K is strictly less than the crossings of Ψ. Indeed, let Ψ ′ H and Ψ ′ K be such drawings and let Ψ ′ denote the drawing of G on the Klein bottle plane obtained by disjoint union of the drawings Ψ ′ H and Ψ ′ K . Then the number of crossings of Ψ ′ is the sum of the crossings of Ψ ′ H and the crossings of Ψ ′ K . It follows that the drawing Ψ ′ of G on the Klein bottle has strictly fewer crossings than Ψ and the restrictions to H and K do not cross.

For convenience, we denote cr( (2) With a similar decomposition of Ψ K we obtain

cr(Ψ) ≥ min {k m , k a + k b }×min {h a , h b }+ 1 2 (k a + k b -min {k m , k a + k b })×h m .
(3) Beside, by Proposition 8, there exist min {k a , k m } pairwise edge-disjoint acircuits of Ψ K . Each of them crosses Ψ H at least h a times, therefore

cr(Ψ) ≥ min {k a , k m } × h a . (4) 
Similarly, considering b-circuits gives

cr(Ψ) ≥ min {k b , k m } × h b . (5) 
Let 

m 1 ≤ m 2 ≤ m 3 ≤ m 4 be an ordering of the numbers h a , h b , k a , k b . ( Case 
) + cr(Ψ ′ K ) = 1 2 m 1 × (m 1 -1) + 1 2 m 2 × (m 2 -1).
By definition of m 2 and since k m ≥ m 2 ,

m 2 × m 2 ≤ max (min {k a , k m } × h a , min {k b , k m } × h b ) .
Hence, by ( 4) and [START_REF] De Graaf | Decomposition on surfaces[END_REF],

cr(Ψ ′ H ) + cr(Ψ ′ K ) < m 2 × m 2 ≤ cr(Ψ). (Case 2) If k m < m 2 , then h m ≤ k m ≤ m 1 + m 2 ≤ h a + h b . Thus, (2) becomes cr(Ψ) ≥ h m × min {k a , k b } + 1 2 (h a + h b -h m ) × k m . (6) 
Since 

k m ≤ k a + k b , the (3) becomes cr(Ψ) ≥ k m × h a + 1 2 (k a + k b -k m ) × h m . (7) 
(Case 2.1) If h m ≤ k a + k b -k m ,
) = h m × h a + 1 2 h m × (h m -1).
We get by ( 7)

cr(Ψ ′ H ) + cr(Ψ K ) = h m × h a + 1 2 h m × (h m -1) ≤ k m × h a + 1 2 (k a + k b -k m ) × (h m -1)
< cr(Ψ).

(Case 2.2) If h m > k a + k b -k m , then k m < m 2 implies h m + max {k a , k b } ≥ h m + k m > k a + k b . Hence h m > min {k a , k b } = m 1 .
(Case 2.2.1) If m 1 < k m /2 then we apply Proposition 6. There exists a drawing Ψ ′ K of K on the Euclidean plane such that cr

(Ψ ′ K ) = k m × m 1 + 1 2 k m × (k m -1).
By [START_REF] Kawrencenko | Irreducible triangulations of the Klein Bottle[END_REF], 

cr(Ψ H ) + cr(Ψ ′ K ) ≤ k m × m 1 + 1 2 k m × (k m -1) ≤ h m × m 1 + (k m -h m ) × m 1 + 1 2 k m × (k m -1) < h m × m 1 + (2k m -h m ) × 1 2 k m < h m × min {k a , k b } + 1 2 (h a + h b -h m ) × k m < cr(Ψ). ( Case 
) + cr(Ψ ′ K ) = 1 2 m 1 × (m 1 -1) + 1 2 m 2 × (m 2 -1). Since m 1 < h m , m 2 > k m , m 2 ≤ h a and m 1 + m 2 ≤ k a + k b ,
we get, by [START_REF] Lins | A minimax theorem on circuits in projective graphs[END_REF], Hence, by (4),

cr(Ψ ′ H ) + cr(Ψ ′ K ) = 1 2 m 2 × (m 2 -1) + 1 2 m 1 × (m 1 -1) < 1 2 m 2 × 2k m + 1 2 m 1 × (h m -1) < h a × k m + 1 2 (m 1 + m 2 -k m ) × h m < h a × k m + 1 2 (k a + k b -k m ) × h m < cr(Ψ).
cr(Ψ H ) + cr(Ψ ′ K ) = k m × m 1 + 1 2 k m × (k m -1) < k m × m 1 + 1 2 k m < k m × (2m 1 )
< m 1 × m 2 < cr(Ψ). Now, we may prove the Theorem.

Theorem 10. Let G be the disjoint union of two connected graphs H and K.

For every optimal drawing of G on the Klein bottle, the restrictions to H and K do not cross.

Proof. Let G be the disjoint union of two connected graphs H and K. Let Ψ be an optimal drawing of G on the Klein bottle. First, assume that the restrictions to H and K are embeddings. Duplicate each edge of G and denote by G ′ , H ′ , K ′ the resulting eulerian graphs and by Ψ ′ the resulting drawing. The drawing Ψ ′ has 4 cr(Ψ) crossings. Since G ′ is eulerian, by Lemma 9, we can find a drawing Ψ ′′ of G ′ , where the restrictions to H ′ and K ′ do not cross each other, with strictly less than 4 cr(Ψ) crossings. Moreover, we can assume that every pair of parallel edges are drawn close enough to have the same crossings. Therefore, two pairs of parallel edges have either four crossings or none. Thus, by deleting one copy of each edge, we get a drawing of G with strictly less than cr(Ψ) crossings. Moreover, the drawings of H and K do not intersect.

Secondly, suppose that the restrictions to H and K are not embeddings. Consider the graphs H ′′ and K ′′ obtained from H and K by adding a vertex for each internal crossing. The corresponding drawings are embeddings and we apply what was shown just above. Theorem 2 is proved when we replace the new vertices by the former crossings.

  For each couple of curves (c, d), cr([c], [d]) denotes the minimum number of crossings, counting multiplicities, taken over all couples of [c] × [d]. Let c be a curve on Σ and I a collection of curves. The number of crossings between c and I is denoted by cr(c, I). The minimum of cr(c ′ , I) taken over all curves c ′ in [c] is denoted by cr([c], I). If I is a drawing of a graph G, the minimum cr([c], I) is taken on the curves in [c] that do not contain any vertex of G. We define two relations on freely homotopy classes of closed curves on the Klein bottle. Two classes [c] and [d] are said to be orthogonal if cr([c], [d]) ≥ 1, otherwise disjoint. These definitions slightly differ from those of Luo in [8]. Let Ψ be a drawing on the Klein bottle. The circuits c of Ψ orthogonal to [a] and disjoint from [b] are called a-circuits. The circuits orthogonal to [b] and disjoint from [a] are called b-circuits. The circuits orthogonal to [a] and [b] are called m-circuits. Finally, the circuits orthogonal to [m] and disjoint from [a] and [b]

Proposition 7 .

 7 Let Ψ be an embedding of an eulerian graph on the Klein bottle. Then the maximum number of pairwise edge-disjoint one-sided circuits equals min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)} .
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 12 cr([a], Ψ) + cr([b], Ψ) -min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)}) . Proof. Let Ψ be an embedding of an eulerian graph G on the Klein bottle. Consider a collection I of edge-disjoint one-sided circuits of Ψ. Every one-sided circuit intersects either a or b. Consequently, for each circuit c in I, cr([a], c) ≥ 1 or cr([b], c) ≥ 1. Hence, cr([a], Ψ) + cr([b], Ψ) ≥ c∈I (cr([a], [c]) + cr([b], [c])) ≥ |I|. Similarly, every one-sided circuit intersects m. Hence, cr([m], Ψ) ≥ c∈I cr([m], [c]) ≥ |I|. Therefore the maximum number of pairwise edge-disjoint one-sided circuits is smaller than min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)}. To complete the proof of Proposition 7, it remains to decompose Ψ into a collection of circuits that contains min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)} one-sided circuits and 1 2 cr([a], Ψ) + cr([b], Ψ) -min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)} m-circuits.

  ), (n a + r) + (n b + r) = min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)} , and 2(n m -r) = cr([a], Ψ) + cr([b], Ψ) -min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)} .

Proposition 8 .

 8 Let Ψ be an embedding of an eulerian graph on the Klein bottle. Then the maximum number of edge-disjoint a-circuits equals min {cr([a], Ψ), cr([m], Ψ)} . Proof. Let Ψ be an embedding of an eulerian graph on the Klein bottle. Consider a collection I of edge-disjoint a-circuits of Ψ. Every a-circuit intersects a. Hence, cr([a], Ψ) ≥ c∈I cr([a], c) ≥ |I|. Similarly, every a-circuit intersects m. Hence, cr([m], Ψ) ≥ c∈I cr([m], c) ≥ |I|. Therefore the maximum number of pairwise edge-disjoint a-circuits is smaller than min {cr([a], Ψ) + cr([b], Ψ), cr([m], Ψ)}.

  [a], Ψ H ), cr([b], Ψ H ) and cr([m], Ψ H ) by h a , h b and h m , respectively. Similarly, we denote cr([a], Ψ K ), cr([b], Ψ K ) and cr([m], Ψ K ) by k a , k b and k m , respectively. Assume without loss of generality that h m ≤ k m . By Proposition 7, there exist a decomposition of Ψ H into pairwise edgedisjoint circuits with min {h m , h a + h b } one-sided circuits and (h a + h b -min {h m , h a + h b }) /2 m-circuits. Each one-sided circuit crosses Ψ K at least min {k a , k b } times, and each m-circuit crosses Ψ K at least k m times. Counting the crossings between Ψ H and Ψ K gives the following inequality. cr(Ψ) ≥ min {h m , h a + h b }×min {k a , k b }+ 1 2 (h a + h b -min {h m , h a + h b })×k m .

(Case 2 . 2 . 3 )

 223 If m 1 ≥ k m /2 and m 2 ≥ 2k m then we apply Proposition 6. There exists a drawing Ψ ′ K of K on the Euclidean plane such thatcr(Ψ ′ K ) = k m × m 1 + 1 2 k m × (k m -1).

  1) If k m ≥ m 2 , then applying twice Proposition 4 provides a drawing Ψ ′ H of H and a drawing Ψ ′ K of K on disjoint subsurfaces of the Klein bottle

	such that
	cr(Ψ ′ H

  2.2.2) If m 1 ≥ k m /2 and m 2 < 2k m , then applying twice Proposition 4

	provides a drawing Ψ ′ H of H and a drawing Ψ ′ K of K on disjoint subsurfaces of
	the Klein bottle such that
	cr(Ψ ′ H