
HAL Id: hal-00363348
https://hal.science/hal-00363348v1

Preprint submitted on 23 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yet Another Deep Embedding of B:Extending de Bruijn
Notations

Eric Jaeger, Thérèse Hardin

To cite this version:
Eric Jaeger, Thérèse Hardin. Yet Another Deep Embedding of B:Extending de Bruijn Notations.
2009. �hal-00363348�

https://hal.science/hal-00363348v1
https://hal.archives-ouvertes.fr

Yet Another Deep Embedding of B :

Extending de Bruijn Notations

Éric Jaeger12 and Thérèse Hardin1

1 LIP6, UPMC, 4 place Jussieu, 75252 Paris Cedex 05, France
2 DCSSI, 51 boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France

Abstract. We present BiCoq3, a deep embedding of the B system in
Coq, focusing on the technical aspects of the development. The main
subjects discussed are related to the representation of sets and maps,
the use of induction principles, and the introduction of a new de Bruijn

notation providing solutions to various problems related to the mecha-
nisation of languages and logics.

Key words: formal methods, deep embedding, de Bruijn notation

Embedding a language or a logic is now a well-established practice in the
academic community, to answer various types of concerns, e.g. normalisation of
terms and influence of reduction strategies for a programming language or con-
sistency for a logic. It indeed supports such meta-theoretical analyses as well as
comparing and promoting interesting concepts and features of other languages,
or developing mechanically checked tools to deal with a language.

But a lot of difficulties arise that have to be addressed. First of all, an im-
portant design choice has to be made between shallow and deep approaches,
consistently with the objectives of the embedding. Justifying the validity of an
embedding – its correctness and completeness – can also be difficult. Finally, a
lot of technical details have to be considered e.g. to manage variables.

We address these questions through the presentation of BiCoq and BiCoq3,
two versions of a deep embedding of the B logic in the Coq system. The main
objective for these embeddings is to evaluate the correctness of the B method
itself, in the context of security developments; other objectives include the de-
velopment of proven tools for the B and the derivation of new results about the
B logic. Yet we focus in this paper on the technical aspects of these embed-
dings, and explain the need for a full redevelopment between the two versions
by describing painfully learned lessons. The presentation includes the definition
of an extended de Bruijn notation with interesting potentialities to solve some
frequently encountered problems related to the mechanisation of languages.

This paper is divided into 6 sections. Sections 1-3 briefly introduce Coq,
the notion of embedding and B. Section 4 presents de Bruijn notations. The
technical aspect of the development of BiCoq and BiCoq3 are described in Sec.
5, considering in particular de Bruijn context management, induction principles,
techniques to implement maps and new results obtained through an extension

of the de Bruijn notation using namespaces. Section 6 concludes and identifies
further activities.

1 About Coq

Coq [1] is a proof assistant based on a type theory. It offers a higher-order
logical framework that allows for the construction and verification of proofs,
as well as the development and analysis of functional programs in a ML-like
language with pattern-matching. It is possible in Coq to define values and types,
including dependent types (i.e. types that explicitly depend on values); types
of sort Set represent sets of computational values, while types of sort Prop

represent logical propositions. When defining an inductive type – which is a least
fixpoint – associated structural induction principles are automatically generated.

For the intent of this paper, it is sufficient to see Coq as allowing for the
manipulation of inductive sets of terms and inductive logical properties. Let’s
consider the following standard example:

Inductive N :Set :=0:N | S :N→N

Inductive even:N→Prop := ev0 : even 0 | ev2 :∀(n :N), even n→even S(S n)

The first line defines a type N which is the smallest set of terms stable by
application of the constructors 0 and S. N is exactly made of the terms 0 and
S(. . . S(0) . . .) for any finite iteration; being well-founded, structural induction
on N is possible. The second line defines a family of logical types : even 0 is a
type inhabited by the term ev0, even 2 is an other type inhabited by (ev2 0 ev0),
and even 1 is an empty type. The standard interpretation is that ev0 is a proof
of the proposition even 0 and that there is no proof of even 1, that is we have
¬(even 1). The intuitive view of our example is that N is a set of terms, and
even a predicate marking some of them, defining a subset of N.

2 Deep and Shallow Embeddings

Embedding in a proof assistant consists in mechanizing a guest logic by encod-
ing its syntax and semantic into a host logic ([2,3,4]). In a shallow embedding,
the encoding is partially based on a direct translation of the guest logic into
constructs of the host logic; in terms of programming languages, a shallow em-
bedding can intuitively be seen as the development of a translation function
between two langages, that is a compiler. On the contrary, a deep embedding is
better intuitively described as the development of a virtual machine: the syntax
and the semantic of the guest logic are formalised as datatypes of the host logic.
Taking the view presented in Sec. 1, the deep embedding of a logic defines the
set of all sequents – the terms – and the subset of provable sequents (the in-
ference rules of the guest logic being encoded as constructors of the provability
predicate).

Both approaches have pros and cons. The one we are concerned with, and that
has led us to choose the deep embedding approach, is accuracy: a deep embedding

allows for an exact representation of the syntax and semantic of the guest logic,
whereas a shallow embedding appears to enforce a form of interpretation whose
validity can be difficult to justify.

3 About B

3.1 A Short Description of B

B [5] is a popular formal method that allows for the derivation of correct pro-
grams from specifications. Several industrial implementations are available (e.g.
AtelierB, B Toolkit), and it is widely used by both the academic world and
the industry for projects where safety or security is mandatory.

The B method defines a first-order predicate logic completed with elements
of set theory, a Generalised Substitution Language (GSL) and a methodology of
development based on the explicit concept of refinement.

The logic is used to express preconditions, invariants, etc. and to conduct
proofs. This logic is not typed; a kind of well-formedness checking is described
but is not integrated within the logic.

The GSL allows for the definitions of a form of Hoare substitutions [6,7,8]
that can be abstract, declarative and non-deterministic (i.e. specifications) as
well as concrete, imperative and deterministic (i.e. programs): the substitution
ANY x WHERE x2 ≤n<(x+1)2 for example specifies x←√n.

Regarding the methodology, B developments are made of machines (modules
combining a state in the form of variables, invariants and operations described
as generalised substitutions to read or alter the state). Intuitively a machine MC

refines a machine MA if any observable behaviour of MC is a possible behaviour
of MA – this encompasses the notion of correctness. Refinement being transitive,
it is possible to go progressively from the specification to the implementation;
by discharging at each step the proof obligations of the B method, a program
can be proven to be a correct and complete implementation of a specification.

Note that the language represented by the GSL is imperative; at the last
stage of refinement the machines are written using only the B0 sublanguage of
the GSL and are easily translated e.g. into C programs.

3.2 Embedding B : Related Works and Motivations

Shallow embeddings of B in higher-order logics have been proposed in several
papers (cf. [9,10]) formalising the GSL in PVS, Coq or Isabelle/HOL. Such
embeddings are not dealing with the B logic, and by using directly the host logic
to express B notions, they introduce a form of interpretation – which is fully
acceptable for example to promote the B methodology in other formal methods.

The objectives of BiCoq and BiCoq3 are very different, the main concern
being related to validation. Indeed, the B method is used for the development
of safe or secure systems (e.g. [11,12]), and it is therefore important to know
what is the level of confidence that one can grant to a system proven using this

method, and how to improve this level of confidence. The other objectives are
the development of formally checked tools for B developments, illustrated by
a proven prover (not discussed further in this paper but detailed in [13]) and
the derivation of new results about the B logic. Regarding the latter, it is again
important to be able to justify that such results are not a consequence of the
embedding itself, e.g. using an ‘alien’ trick provided by Coq, and are indeed
valid for use in a standard B development.

With the objectives of accuracy and independancy, the translation for a shal-
low embedding would be difficult to define but also to defend against a skeptical
independent evaluator. Consider B functions that are relations, possibly partial
and undecidable: translating accurately this concept in Coq is a tricky exercise.
A deep embedding makes the justification easier, and has also the advantage to
clearly separate the host and the guest logics: excluded middle, provable in the
B logic as well as in BiCoq or BiCoq3, is not promoted to the Coq logic. Such a
deep embedding of the B logic in Coq is described in [14], to validate the base

rules used by the prover of AtelierB – yet not checking standard B results, and
without implementation goal.

4 De Bruijn Notations

There are numerous problems to deal with when mechanising a language (cf.
[15,16]), one of them being related to the representation of bound variables.
Indeed, two terms differing only by the names of their bound variables (α-
renaming), such as λx · λy · x − y and λz · λx · z − x, should be considered
as equal but are not when using a notation with names (denoted λV in this
paper); one may also wonder how to compute the reduction of the substitution
[x :=E]λx·T .

De Bruijn notations (cf. [17,18] or more recently [19]) address these problems
by encoding bound variables as natural values pointing to a binder; they define
an α-quotiented representation, i.e. terms equivalent modulo α-renaming are
indeed equal. They also provide a clear semantic to deal with capture phenomena
applicable between others when considering substitutions.

4.1 De Bruijn Indexes: The λdBi Notation

The most known de Bruijn notation uses indexes, that are relative pointers
counting binders from the variables (the leaves in the tree representing the term).
The value 0 represents the variable bound by the closest parent binder, as illus-
trated hereafter (de Bruijn binders are underlined for the sake of clarity):

λV notation λx·λy ·(X0+x−y)
λdBi notation λλ(2+1−0)

We have chosen here to use the pure nameless notation: the free variable X0 is
represented by the value 2, assuming it is the first free variable in the context
(left implicit here). Such a pointer is said to be dangling as its value exceeds

the number of parent binders. Another possible alternative is to use the locally

nameless notation; in this case, free variables are represented by names (and are
syntactically different of bound variables). We will not consider further this ap-
proach that requires to give a specific semantic to dangling pointers or to manage
side conditions enforcing terms to be ground (without dangling pointers).

4.2 De Bruijn Levels: The λdBl Notation

Another option when defining a de Bruijn representation is to use levels, dis-
cussed e.g. in [20]. Levels are absolute pointers counting binders from the root
of the term; the value 0 then represents the variable bound by the farest parent
binder, as illustrated here:

λV notation λx·λy ·(X0+x−y)
λdBl notation λλ(2+0−1)

Index and level notations only differ in the representation of bound variables.
Levels ensure a unique representation in a term of a bound variable, whereas
with indexes this representation depends on the variable position; on the other
hand, bound levels need frequent renumbering during abstraction or substitu-
tion whereas bound indexes are never modified. Other pros and cons of these
approaches will be considered later in the paper to explain BiCoq3 design choices.

4.3 Managing de Bruijn Indexes in λ-Calculus

As mentioned, the index representing a given bound variable change with its
λ-height, i.e. the number of parent binders, as illustrated by this example:

λV notation λx·(x+λy ·(x−y)X0)
λdBi notation λ(0+λ(1−0)2)

This makes manipulating λdBi terms by hand rather awkward. It is therefore
customary to provide standard operators to support index management, either
technical such as lifting or user-relevant such as substitution. The former is used
by the latter to adapt terms when crossing a binder, as illustrated here (where
T denotes the set of λdBi terms, i an index in I= N, ↑ the lifting and [i :=E]T
the replacement of all occurences of the free variable i in T by E):

↑d:T→T :=
| λT ′ ⇒ λ(↑d+1 T ′)
| i′ ⇒ if d≤ i′ then i′+1 else i′

| . . .

[i :=E] :T→T :=
| λT ′ ⇒ λ([x+1:=↑E]T ′)
| i′ ⇒ if i= i′ then E else i′

| . . .

Indeed, crossing a binder modifies the λ-height, so the index i has to be incre-
mented to represent the same variable, and similarly dangling indexes of E have
to be incremented to maintain their semantic as well as to avoid their capture –
this is the role of lifting. To identify dangling indexes, lifting is parameterised by
the contextual information d recording the current λ-height, left implicit when
d=0 (other values of d resulting only from recursive calls for bound subterms).

This toolbox for λ-calculus is completed with operators defining a user-
friendly representation, as in [18]. The idea is to emulate the λV abstraction,
a not so simple transformation in λdBi as illustrated here (capturing X1):

λV notation X0+X1+X2 → λx·(X0+x+X2)
λdBi notation 0+1+2 → λ(1+0+3)

To this end, we define the abstraction function λ(i·T) :=λ(Abstr0 i T) with:

Abstrd(i :I) :T→T :=
| λT ′ ⇒ λ(Abstrd+1 (i+1) T ′)

| i′⇒

8

<

:

i′ if i′ < d

d if i′ ≥ d and i′ = i

i′+1 if i′ ≥ d and i′ 6= i

| . . .

Here λ(i·T) is not the λV abstraction but a function computing the correct λdBi

term, defining a form of λV representation (i being an index and T a λdBi term).

5 A Detailed presentation of BiCoq3

We now discuss the design choices made for developing BiCoq3, also addressing
the technical alternatives and their consequences. From this point, illustrations
and codes will describe the B logic as encoded in Coq, instead of the λ-calculus
considered up to now; dotted notations will represent B logical operators in Coq

(e.g. ¬ is the Coq negation and ¬̇ the embedded B negation).

5.1 Embedding the Syntax

Using de Bruijn indexes. We have chosen for BiCoq and BiCoq3 to use a
de Bruijn notation, and have investigated both indexes and levels: two full ver-
sions of BiCoq3 have been developed, yet without reaching a general conclusion.
Indeed for most of our needs, levels are more efficient; they are easier to deal
with, theorems tend to be more generic and proofs simpler. Consider as a typical
example the lifting functions for indexes (left code) and levels (right code):

↑d:T→T :=
| λT ′ ⇒ λ(↑d+1 T ′)
| i′ ⇒ if d≤ i′ then i′+1 else i′

| . . .

↑L:T→T :=
| λT ′ ⇒ λ(↑L T ′)
| i′⇒ i′+1
| . . .

As mentioned in Sub. 4.3, ↑d requires a contextual parameter to identify dangling
indexes, bound indexes being never modified. On the contrary its λdBl equivalent
↑L increments all levels, so this parameter is not required and theorems about
lifting are not specialised according to its value.

Our final (and late) choice is however to use de Bruijn indexes. Indeed com-
plex results in our developement require as a proof tool the definition of paral-

lel λ-substitutions providing an alternative encoding of standard operations on

terms (such as lifting). This is feasible with λdBi, those operations being similar
to substitutions in never modifying bound indexes, but not in λdBl. We there-
fore consider that whereas de Bruijn levels are simpler to use, there is a clear
advantage for de Bruijn indexes when dealing with advanced techniques related
e.g. to term transformations under binders detailed later in this paper.

Representing B terms. Given a set of identifiers I, the B logic syntax defines
predicates P , expressions E, sets S and variables V as follows:

P := P∧P | P⇒P | ¬P | ∀ V · P | E=E | E∈S | [V :=E]P
E := V | S | E 7→E | ⇓ S | [V :=E]E
S := BIG | ⇑ S | S×S | {V |P}
V := I | V, V

In this syntax, [V :=E]T represents the (elementary) substitution, V1, V2 a list
of variables, E1 7→ E2 a pair of expressions, ⇓ and ⇑ the choice and powerset

operators, and BIG a constant set. Other connectors are standard, and new
connectors are defined from the previous ones, P⇔Q as P⇒Q ∧Q⇒P , P∨Q as
¬P⇒Q, ∃ V ·P as ¬∀ V ·¬P , S⊆T as S∈ ⇑T , etc.

The B syntax is formalised in Coq by two mutually inductive types with the
following constructors3, I being the set of indexes (i.e. N):

P := P∧̇P | P⇒̇P | ¬̇P | ∀P | E=̇E | E∈̇E

E := χ̇I | E ˙7→E | ⇓̇E | Ω̇ | ⇑̇E | E×̇E | { E|P }

P represents B predicates and E merges B expressions E, sets S and variables V
to enrich the B syntax that is too strict (e.g. E∈⇓(⇑S) is syntactically invalid
in standard B). In the rest of this paper T=P∪E denotes the type of B terms.

Ω̇ represents the constant set BIG, χ̇ unary de Bruijn variables (using χ̇i to
denote the application of constructor χ̇ to i :I). The B binders ∀V ·P and {V |P}
are respectively represented by the constructors ∀ and { | }, that are raw de

Bruijn binders (we therefore use the underlined notation, the dotted notation

∀̇ and {̇|̇}̇ being reserved for a user-friendly notation, cf. Sub. 4.3). Using de

Bruijn indexes, they have no attached names and only bind a single variable –
binding over list of variables being eliminated without loss of expressivity4. The
constructor { | } is further modified to keep in the syntax definition only well-
formed terms (cf. Sub. 3.1). Indeed, the well-formedness checking in B requires
comprehension sets to be of the form {x | x∈S ∧ P} with x not free in S. Both

constraints are embedded in our syntax. The comprehension set constructor has
two parameters, the left one being an expression representing S and the right one
a predicate representing P ; the non-freeness condition is ensured by considering

3 This is a slightly simplified presentation of BiCoq3 focusing on relevant aspects.
4 Remark by the way that the notation {V1 , V2 | V1 , V2 ∈ S1×S2∧P} used in [5] is

an example of syntactically invalid term confusing the expression x 7→ y with the
variable x,y, whose ‘correct’ version {V1,V2 |V1 7→V2∈S1×S2∧P} is not well-formed.

this constructor as a binder only for its right parameter5. This bridges the gap
between syntactically correct terms and well-formed ones.

Note finally that we do not represent B syntactical constructs [V := E]T
(elementary substitutions); this will be justified later in this paper.

5.2 De Bruijn Management: Improving Context Awareness

We ease the use of the de Bruijn notations by providing functions, as in Sub.
4.3. First of all, lifting is adapted to our constructors – noting that as { | } does
not bind its left parameter, the left λ-height is not incremented:

↑d:T→T := ∀P ′ ⇒ ∀(↑d+1 P ′)

| { E′ |P ′ } ⇒ { ↑d E′ |↑d+1 P ′ }

| χ̇i′ ⇒ χ̇(if d≤ i′ then i′+1 else i′)
| . . . ⇒ . . . (straightforward recursion)

We also define abstraction functions, but with additional subtle changes:

Abstrd(i :I) :T→T := ∀P ′ ⇒ ∀(Abstrd+1 (↑d i) P ′)

| { E′ |P ′ } ⇒ { Abstrd i E′ | Abstrd+1 (↑d i) P ′ }

| χ̇i′ ⇒ χ̇(if i= i′ then d else ↑d i)
| . . . ⇒ . . . (straightforward recursion)

∀̇ i·P :=∀(Abstr0 i P) ∃̇ i·P := ¬̇(∀̇i·¬̇P) {̇i :E |̇ P }̇ :={ E | Abstr0 i P }

Compared with the abstraction function defined in Sub. 4.3, it is important to
note the difference w.r.t. the λ-height parameter d. We do not increment indexes
anymore but we lift them; furthermore when we lift an expression, we ensure that
we use d instead of the default value 0. This does not change the result: applying
n times the function ↑0 yields exactly the same result as applying successively
↑0, ↑1, . . . , ↑n−1 – benefits are not computational but logical. Indeed we have
(painfully) discovered that a stricter discipline in managing contexts is a very
good practice, easing the expression of theorems as well as their proofs. In fact,
this discipline leads to generalise the λ-height parameter to functions that don’t

need it. For example, deciding if a variable appears free in a term does not require
this parameter (left code), but proofs are easier by adding it and using it to lift
the variable parameter (right code):

Free(i :I) :T→B :=
| ∀P ′ ⇒ Free (i+1) P ′

| { E′ |P ′ }⇒ Free i E′ ∨ Free (i+1) P ′

| χ̇i′ ⇒ i′ = i

| . . . ⇒ . . . (straightforward recursion)

Freed(i :I) :T→B :=
| ∀P ′ ⇒ Freed+1 (↑d i) P ′

| { E′ |P ′ }⇒ Freed i E′ ∨ Freed+1 (↑d i) P ′

| χ̇i′ ⇒ i′ = i

| . . . ⇒ . . . (straightforward recursion)

Generalising the λ-height parameter and using it ensures an explicit management
of the context, a form of weak typing useful for complex proofs.

5 Similarly consider the λx :T ·E notation in simply-typed λ-calculus; the λ captures
x in E but not in T , binding only one of its parameters.

We also define additional functions (not described in Sub. 4.3) to deal with
the B syntactical constructs [V :=E]T not represented in our syntax. It is our
view that these constructs are introduced early in B only for expressing inference
rules such as the ∀-elimination (Γ ⊢ ∀V ·P → Γ ⊢ [V := E]P), that is a form of
application followed by β-reduction as in standard λ-calculus; there is no reason
to enforce this operation to be the B elementary substitution defined by the
GSL... Neither do we represent the application in our syntax, as in standard
formalisations of λ-calculus: representing application (and β-reduction either as
an external or internal operation e.g. using the explicit substitution approach
[21,22]) is interesting for example to study normalisation strategies, but this is
not relevant in our case. We encode directly such elimination rules, i.e. appli-
cation followed by β-reduction, as an external operation, through application

functions in Coq denoted T@∀E and T@{}E, one per binder6:

Appd(E :E) :T→T := ∀P ′ ⇒ ∀(Appd+1 (↑d E) P ′)

| { E′ |P ′ } ⇒ { Appd E E′ | Appd+1 (↑d E) P ′ }

| χ̇i′ ⇒

8

<

:

χ̇i′−1 if d < i′

E if d= i′

χ̇i′ if d > i′

| . . . ⇒ . . . (straightforward recursion)

T@∀E :=match T with ∀ T ′ ⇒ App0 E T ′

T@{}E :=match T with {E′ |T ′ }⇒ E∈̇E′∧̇App0 E T ′

The ∀-elimination can then be written Γ ⊢∀V ·P→Γ ⊢(∀V ·P)@∀E. As abstrac-
tion, application and substitution functions are such that the following properties
hold (the left one being valid only after generalising the λ-height parameter to
the substitution function), our rule is equivalent to the standard one:

[i :=E]dT =Appd E (Abstrd i T) or more simply [i :=E]T = (∀̇i·P)@∀E

The point is that we do not consider substitution as primitive. The standard
definition of β-reduction λx ·T@E→β [x := E]T describes the semantic of ap-
plication using substitution; in BiCoq3 on the contrary application is directly
defined and the substitution is a composite operation. Note also that we can
write Appd χ̇i (Abstrd i T) = T , or more simply (∀̇i ·P)@∀χ̇i = T , to emphasise
that application is the reverse of abstraction7.

5.3 Embedding the Inference Rules

Having formalised the B syntax as a datatype, the next step is to encode the B

inference rules as the constructors of an inductive provability predicate defining
a dependent type. We denote Γ ⊢̇ P the Coq type of all B proofs of P under
the assumptions Γ ; if it is inhabited then P is provable assuming Γ . Note that
¬(Γ ⊢̇ P), i.e. ‘Γ ⊢̇ P is an empty type’, is different from Γ ⊢̇ ¬̇P .

6 These functions only apply to terms starting with the appropriate binder; the par-
tiality is encoded in Coq by an additonal proof parameter left implicit here.

7 This result commutes, Abstrd i (Appd χ̇i T)=T provided that Freed i ∀T =⊥.

Thanks to the use of the user-friendly functions described in Subs. 4.3 and
5.2, the constructors look very much like the standard B rules8. The translation is
straightforward, merely a syntactical one, limiting the risk of error, as illustrated
here (where V \Γ means that V does not appear free in Γ):

Γ ⊢ P Γ ⊢ Q

Γ ⊢ P ∧ Q
is encoded by Γ ⊢̇ P →Γ ⊢̇ Q→Γ ⊢̇ P ∧̇Q

Γ ⊢ P V \Γ

Γ ⊢ ∀ V · P
iṙΓ →Γ ⊢̇ P →Γ ⊢̇ ∀̇ i·P

The main divergence is a correction of the definition of the cartesian product.
Indeed, beyond minor syntactical problems, BiCoq has also pointed out B logical
oversights; analyses have shown that the following results, presented in [5] as
theorems, are in fact not provable with the standard B inference rules9:

⊢ E17→F1=E27→F2 ⇒ E1 =E2 ∧ F1 =F2

⊢ S1⊆S2 ∧ T1⊆T2 ⇒ S1×T1⊆S2×T2

To our knowledge, this was not known by the B community – whereas imple-
mentations of the B method correct this flaw, consciously or not. The flawed rule
⊢(E7→F)∈(S×T)⇔ (E∈S)∧(F∈T) has therefore been replaced in BiCoq by:

Γ ⊢̇ E1 ˙7→E2=̇E3 ˙7→E4→Γ ⊢̇ E1=̇E3∧̇ ⊢̇ E2=̇E4

i1, i2ṙE∈̇(E1×̇E2)→ i1 6= i2→Γ ⊢̇∃̇ i1 ·i1∈̇E1∧̇∃̇ i2 ·i2∈̇E2∧̇E=̇i1 ˙7→i2⇔̇E∈̇(E1×̇E2)

5.4 A Generic Induction Principle

The definition of an inductive datatype in Coq yields automatically the associ-
ated structural induction principle. This principle is relevant to prove structural
properties such as those about freeness, but not to prove semantical results.

Indeed, it identifies T as the predecessor of ∀T , i.e. that proving P (T) by
structural induction requires proving a subgoal of the form P (T ′)⇒P (∀T ′). But
using de Bruijn indexes this approach is not appropriate:

de Bruijn indexes ∃(1∗0>2) ∀(∃(1∗0>2))
Natural notation ∃ z ·X0∗z>X1 ∀ y ·∃ z ·y∗z>X0

The two de Bruijn terms are related structurally, but not semantically because
of the unmonitored shift of the context modifying free variables representation.

To address this problem and some others, numerous induction principles
were derived in BiCoq : (weak) structural induction, semantical induction, strong
induction based on a measure for a given type or for mutually recursive types.
And this was not yet sufficient for proof induction because the predecessors
(sub-proofs) of a step in a proof have different (dependent) types. This was
not considered as a proper approach, because of the number of principles to be
expressed and proved as well as the absence of genericity of the proof method.

8 We also benefit from the Notation command provided by Coq to use UTF-8 sym-
bols instead of constructors or functions names.

9 Further details are discussed in [13].

For BiCoq3 a general approach has been designed. It combines a single in-
duction principle based on a measure in N (something rather intuitive) with a
strategy for conducting the proof defined through a inductive relation (so-called
accessibility relation). The induction principle is generic, as D is any family of
types (indexed by T), M any measure and P any predicate:

∀ (T :Type)(D :T →Type)(M :∀ (t :T), D t→N)(P :∀ (t :T), D t→Prop),
(∀ (t :T)(d :D t), (∀ (t′ :T)(d′ :D t′), M t′ <M t→ P t′)→P t)→∀ (t :T), P t

It does not describe what are the ‘smaller’ terms to consider – this results of
the selected accessibility relation. Choosing this relation is choosing the strategy,
the cases in a proof by cases, the predecessors for the entity you are considering.
Intuitively, this defines paths to reach terms in D, and provided the measure is
compatible with the relation (i.e. predecessors are smaller) it allows to derive
proofs along these paths. The accessibility relation can be surjective or not in
D; in the later case it defines a strict subset of accessible terms and can be
used to prove that any term of this subset satisfies a property. For example a
semantically relevant strategy can be defined as follows:

Inductive ΣSem :T→Type :=
| Σχ :∀ (i :I), ΣSem χ̇i

| Σ∀ :∀ (P :P)(i :I), ΣSem P →ΣSem ∀̇ i·P

| Σ{} :∀ (P :P)(E :E)(i :I), ΣSem P →ΣSem E→ΣSem {̇i :E |̇ P }̇
| . . . (straightforward induction)

This relation is surjective, i.e. ∀ (T : T), ΣSem(T). To prove a property Q for
any term T , it is possible to apply the generic induction principle (with M the
standard depth function on B terms) and then to use this relation to make a
proof by cases using inversion of the Coq term ΣSem(T). The generated subgoals

are then semantically relevant, e.g. Q E′→Q P ′→Q {̇i′ :E′ |̇ P ′}̇.

5.5 About Lists, Maps and Abstract Data Types

Various syntactical entities are represented in our embedding, including sequents
and parallel substitutions (used as a technical tool to prove complex results
presented thereafter). In BiCoq these constructs are implemented through lists,
but we have explored other alternatives in BiCoq3.

Proof environments in sequents are finite sets of predicates. In BiCoq3 they
are represented by a specification: signature of functions for membership, free-
ness, etc. with the appropriate properties as axioms. The specification has the
advantage to describe only what we need to know, and permits to use efficient
concrete functions of the target language when there is an implementation ob-
jective10. Yet we do not recommend this approach for a deep embedding, as
the workload is not significantly reduced, whereas there is a risk to introduce
inconsistent axioms.

10 E.g. BiCoq3 specifies the terms equality to use OCaml’s = in the implementation.

Another possibility adopted in BiCoq3 is the use of maps to represent paral-
lel substitutions. They can be described as lists of pairs in I×E provided that
there are never two pairs (i, E) and (i, E′) s.t. E 6= E′, but it is more efficient
to consider them as functions in I→E. In our experience, this approach simpli-
fies the development and the proofs – consider the use of parallel substitutions
to represent lifting: it is not possible to build a generic lift substitution using
finite lists, because any index i that can appear dangling in a term T has to be
modified, whereas a unique (infinite) map can represent lifting for any term. On
the other hand, maps require additional theorems that may be complex to deal
with as I→ E is not well-founded. Yet the main results consider parallel sub-
stitutions applied to a term, for which well-foundedness holds. A more straight-
forward approach, yet to be explored, would be to reintroduce well-foundedness
through scoped maps, that is parallel substitutions represented by elements of
(List I)×(I→E), the list enumerating the relevant indexes.

Maps are therefore efficient tools for deep embeddings, but our recomman-
dation would be to carefully analyse all consequences of using such a design. For
example, they cannot be analysed extensionally – just another way to say that
they are not well-founded. That means in practice e.g. that as we need to be
able to decide whether or not a variable appears free in (one of the predicates
of) a proof environment Γ , we cannot encode Γ as a function in P→B. Indeed,
being unable to identify a priori predicates of Γ , testing freeness would require
examining all predicates in the (infinite) type P.

5.6 Relationships between B and Coq logics

Deep embeddings such as BiCoq and BiCoq3 ensure a clear separation of the host
and the guest logics, allowing e.g. for a study of their relations as illustrated here
with the B operators on the left side and the Coq operators on the right side:

Γ ⊢̇ P1∧̇P2 ⇔ (Γ ⊢̇ P1) ∧ (Γ ⊢̇ P2)

Γ ⊢̇ ∀̇ i·P ⇔ ∀ (E :E), Γ ⊢̇ [i :=E]P

Γ ⊢̇ P1⇒̇P2 ⇒ Γ ⊢̇ P1 ⇒ Γ ⊢̇ P2

Γ ⊢̇ P1∨̇P2 ⇐ (Γ ⊢̇ P1) ∨ (Γ ⊢̇ P2)

Γ ⊢̇ ∃̇ i·P ⇐ ∃ (E :E), Γ ⊢̇ [i :=E]P

Γ ⊢̇ E1=̇E2 ⇐ E1=E2

The interesting results are those that are not equivalences. For example disjunc-
tion (∨ vs ∨̇) is very significant w.r.t. the difference between the classical logic
of B and the constructive logic of Coq. The excluded middle being provable in
B, it is always possible to provide a proof of ⊢̇ P ∨̇¬̇P ; should the disjunction
being directly translated in Coq we would obtain (⊢̇ P) ∨ (⊢̇ ¬̇P) for any P ,
that is a proof that the B logic is complete, which of course is not the case.

Note that these results provide a formal justification for the translation in a
shallow embedding; one may wonder whether it would be possible to automati-
cally derive (or extract) a shallow embedding from a deep embedding, provided
such results.

5.7 New Results and Enriched de Bruijn Indexes

Using Standard Indexes. The B inference rules defined in [5] include a con-
gruence rule: if Γ ⊢E =F and Γ ⊢ [x :=E]P , then Γ ⊢ [x :=F]P . BiCoq generalises
this congruence rule to equivalent predicates (extending the syntax with propo-
sitional variables). These results, however, are limited to the replacement of un-

bound subterms; that is, they are for example not applicable to systematically
simplify Γ ⊢̇ ∀̇ i·(¬̇¬̇P) into Γ ⊢̇ ∀̇ i·P as i may appear free in P .

The substitution operator (left code) indeed mechanically avoid capture of
variables by enforcing lifting when crossing a binder. So BiCoq3 also addresses
a more generic class of congruence rules by defining grafting (right code), which
compared to the standard substitution allows for the capture of variables in the
parameter E by never lifting it:

[i :=E]d :T→T :=
| ∀T ′ ⇒ ∀([↑d i :=↑d E]d+1T

′)
| i′ ⇒ if i′ = i then E else i′

| . . .

[i⊳E]d :T→T :=
| ∀T ′ ⇒ ∀([↑d i⊳E]d+1T

′)
| i′ ⇒ if i′ = i then E else i′

| . . .

Grafting being defined, we have proven (using parallel substitutions) in BiCoq3 the
following congruence results for the replacement of sub-terms:

⊢̇ E1=̇E2

Γ ⊢̇ [i⊳E1]P⇔̇[i⊳E2]P

⊢̇ E1=̇E2

Γ ⊢̇ [i⊳E1]E=̇[i⊳E2]E

These results extend the classical congruence rules to bound subterms – e.g.

they justify why it is always valid to simplify a subterm ¬¬P into P , anywhere
in a term. But they are not generic enough, as the equality E1 = E2 has to
be proven in the empty context. So they cannot for example be used to unfold
a conditional definition such as y 6= 0 ⊢ x/y = max{z ∈ N | y×z ≤ x}. This
limitation is not logical but technical. Preventing lifting when crossing a binder
is necessary to permit captures of variables, but causes a loss of context: free
variables representation is modified without control.

Introducing Namespaces. Several approaches were considered to avoid this
limitation of the congruence results: using names, marking De Bruijn indexes
during grafting, defining grafting as the composition of primitive operations...
to finally develop for BiCoq3 a simpler solution, enriched de Bruijn indexes.

In its most general form, this notation represents free and bound variables
by pairs (n, x), the first parameter n being the namespace and the second one
the index. Binders of the language are themselves parameterised by a namespace
in which they capture variables. Namespaces can be seen as sorts, used to mark
binders and indexes11. This has limited consequences on the complexity of the
code of the various operations on terms, e.g. lifting is as well parameterised by
a namespace and only modifies indexes in this namespace. This representation

11 Sorts for de Bruijn indexes are considered in [25] but for different reasons, each of
the two binders of the defined language using its own space of de Bruijn indexes.

defines a form of names: if there is no binder in a namespace n, a pair (n, x)
always represents a free variable and can be considered as a name, being never

subject to computations but dealt with using only decidable equality.
BiCoq3 applies these principles in a simplified manner: the namespace set N

contains (at least) two values, all the binders acting implicitly in the dedicated
namespace n0, the other namespaces being used for eternally free variables.
Consistently, lifting only modifies pairs of the form (n0, x) in a term, etc. It is
then possible to prove improved congruence results:

Γ ⊢̇ E1=̇E2 Γ ⊥E1=̇E2

Γ ⊢̇ [i⊳E1]P⇔̇[i⊳E2]P

Γ ⊢̇ E1=̇E2 Γ ⊥E1=̇E2

Γ ⊢̇ [i⊳E1]E=̇[i⊳E2]E

The side condition ⊥ requires Γ and E1 =E2 to have no common free variable
in the namespace n0 – the technical difficulty is still there, but is now limited
to a dedicated namespace. Provided we avoid using the namespace n0 for free
variables (through an extended form of α-conversion, changing the name of the
free variables), we got the full expressiveness of our result, e.g. allowing for
the replacement of conditional definitions. In their most general form, these
results allow for β-reduction, unfolding of (conditional) definitions, as well as
the replacement (rewriting) of equivalent subterms under a binder.

Applicability of the New Results. As noted in Sub. 3.2, it is important to
justify that such new results are truly applicable to B and are not artefacts prov-
able only using features of the host logic. We provide the intuitive justification
by the Curry-Howard isomorphim. The interpretation of the congruence results
is that provided a B proof of Γ ⊢ E1 = E2, if Γ ⊥ E1=̇E2 then there always

exists a B proof of Γ ⊢ [i⊳E1]P ⇔ [i⊳E2]P . In fact, the Coq proof is a program
building such a B proof, the ΣSem accessibility relation used in the Coq proof
(cf. Sub. 5.4) being the recursion strategy of this program.

6 Conclusion

Through the presentation of two deep embeddings of the B logic in Coq, namely
BiCoq and BiCoq3, we have discussed techniques to deal with deep embeddings,
or more generally with complex developments in higher-order logic (HOL) frame-
works – e.g. combining a generic induction scheme with ad hoc accessibility rela-
tions or implementing sets with maps rather than lists. One of these techniques
applicable to language mechanisations is to enrich de Bruijn representation.

The first proposed adaptation enforces an explicit and precise management
of the λ-height parameter – to the extent that it is added to operations that do
not strictly require it. This is in fact a form of encoding ensuring a consistent
management of the context: not only are proofs easier to conduct, but in some
cases it also allows for finer definitions and proofs of properties that would not
be valid in a cruder version. Context management is intuitive and don’t require
to use the full arithmetics: the only required operators on indexes are successor,
predecessor and comparison.

The second adaptation introduces namespaces to parameterise binders and
indexes. It is a way to partition variables and to easily restrict scopes. Again, the
required adaptations of the operations are simple and intuitive, but the benefits
are in our case important: beyond obtaining the full power of complex congruence
results, it is a frequent cause for proof simplifications. Namespaces also define an
approach to consider substitution and grafting as a single operation: substitution
is emulated by grafting provided free variables are in never bound namespaces.

We may also note that our design choice is to directly encode application as
an external operation – i.e. a shallow representation of application in our deep
embedding. Together, these adaptations of the de Bruijn representation seem to
define a new form of calculus for languages, of which detailed properties are still
to be carefully studied and compared to other calculi (e.g. [21,22,23,24]). Clearly,
a full version of this calculus easily represents the concept of sorts, provided with
an efficient management of contexts.

Taking the user view, these embeddings also demonstrate that it is possible
to embed a non trivial logic while ensuring accuracy and readability. Their use-
fulness to check the validity of known results is illustrated by the identification
of various oversights – in our view a sufficient justification for this activity, at
least from a security perspective (cf. [26]). The development of proven tools and
the derivation of non trivial theorems that were, in our knowledge, not proven
in B (without even speaking of formally checked) are additional benefits.

Acknowledgements We thank Pr. C. Dubois for its advices.

References

1. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project. (2004)

2. M.J.C. Gordon: Mechanizing programming logics in higher-order logic. In G.M.
Birtwistle, P.A. Subrahmanyam, eds.: Current Trends in Hardware Verification and
Automatic Theorem Proving (Proceedings of the Workshop on Hardware Verifica-
tion), Banff, Canada, Springer-Verlag, Berlin (1988) 387–439

3. Boulton, R.J., Gordon, A., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.:
Experience with embedding hardware description languages in HOL. In Stavridou,
V., Melham, T.F., Boute, R.T., eds.: TPCD. Volume A-10 of IFIP Transactions.,
North-Holland (1992) 129–156

4. Azurat, A., Prasetya, I.: A survey on embedding programming logics in a theorem
prover. Technical Report UU-CS-2002-007, Institute of Information and Comput-
ing Sciences, Utrecht University (2002)

5. Abrial, J.R.: The B-Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press (August 1996)

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10) (1969) 576–580

7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)

8. Hoare, C.A.R.: Programs are predicates. In: FGCS. (1992) 211–218

9. Bodeveix, J.P., Filali, M., Muñoz, C.: A formalization of the B-method in Coq
and PVS. In: Electronic Proceedings of the B-User Group Meeting at the World
Congress on Formal Methods FM 99. (1999) 33–49

10. Chartier, P.: Formalisation of B in Isabelle/HOL. [27] 66–82
11. Behm, P., Desforges, P., Meynadier, J.M.: MÉTÉOR : An industrial success in

formal development. [27] 26
12. Bieber, P.: Formal techniques for an ITSEC-E4 secure gateway. In: ACSAC, IEEE

Computer Society (1996) 236–246
13. Jaeger, É., Dubois, C.: Why would you trust B? [28] 288–302
14. Berkani, K., Dubois, C., Faivre, A., Falampin, J.: Validation des règles de base de

l’Atelier B. Technique et Science Informatiques 23(7) (2004) 855–878
15. Aydemir, B., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P.,

Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized metatheory
for the masses: The POPLmark challenge. In Hurd, J., Melham, T.F., eds.: In-
ternational Conference on Theorem Proving in Higher Order Logics (TPHOLs).
Volume 3603 of Lecture Notes in Computer Science., Springer (August 2005) 50–65

16. Aydemir, B., Charguéraud, A., Pierce, B.C., Weirich, S.: Engineering aspects of
formal metatheory (April 2007) Manuscript.

17. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proceedings) (1972) 381–392

18. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion.
In Joyce, J.J., Seger, C.J.H., eds.: HUG ’93: Proceedings of the 6th International
Workshop on Higher Order Logic Theorem Proving and its Applications. Volume
780 of Lecture Notes in Computer Science., London, UK, Springer-Verlag (1993)
413–425

19. Norrish, M., Vestergaard, R.: Proof pearl: de Bruijn terms really do work. In
Schneider, K., Brandt, J., eds.: TPHOLs. Volume 4732 of Lecture Notes in Com-
puter Science., Springer (2007) 207–222

20. Holmes, M.R., Alves-Foss, J.: The Watson theorem prover. J. Autom. Reasoning
26(4) (2001) 357–408

21. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. Journal of
Functional Programming 1(4) (1991) 375–416

22. Curien, P.L., Hardin, T., Lévy, J.J.: Confluence properties of weak and strong
calculi of explicit substitutions. Journal of the ACM 43(2) (March 1996) 362–397

23. Nadathur, G., Wilson, D.S.: A notation for lambda terms: A generalization of
environments. Theor. Comput. Sci. 198(1-2) (1998) 49–98

24. Nadathur, G.: A fine-grained notation for lambda terms and its use in intensional
operations. Journal of Functional and Logic Programming 1999(2) (1999)

25. Dargaye, Z., Leroy, X.: Mechanized verification of CPS transformations. [28] 211–
225

26. Jaeger, É., Hardin, T.: A few remarks about formal development of secure systems.
In: HASE, IEEE Computer Society (2008) 165–174

27. Bert, D., ed.: B’98: Recent Advances in the Development and Use of the B Method,
Second International B Conference, Montpellier, France, April 22-24, 1998, Pro-
ceedings. In Bert, D., ed.: B. Volume 1393 of Lecture Notes in Computer Science.,
Springer (1998)

28. Dershowitz, N., Voronkov, A., eds.: Logic for Programming, Artificial Intelligence,
and Reasoning, 14th International Conference, LPAR 2007, Yerevan, Armenia,
October 15-19, 2007, Proceedings. In Dershowitz, N., Voronkov, A., eds.: LPAR.
Volume 4790 of Lecture Notes in Computer Science., Springer (2007)

