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Abstract

We prove new formulae for the wave operators for a Friedrichs scattering system with a rank one pertur-

bation, and we derive a topological version of Levinson’s theorem for this model.

1 Introduction and main results

Let us consider the Hilbert space H := L
2(R) with norm ‖ · ‖ and scalar product 〈·, ·〉, and let H0 ≡ X be the

operator of multiplication by the variable, i.e. (H0f)(x) = xf(x) for any f ∈ D(H0) ≡ H1. For u ∈ H, we

also consider the rank one perturbation of H0 defined by

Huf := H0f + 〈u, f〉u, f ∈ H1.

It is well known that the wave operators Ω± := s- limt→±∞ eiHut e−iH0t exist and are asymptotically complete,

and that the scattering operator S := Ω∗
+Ω− is a unitary operator in H. In fact, S ≡ S(X) is simply an operator

of multiplication by a function S : R → T, with T the set of complex numbers of modulus 1.

A rather explicit formula for the wave operators for this model was proposed in [8]. Its expression involves

singular integrals that have to be manipulated with some care. In this Note, we propose a simpler formula for

the wave operators, and put into light a straightforward consequence of it. However, we stress that contrary to

[8], our formula and its corollary hold only if some additional (but weak) hypotheses on u are imposed.

To state our results, we need to introduce the even / odd representation of H. Given any function m on R,

we write me and mo for the even part and the odd part of m. We also set H := L
2(R+; C2) and introduce the

unitary map U : H → H given by

U f :=
√

2

(
fe

fo

)
and

[
U ∗( f1

f2

)]
(x) := 1√

2
[f1(|x|) + sgn(x)f2(|x|)] , f ∈ H,

( f1

f2

)
∈ H , x ∈ R.

Now, observe that if m is a function on R and A the generator of dilations in H, then we have

U m(X)U ∗ =
(

me(X+) mo(X+)
mo(X+) me(X+)

)
and U AU ∗ =

(
A+ 0
0 A+

)
,

where X+ is the operator of multiplication by the variable in L
2(R+), and A+ the generator of dilations in

L
2(R+), namely (eitA+ f)(x) := et/2 f(et x) for f ∈ L

2(R+), x ∈ R+.

In the sequel we assume that the vector u satisfies the following assumption.
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Assumption 1.1. The function u ∈ H is Hölder continuous with exponent α > 0. Furthermore, if x0 ∈ R

satisfies u(x0) = 0 and 1 −
∫

R
dy |u(y)|2(x0 − y)−1 = 0, then there exists an exponent α′ > 1/2 such that

|u(x) − u(y)| ≤ Const. |x − y|α′

for all x, y near x0.

This assumption clearly implies that u is bounded and satisfies lim|x|→∞ u(x) = 0. Furthermore, if u ∈ H
is Hölder continuous with exponent α > 1/2, then the previous assumption holds. On the other hand, under

Assumption 1.1, the operator Hu satisfies the hypotheses of [1, Sec. 2], and so it has at most a finite number of

eigenvalues of multiplicity one.

Our main result is the following representation of the wave operator Ω− in H .

Theorem 1.2. Let u satisfy Assumption 1.1. Then, one has

U Ω−U ∗ = ( 1 0
0 1 ) + 1

2

(
1 − tanh(πA+)+i cosh(πA+)−1

− tanh(πA+)−i cosh(πA+)−1 1

)(
Se(X+)−1 So(X+)

So(X+) Se(X+)−1

)
+ K,

(1.1)

where K is a compact operator in H .

Let us immediately mention that a similar formula holds for Ω+. Indeed, by using Ω+ = Ω−S(X) one

gets

U Ω+U ∗ = ( 1 0
0 1 ) + 1

2

(
1 tanh(πA+)−i cosh(πA+)−1

tanh(πA+)+i cosh(πA+)−1 1

)(
Se(X+)−1 So(X+)

So(X+) Se(X+)−1

)
+ K ′,

where K ′ is a compact operator in H . We also note that the proof of Theorem 1.2 will make clear why the

minimal hypothesis u ∈ H is not sufficient in order to prove the claim.

We now state a corollary of the theorem. Its proof is a straightforward consequence of formula (1.1), even

if it will require the introduction of an algebraic framework.

Corollary 1.3. Let u satisfy Assumption 1.1. Then S(±∞) = 1 and the following equality holds:

ω(S) = − number of eigenvalues of Hu,

where ω(S) is the winding number of the continuous map S : R → T.

Such a result was already known for more general perturbations but under stronger regularity conditions

[2, 4] (see also [6, 13] for general informations on the Friedrichs model). Our result does require neither the

differentiability of the scattering matrix nor the differentiability of u. Nonetheless, if S is continuously differen-

tiable, then the winding number can also be expressed in terms of an integral involving the (on-shell) time delay

operator, which is the logarithmic derivative of the scattering matrix [12].

The content of this Note is the following. In Section 2 we prove Formula (1.1) and derive some auxiliary

results. In Section 3 we give a description of the algebraic framework involved in the proof of the Corollary 1.3,

which is proved at the end of the section.

2 Derivation of the new formula

We start by recalling some notations and results borrowed from [1] and [8]. We shall always suppose that u
satisfies Assumption 1.1.

For x ∈ R and ε > 0 we set

Iε
±(x) :=

∫

R

dy
|u(y)|2

x − y ± iε
.

The limit I±(x) := limεց0 Iε
±(x) exists for all x ∈ R [1, Lemma 1.(a)]. Furthermore, the set of x such that

I±(x) = 1 is finite [1, p. 396]. In consequence the expression [1 − I±(x)]−1 is well defined for almost every

x ∈ R, and the domain D± of [1 − I±(X)]−1 in H is dense.
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Let F denote the Fourier transform in H, namely

(Ff)(x) := 1√
2π

∫
R

dy e−ixy f(y), f ∈ H ∩ L
1(R).

Given a Borel function m on R, we set m(D) := F ∗m(X)F . Finally, χ(−∞,0) stands for the characteristic

function for the half-line (−∞, 0).
We are now in a position to recall the formula [8, eq. (56b)] for Ω−. One has

Ω− = 1 − 2πiu(X)χ(−∞,0)(D)u(X)[1 − I+(X)]−1

on D+ (note that we use a convention for the sign ± of the wave operators Ω± which differs from the one of

[8]). So, if K := −2πi[u(X), χ(−∞,0)(D)]u(X)[1 − I+(X)]−1, then one gets on D+

Ω− − 1 = −2πiu(X)χ(−∞,0)(D)u(X)[1 − I+(X)]−1

= χ(−∞,0)(D)
{
− 2πi|u(X)|2[1 − I+(X)]−1

}
+ K

= χ(−∞,0)(D){S(X) − 1} + K, (2.1)

by using [8, Eq. (66b)] in the last equality.

In the next lemma, we determine the action of χ(−∞,0)(D) in H . For that purpose, we define φ ∈
C([−∞,∞]; T) by φ(x) := tanh(πx) + i cosh(πx)−1 for all x ∈ R.

Lemma 2.1. One has U χ(−∞,0)(D)U ∗ = Φ(A+), where

Φ(A+) := 1
2

(
1 −φ(A+)

−φ(A+) 1

)
.

Proof. The usual Hilbert transform H on R satisfies sgn(D) = iH. Thus

χ(−∞,0)(D) = 1
2

(
1 − sgn(D)

)
= 1

2 (1 − iH). (2.2)

Using the expression for iH in terms of the generator of dilations in H given in [10, Lemma 3], one gets

U iHU ∗ =
(

0 tanh(πA+)−i cosh(πA+)−1

tanh(πA+)+i cosh(πA+)−1 0

)
. (2.3)

The claim follows then from (2.2) and (2.3).

We now recall some results on the scattering matrix.

Lemma 2.2. Let u satisfy Assumption 1.1. Then the map S belongs to C([−∞,∞]; T) and satisfies S(±∞) =
1.

Proof. The continuity of S follows from [1, Thm. 1.(i)]. The asymptotic equalities S(±∞) = 1 follow from the

formula S(x)−1 = −2πi|u(x)|2[1−I+(x)]−1 together with [1, Lemma 1.(a)] and the fact that lim|x|→∞ |u(x)|2 =
0.

The last lemma deals with the remainder term K of Formula (1.1).

Lemma 2.3. Let u satisfy Assumption 1.1. Then the operator [u(X), χ(−∞,0)(D)]u(X)[1− I+(X)]−1, defined

on D+, extends to a compact operator in H.

Proof. (i) Define for all x ∈ R the function ψ(x) := u(x)[1 − I+(x)]−1. We know that u is bounded

and that lim|x|→∞ u(x) = 0. We also know from [1, Lemma 1.(a)] that I+ is Hölder continuous and that

lim|x|→∞ I+(x) = 0. So, outside any neighbourhood of the finite set of points where I+ equals 1, the function

ψ is bounded. Furthermore, Assumption 1.1 and [1, Lemma 1.(c)], imply that ψ is locally square integrable (see

also [8, p. 2423]). Therefore, ψ can be written as ψ = ψ∞ + ψ2, with ψ∞ ∈ L
∞(R) and ψ2 ∈ L

2(R) with

support in a small neighbourhood of the points where I+ equals 1.
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We now show the compacity of the operators [u(X), χ(−∞,0)(D)]ψ∞(X) and [u(X), χ(−∞,0)(D)]ψ2(X).
(ii) Choose a function ϕ1 ∈ C∞(R) and a function ϕ2 ∈ L

∞(R) with compact support such that ϕ1+ϕ2 =
χ(−∞,0). Then [u(X), ϕ1(D)] is compact due to [3, Thm. C], and [u(X), ϕ2(D)] is Hilbert-Schmidt due to [11,

Thm. 4.1]. So

[u(X), χ(−∞,0)(D)]ψ∞(X) = [u(X), ϕ1(D)]ψ∞(X) + [u(X), ϕ2(D)]ψ∞(X)

is a compact operator.

(iii) For each f ∈ H and almost every x ∈ R, define the operator

(K0f)(x) := i
2π

∫

R

dy
u(x) − u(y)

y − x
ψ2(y)f(y).

From the Assumption 1.1 we know that

|u(y + x) − u(y)| ≤ Const. |x|α′

, α′ > 1/2

for each y ∈ supp(ψ2) and each x ∈ R with |x| small enough. In particular, there exists δ > 0 such that

4π2

∫

R2

dxdy

∣∣∣∣
i

2π

u(x) − u(y)

y − x
ψ2(y)

∣∣∣∣
2

=

∫

R

dy

∫

R

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2

=

∫

R

dy

∫

R\[−δ,δ]

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2 +

∫

R

dy

∫ δ

−δ

dx
|u(y + x) − u(y)|2

x2
|ψ2(y)|2

≤
∫

R

dy

∫

R\[−δ,δ]

dx
4‖u‖2

∞
x2

|ψ2(y)|2 + Const.

∫

R

dy

∫ δ

−δ

dx |x|2(α′−1) |ψ2(y)|2

< ∞.

Thus, K0 is a Hilbert-Schmidt operator. Furthermore, we have for f ∈ D+ and almost every x ∈ R

{
[u(X), χ(−∞,0)(D)]ψ2(X)f

}
(x) = − i

2

{
[u(X), H]ψ2(X)f

}
(x) = − i

2π

∫

R

dy
u(x) − u(y)

x − y
ψ2(y)f(y)

= (K0f)(x).

Therefore, the operator [u(X), χ(−∞,0)(D)]ψ2(X) extends to an Hilbert-Schmidt operator.

Proof of Theorem 1.2. The operator K extends to a compact operator due to Lemma 2.3. So Equation (2.1)

holds on H, and the claim follows from Lemma 2.1.

Remark 2.4. The proof of Corollary 1.3 relies on the fact that the range of the wave operators is the ortho-

complement of the subspace spanned by the eigenvectors of Hu. Since the wave operators are complete, such a

property holds if and only if Hu has no singularly continuous spectrum. Now, by using the characterization of

the singular spectrum recalled in [5, p. 299] and by taking into account Lemmas 1 and 2 of [1] (which are valid

since u satisfies Assumption 1.1), one easily gets that the singular spectrum of Hu only consists of a finite set.

So Assumption 1.1 implies the absence of singularly continuous spectrum for Hu.

3 Algebraic framework

This section is dedicated to the presentation of the algebraic framework leading to Corollary 1.3. Since a similar

construction already appears in [10] for the proof of Levinson’s theorem in one dimensional potential scattering,

we only sketch the construction and refer to this reference for more details.
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We start by giving the definition of the Mellin transform associated with the generator of dilations A+ in

L
2(R+) (see [9, Sec. 2] for a general presentation when the operator acts in L

2(Rn)). Let V : L
2(R+) → L

2(R)
be defined by (V f)(x) := ex/2 f(ex) for x ∈ R, and remark that V is a unitary map with adjoint V ∗ given

by (V ∗g)(x) = x−1/2g(ln x) for x ∈ R+. Then, the Mellin transform M : L
2(R+) → L

2(R) is defined

by M := FV . Its main property is that it diagonalizes the generator of dilations, namely, MA+M ∗ = X .

Formally, one also has M ln(X+)M ∗ = −D.

Let us now recall from Remark 2.4 that under the Assumption 1.1 the wave operators Ω± are isometries

with range projection 1 − Pp, where Pp is the projection onto the subspace spanned by the finite number N of

eigenvectors of Hu. In particular, Ω− is a Fredholm operator with index(Ω−) = −Tr(Pp) = −N . Furthermore,

we recall that any Fredholm operator F in H is invertible modulo a compact operator, that is, its image q(F ) in

the Calkin algebra B(H)/K(H) is invertible.

Now, assume that Ω− belongs to a norm-closed subalgebra E of B(H) containing K(H). Moreover, assume

that E/K(H) is isomorphic to C
(
S; M2(C)

)
, the algebra of continuous functions over the circle with values in

the 2 × 2 matrices. Then, viewing q(Ω−) as such a function, we can take pointwise its determinant to obtain a

non-vanishing function over the circle. The winding number of that latter function can be related to the index of

Ω−; this is essentially the content of Corollary 1.3.

The choice of E is suggested by the formula obtained in Theorem 1.2. Indeed, we consider the closure E
in B(H ) of the algebra generated by elements of the form ϕ(A+)ψ(X+), where ϕ is a continuous function

on R with values in M2(C) which converges at ±∞, and ψ is a continuous function on R+ with values in

M2(C) which converges at 0 and at +∞. Stated differently, ϕ ∈ C
(
R;M2(C)

)
with R = [−∞,∞], and

ψ ∈ C
(
R+; M2(C)

)
with R+ = [0,∞]. Let J be the norm closed algebra generated by ϕ(A+)ψ(X+) with

functions ϕ and ψ for which the above limits vanish. Then, J is an ideal in E , and the same algebras are

obtained if ψ(X+) is replaced by η(ln(X+)) with η ∈ C
(
R; M2(C)

)
or η ∈ C0

(
R; M2(C)

)
, respectively.

These algebras have already been studied in [7] in a different context. The authors constructed them in

terms of the operators X and D on L
2(R, E), with E an auxiliary Hilbert space, possibly of infinite dimension.

In that situation, ϕ and η are norm continuous functions on R with values in K(E). The isomorphism between

our algebras and the algebras introduced in [7, Sec. 3.5], with E = C
2, is given by the Mellin transform M ,

or more precisely by M ⊗ 1, where 1 is identity operator in M2(C). For that reason, we shall freely use the

results obtained in that reference, and refer to it for the proofs. For instance, it is proved that J = K(H ), and

an explicit description of the quotient E /J is given, which we specify now in our context.

To describe the quotient E /J , we consider the square ¤ := R+ × R, whose boundary ∂¤ is the union

of four parts: ∂¤ ≡ B1 ∪ B2 ∪ B3 ∪ B4, with B1 := {0} × R, B2 := R+ × {∞}, B3 := {∞} × R, and

B4 := R+ × {−∞}. It is proved in [7, Thm. 3.20] that E /J is isomorphic to C
(
∂¤; M2(C)

)
. This algebra

can be seen as the subalgebra of

C
(
R;M2(C)

)
⊕ C

(
R+; M2(C)

)
⊕ C

(
R;M2(C)

)
⊕ C

(
R+; M2(C)

)
(3.1)

given by elements γ ≡ (γ1, γ2, γ3, γ4) which coincide at the corresponding end points, that is, γ1(∞) = γ2(0),
γ2(∞) = γ3(∞), γ3(−∞) = γ4(∞), and γ4(0) = γ1(−∞). Furthermore, for any ϕ ∈ C

(
R;M2(C)

)
and

ψ ∈ C
(
R+; M2(C)

)
, the image of ϕ(A+)ψ(X+) through the quotient map q : E → C

(
∂¤; M2(C)

)
is given

by γ1 = ϕψ(0), γ2 = ϕ(∞)ψ, γ3 = ϕψ(∞) and γ4 = ϕ(−∞)ψ.

From what precedes we deduce that the subalgebra E of B(H), defined by E := U ∗E U , contains the ideal

of compact operators on H and that the quotient E/K(H) is isomorphic to C
(
∂¤;M2(C)

) ∼= C
(
S; M2(C)

)
. We

are thus in the framework defined above, and the for any invertible element γ of C
(
∂¤; M2(C)

)
, the winding

number of its pointwise determinant is a well-defined quantity. So we are ready to give the proof of Corollary

1.3.

Proof of Corollary 1.3. We know from Theorem 1.2 and Lemma 2.2 that U Ω−U ∗ ∈ E , or equivalently that

Ω− ∈ E . Due to Formula (1.1), the element γ belonging to (3.1) and associated with q(Ω−) is given by suitable

restrictions of the function Γ : R+ × R → M2(C), where

Γ(x, y) := 1 + Φ(y)
(

se(x)−1 so(x)
so(x) se(x)−1

)
= 1

2

(
se(x)−φ(y)so(x)+1 so(x)−φ(y)[se(x)−1]
so(x)−φ(y)[se(x)−1] se(x)−φ(y)so(x)+1

)
.
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Namely, γ1 = Γ(0, · ), γ2 = Γ( · ,+∞), γ3 = Γ(+∞, · ), and γ4 = Γ( · ,−∞). The pointwise determinants

of these functions are easily calculated by using the identity φ(±∞) = ±1: one gets det γ1(y) = se(0),
det γ2(x) = s(−x), det γ3(y) = 1 and det γ4(x) = s(x).

The precise relation between the winding number of the map det γ : ∂¤ → T and the index of Ω− has been

described in [10, Prop. 7]. However, the algebra corresponding to E in that reference was defined in terms of

the operators A+ and B+ = 1
2 ln

(
(D2)+

)
which satisfy the relation [iA+, B+] = −1. In our case, the algebra

E has been constructed with the operators A+ and ln(X+) which satisfy the relation [iA+, ln(X+)] = 1.

Therefore, in order to apply [10, Prop. 7] in our setting, one previously needs to apply the automorphism of

C
(
R; M2(C)

)
defined by η̃(x) := η(−x) for all x ∈ R, or equivalently the automorphism of C

(
R+; M2(C)

)

defined by ψ̃(x) := ψ(x−1) for all x ∈ R+. Therefore the pointwise determinants of the function γ̃j associated

with q(Ω−) are det γ̃1(y) = 1, det γ̃2(x) = s(−x−1), det γ̃3(y) = se(0) and det γ̃4(x) = s(x−1).
Now, [10, Prop. 7] reads ω(det γ̃) = index(Ω−) = −N , where N is the number of eigenvalues of Hu.

The convention used in that reference for the calculation of the winding number implies that the contribution of

x 7→ det γ̃2(x) is from x = 0 to x = +∞ and the contribution of x 7→ det γ̃4(x) is from x = +∞ to x = 0.

This corresponds to the calculation of the winding number of x 7→ det
(
S(x)

)
, from x = −∞ to x = +∞.

Since the contributions of det γ̃1 and det γ̃3 are null because these terms are constant, the claim is proved.
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