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A Few Remarks About
Formal Development of Secure Systems

Eric Jaeger Thérese Hardin
Direction centrale de la sécurité des systemes d’in&tion LIP6, Université Pierre et Marie Curie (Paris 6)
51 boulevard de la Tour-Maubourg 4 place Jussieu
75700 Paris 07 SP, France 75252 Paris Cedex 05, France
Abstract—Formal methods provide remarkable tools allowing Il. FORMAL METHODS

for high levels of confidence in the correctness of developmts. . .
Their use is therefore encouraged, when not required, for tk Standard development processes identify several phases

development of systems in which safety or security is mandaty. ~ Such as specification, design, implementation and veiidicat
But effectively specifying a secure system or deriving a sere  operations. Different languages can be used for different
implementation can be tricky. We propose a review of some phases; beyond programming languages it is frequent to use
B e e e bspaence e omia, MUl language, automta, graphial anguagesL. et
or at least to better assess the actual confidence level. ' The problem of the correctness_qf a development can then
be seen as a problem dfaceability between the various
descriptions of the system produced at different phases.
Formal methods considered in this paper also allow for
Formal methods applied to the development of systems mwltiple descriptions of a system; they differ from startlar
software are very efficient tools that allow for high levefs ocapproaches by enforcing the use of languages with explicit
assurance in the validity of the results. By defining lang@sagand clear semantics, and by providing a logical framework
with clear semantics and by making explicit how to reasdo reason on them. Ensuring the correctness then becomes a
on these languages, they provide a mathematical framewankthematical analysis of the traceability (or consist@ncy
in which it is possible to ensure the correctness of imple-
mentations. Formal guarantees are often unreachable by m’%r
classical approaches; for example they are exhaustiveaaber At least two descriptions of a system are generally con-
tests cover only a part of the possible executions. sidered in formal methods, &rmal specificationand an
For these reasons, the use of formal methods is encouradéfplementation. The specification is often written in a &z
when not required, by standards for the development @nguage (e.g. based on predicates) and is ideally deukrat
systems in which safety is mandatory, dEC 61508[1]. The abstract, high-level and possibly non-deterministic cdbsg
situation is similar for the development of secure systefiors: thewhat On the other hand, the implementation is imperative,
the highest levels of assurance themmon Criteria(CC, [2]) concrete, low-level, and deterministic, describing tiwev. To
require the use of formal methods to improve confidence @nphasise the difference between declarative and imperati
the development, as well as to ease the independent ewalua@iPProaches, consider the specification of the integer equar
process. Indeed, the verification that the delivered proddg0t function,/n” <n<(y/n+1)*, which is deterministic (for
complies with its specification is expected to rely, at least anyn there is at most one acceptable value §61) but is not
some extent, on a mechanically checked proof of correctne@g’rogram: how it is computed is left to the developer.
One should not however confuse safety with security. TheySimply writing a formal specification is already an im--
are overlapping but none includes the other. Safety mosfjovement compared to standard approaches. Indeed, ly usin
aims at limiting consequences of random events (dea“ﬁgformal language, .amb|gumes are resolved. Furthermore,
with probabilities) and security at managing maliciousag  formal methods provide ways to check, at least partiallg, th
(dealing with the difficulty of an attack). In this paper, wesonsistency of the specification.
discuss a few concerns more specifically related to th_e forma Apout refinement
development of secure systems. These concerns are ilatstra . s :
through simple examples (sometimes involvingnalicious '_I'he process of going from a specn‘lcapon o an implemen-
developer) inCoq([3] or in B [4] but most of them are relevant fation, while checking the compliance, is callegfinement

for other deductive formal methods such ExCal [5], PVS This concept capttljres fthebe:ctivity_ _o_f de_siglni(r;_g a systgm;
[6], Isabelle/HOL [7], etc. it encompasses a lot of subtle activities, including chogsi

concrete representations for abstract data or producing op
This work is supported in part by th&gence Nationale de la Recher(:he(:"rauo_naI alglorlthms.matchmg dedarat“./? d(?SCI‘IptId?T!.;)m
under grant ANR-06-SETI-016 for tit8SURFProject. a logical point of view, a formal specification describes a

I. INTRODUCTION

About formal specification



family of models(that is, intuitively, implementations) and thedeclarative and non-deterministic (that is, specificatjoas
refinement process consists of choosing one of those modalsll as concrete, imperative and deterministic (that is- pr

Any formal method defines, implicitly or explicitly, a form grams). The following example uses the non-deterministic
of refinement. The definition generally ensures that the redbstitutionANY (a ‘magic’ operator finding a value which
finement is transitive (allowing for an arbitrary number o$atisfies a property) to specify the square root of a natural
refinement steps in the development process) and monotomenbern;:

(allowing for the decomposition of a problem into severdi-su
problems that will be refined independently).

ANY r WHERE 2° <n< (z+1)> THEN /(n):=z

Formal methods do not automatically produce refinementsthe notion of refinement is expressed betweeachines
but explain how to check that a refinement is valid, that i?th?modules combining atate defined by variablesproperties
ensure that very different objects (a logical descriptiod an  gych as an invariant on the state aaperationsencoded
operational implementation) are sufficiently ‘similarb @llow 55 substitutions to read or alter the state) and captures the
for this comparison the refinement is by natexéensionalthe  essence of program correctness w.rt. their specificaton a
objects are seen from a functional point of view, as blackelsoxfo|lows: an implementation refines a specification if theruse
whose only inputs and outputs are relevant. If the spedifieat cannot exhibit a behaviour of the implementation that is not
is to sort values, any sorting algorithm is valid and any twgompliant with what is required by the specification. This
algorithms are considered equal (undistinguishable)eNlwt concept is incorporated into the methodology by the autechat
the wordintensionalis often used to refer to properties thabeneration of proof obligations at each refinement step,isnd
are not extensional; for example, execution time or memogystained by mathematical justifications not detailed .here
use for a sorting algorithm can be considered as intensional one of the characteristics of the refinementBnis that

C. About logic

Behind any formal method, there is logic — or more accu-
rately, a logic. It is not the intent of this paper to discuss a
length the various types of logic, once pointed out the commo
fact that a specification can be inconsistent.

A specification isinconsistentf it is self-contradictory — a
trivial example is to specify as a natural value equal to both
0 and 1. Such a specification is also said to besatisfiable
that is it does not admit a model in the logical sense. There
are three important points about inconsistent specifioatio

« the detection of inconsistency cannot be automated in the

general case (the problem of satisfiabilityiisdecidabl

« an inconsistent specification cannot be implemented;

« an inconsistent specification can prove any property.
Tools implementing formal methods considered in this paper
do not even try to detect inconsistencies (even the trivial
example ofv = 0 = 1), due to the undecidability as well as
because the aim of a formal development being an implemen-

it is independent of the internal representation used by the
machines, as illustrated by the following example of a syste
returning the maximum of a set of stored natural values:

MACHINE M4

VARIABLES S

INVARIANT SCN

INITIALISATION S:=0

OPERATIONS
store(n) 2 PREneN THEN S:=SuU{n}
m+get = PRE S#() THEN m:=max(S)

END

MACHINE M¢c REFINES M4
VARIABLES s
INVARIANT s=max(SU{0})
INITIALISATION s5:=0
OPERATIONS
store(n) 2 IF s<n THEN s:=n
m <« get L mi=s

END

tation, any inconsistency is detected sooner or later. ake IThe state of the machines is described in W eRIABLES
point results from the fact that for any propositierwe have clause; for the specification/, it is a set of natural num-
False= P (using false assumptions one can prove anythindders and for the implementatioW a natural number. The
The consequences of these points are discussed in this paéVARIANT clause defines a constraint over the state;
for M, it indicates thatS is a subset ofN, whereas for

[1l. A SHORT PRESENTATION OB AND Coq
A. AboutB

Mc it describes theylue between the states dff, and Mc¢
(intuitively claiming that if both machines are used in pila

The B Method[4] is a formal method widely used by boththens is always equal tanax(S)). TheINITIALISATION
the academic world and the industry. Beyond the well-knowrlause sets the initial state, while ttlPERATIONS clause
examples of developments of safety systems (e.g. [8]), it details the operations used to read or alter the state. Tbe tw

also recognised for security developments.

machines differ yetM refines M4: roughly speaking one

B defines a first-order predicate logic completed with etannot exhibit a property aff which contradicts one af/,4.
ements of set theory, th@eneralised Substitution Language Note the use of th@®RE substitution defining a precondi-
(GSD and a methodology of development in which the notiotion, that is a condition that the user has to check befotangal
of refinement is explicit and central. The logic is used tan operation. This is amffensiveapproach; an operation
express preconditions, invariants and to conduct prodig T(should not but) can be used when this condition is not
GSLallows for definitions of substitutions that can be abstratatisfied, yet in such a case there is no guarantee about the



result (it may even cause a crash). By oppositiondéfensive benefit from standard practices such as naming conventions,

approach is represented Biby usingguards(that is anIF) modularity, documentation, etc. In the case of formal mésho

that prevent unauthorised uses. These notions are staimdarih fact, the very process of deriving a formal specificatimnf

formal methods and will be discussed further later in thihe book of specifications should be documented, justifying

paper. the formalisation choices and identifying, if any, aspeats

B. AboutCog the §ystem Igft out (as it is ge.ner_ally not reasonable or even
' feasible to aim at a full formalisation of a complete system)

_Coq IS a proof assistant based on a type theory. It 9ﬁer5 4Assuming a developer that has adopted the formal spirit,
higher-order logical framework that allows for the constion there are further points to care about in order to develop an

andl ve_nfuicaftlon _Of plroofs, as W_e"a‘;i i’rlle Idevelopmeritham dequate’ formal specification for a secure system, that is
analysis of functional programs in -like language wit specification not only expressing the required propertes,

pattern-matching. also ensuring that those properties are enforced at alestag

g(_)iq_miplemen;[s_ tr:jé:aklzulus oftlntducnve_ %on?_truc(?ofr_ﬁgé_ of the development as well as in any (reasonable) scenario of
and it is frequent in developments to use inductive definitio usage of the implementation.

For exampleN is defined in thePeanostyle as follows:
pleN y Some of the concerns that will be discussed below are

Inductive N:=0:N|S:N—N applicable for safety or any high assurance system; forrsthe

This definition means that is the smallest set of terms close® Malicious developer will be assumed (a threat generally
under (finite number of) applications of teenstructors and I"elevant for safety but applicable in security). The rtite
S. N is thus made of the termsand 57(0) for any finite n; objective of such a malicious developer is to exploit any

being well-founded, structural induction onis possible (the Weakness of a specification, in order to trap a system while
induction principle is automatically derived i§oq after the delivering a mechanically checked proof of compliance. One
definition of N). The definition also means that contains could consider that such traps would be detected througéa cod

no other valuessurjectivity and thatv (n:N), 0= S(n) and review or testing. Yet, beyond the fact that f_o_rmal methads a

V (mn:N), S(m)=5(n)=m=n (injectivity). expected to red_uce th(_e need for such activities, we warn the
Contrary toB, there is no enforced development methodof—ead?r that our |IIustrat|_ons are volunta_lrl_ly simplistid that

ogy in Cog, nor any explicit refinement process. The user cdgal life examples offrojan Horseare difficult to detect.

choose between several styles of specification and implemen

tation, and has to decide on its own about the properties to

be checked. For example theeak specificatiostyle consists A. About invalid specifications

of defining functions as programs in the interndL-like

language and later checking properties of these functams, As pointed out in Paf II{C, inconsistent specifications are

illustrated here by the division by disastrous. Indeed, whereas inconsistency cannot be atitom
Fixpoint div2(z:N):N := cally detected, it ailso pgrmlts .to dlscharg.e_ any proof (:_iibi@
match z with S(S(z')) — S(diva(z')) | _ — 0 end. expressed — that is an inconsistent specification can iriipgac
make the developer life more comfortable. An inconsistent
Theorem div2_def: specification is therefore dangerous for safety developsién
forall (z:N), n=2xdiv2(n) V n=2xdiv2(n)+1. a distracted developer fails to notice that its proofs arittla |
Proof. too easy to produce, and more so for security developments as
Qé&. a malicious developer identifying such a flaw would be able

to prove whatever he wants.

d Of course, an inconsistent specification is not imple-
mentable. It is therefore possible to check the consistéycy

providing an implementation — any one will do the trick, so
IV. SPECIFYING SECURE SYSTEMS even a dummy implementation is sufficient. Yet there are in

We now begin our discussion about deveioping secure S?@CUrity situations in which a formal SpeCification is maﬂfm
tems using formal methods by Considering more Specificaﬂyhile a formal implementation is not. This is the case for
formal specifications of secure systems. the CC, at some assurance levels, that just require a formal

To start with trivial considerations, we first have to notatth Specification of th&Security Policy An undetected inconsistent
formal methods offer tools to express specifications but thePecification is therefore a possibility.
there is no way to force a developer to describe the progertie In B the consistency of a specification is partially checked
required of the system under development. Clearly, usieg ethrough proof obligations to be discharged by the developer
the most efficient formal method without adopting the ‘fofmavet the obligations related to the existence of values satis
spirit’ is meaningless, as there is no benefit compared to stdying the expressed constraints for parameters, varisdoies
dard approaches if the formal specification is empty. Nate alconstants are deferred. Both following specifications are i
that a formal development is a development, and so can atsmsistent, yet akkxplicit proofs obligations can be discharged

div2 is a recursive program (usintiv2(z+2) =div2(z)+1) and
div2_def a property claimed about it; the proof, not detaile
here, ensures thaiv2 indeed satisfiesiv2_def.



(that is, mostB tools will report a ‘100% proven’ status): One could also investigate the satisfiability of the preé¢ond
tions or guards, as defined in Plar_TJI-A, associated to fonst

MACHINE absurd var MACHINE absurd cst . . = ...
VARIABLES v CONSTANTS f or operat|ons. Indeed, while unsatisfiable preconditisasat
INVARIANT PROPERTIES inconsistent, they often represent a form of deadlock, ag th
vENA feN—NA mean that it is never possible to use an operation. They may
v=0Av=1 Va,y, z<y=f(z)>f(y)  however be difficult to detect — there is a famous example of
ASSERTION 0=1 ASSERTION 0=1 the database of individuals developed in [4], in which it is

Of course, delaying such proof obligations is justified, d§'Possible to insert new entries, as pointed out in [10], due
implementing the specification will force the developer t the fact that any new individual introduced in the datebas
exhibit a witnessfor v that meets the specification (a conshould have a father and a mother, while the initial statenis a
structive proof that the specification is satisfiable). Efiere, €MPpty database. To avoid such difficulties the use of adequat
B ensures that any inconsistency is detected, at the latép!S (animation of models, model-checking, automatidstes
at the implementation stage. But we would like to reming€nerator, cf. [11]-{15]) can be of considerable help.
the reader that a formally derived implementation is not We would also like to draw the attention of the readers
always required. In such a case, one should consider adalitiof® other types of problematic specifications. For example in
manual verifications to check the existence of valid valees fsome cases it may happen that a specification mixes preslicate
parameters, constants and variables. of the form P = @ and P = —Q. Such a specification is
Inconsistencies can be rather easy to introduce, accitient&onsistent but only as long a8 is false; to the least this
or not, by contradictingmplicit hypotheses associated to thdyPe of specification should be considered inappropriaiés T
used formal method. 1B for example there is a clauSETS is one of the cases for which specification engineering tools
that allows for the declaration of abstract sets used inWpuld be considered useful. Such tools associate for exampl
machine; one can easily forget that such a set is alway if0 a specification z, P = @ an additional proof obligation
finite and non-empty. If the developer contradicts one o§¢he? z, P; indeed the specification can bacuouslytrue if P is
implicit hypotheses the specification becomes inconsdistedways false, but it is unlikely that such a specificationveyn
without any warning by the tool; in fact the automated provéhe intended meaning [16].
will very efficiently detect the contradiction as a lemmahlea
to discharge any proof obligation. Contradiction of imjilic B. About (mis)understandings

principles of the underlying logic can also be illustrated i . . I . -
Coqwith two very simple examples. The first one is a naive Consequences of invalid specifications have been identified

tentative of specifying’ using; and Ju.StIfy establishing procgdure; .to check.(_:onslsteWa/._
now discuss the problem of insufficient specifications, \whic

Inductive Z : Set:=plus:N — Z | minusN — Z. is more tricky to detect as it generally refers to a diffeeenc

Hypothesis zero unsigned plus(0) =minug0). between a specification and its intended meaning.

Unfortunately, as pointed out in P-B, the definitioho Our very first concern is rellated to the understanding of
is not a specification but an implementatidhig the set of all Fhe ch'osen formal method. It is not reasonable to expect all
terms of the fornplus(n) or minugn)). zero unsignedintroduces USers’ of formal methods to be expert. One may consider

an inconsistency because it contradicts the injectivitggiple O €xample a situation in which a customer convinced by
for the constructors: for any natural valuesand m it is the interest of formal methods may however not have any

possible to prove irCoq that plus(n) # minugm). in-depth knowledge about any of them. In fact, we would
The second example is related to the unexpected con@$0 argue that should formal methods be more widely used

quences of using possibly empty types. This is illustratgd b deﬁnltely something we expect for t.he future - they shqul_d

the following (missed) attempt to define bi-colored lists gf€ accessible to people having received a dedicated teainin

natural values, that is lists with each element marked red '3t Which are not expert (this is one of the main objectives of
blue: the FoCal project [5], [17]-[19]). The minimum, however, is

to ensure thadiny user has a basic understanding of some of
Inductive blst: Set:=red:blst — N — blst the underlying principles to avoid misinterpretation.
| blue:blst — N — blst . . .
For example, consider the concept of refinement as intro-
In the absence of an atomic constructor for the empty listuced in Pa@. The essence of this concept is to allow to
bist which is the smallest set of terms stable by applicatiacheck that specifications and implementations are ‘similar
of the constructors is indeed empty. Therefore, assumiag thhis similarity should not be too strong, as a refinement
existence of such a list is inconsistent, and any theorerheof trelation reduced to intensional equality of programs (ikat
form v (b: bist), P is provable — hardly a problem from thethe same code) would be useless. It is for example standard to
developer’s point of view, as he generally tries to proveyontonsider that computations and transient states arevienate
those properties he expects. It would be prudent for any typeCoqthis is translated by the fact that the equality is modulo
T introduced inCoq, to ensure that it is not empty e.g. byg-reduction (in other wordssquare3) =9 because computing
proving a theorem of the form (¢:T), True. squaré3) yields 9). Our concern is illustrated iBB by the



following specification of an airlock system: The point is that these two specifications are not so difteren

MACHINE Sas all the logical parts of a&Coq development are eliminated at
VARIABLES door;, door; extraction(the process that extract proved programs). This is
INVARIANT door;, door, € {open locked: A not specific toCoqg by nature, logical contents in a formal

—(door, =openA door, = oper) development are not computable and have therefore to be
OPERATIONS

discarded in some way before being able to produce a program.
And it is easy to implement both specifications in a way that
produces the same followin@Camlcode, wheresecretis any
value the malicious developer would care to export:

open = IF door, =lockedTHEN door; :=open
close £ door; :=locked
open, £ IF door; =lockedTHEN door, :=open
close £ door, :=locked

If the underlying principles of theB are not understood, let head= function [] — secret h:: _ — h

one can easily consider that ti8VARIANT clause in a ) L
provenB machine is ‘always true’. Therefore, any complian We illustrate the same congerany the specn‘lcajuon ofa
implementation of this specification would be considerdd.sa |I.e system manager. We define the SG_SQ (users) Fi gflL
Of course, this is not the case, as we may for example refiﬁlj-:es)' CNT (contents) andRGT (access rights)Cnt associates
the operatioropen, as follows: or any file a contentRgt associates for a user and a file
. ' the rights, andpt gives the number of existing files. Various
open = IF door, =lockedTHEN operations to create, delete or access the files are assomed t

door, :=open P ; .
IF attack THEN door, :— open wait: door, :— locked be specified but are not detailed here, exceptdad:

where wait is a passive but slow operation amttack any ~ MACHINE filesystem
condition the malicious developer can imagine to obfusc:ateSETS USRFIL; CNT; RGT={r, w}
. 10p 9 CONSTANTS cnul
the dangerous behaviour during tests. PROPERTIES cnule CNT
If stronger forms of invariant are required, e.g. to take VARIABLES Fil, Cnt, Rgt cpt

into account interruptions, specific modelisation choioes INVARIANT Fil CFILA

dedicated techniques are to be used (cf. [20]). CnteFil — CNTA
RtC (USRxFil) x RGTA
C. About partial specifications cpt=card(Fil)

L INITIALISATION Fil ;=0 || Cnt:=0 || Rgt:=0 || cpt:=0
Another aspect of a formal specification of a secure systemgprRr ATIONS

to check istotality: is the behaviour of the system specified in
any possible circumstance? It is frequent in formal methods out « read(f,u) £
to define partial specifications — either to represent a fokm o PRE f€Fil Aue USRTHEN
contract (a condition to be realised before having the right IF ((u f)—r) €RGITHEN out:=Cnt(f)
use the system) or a form of freedom left to the developer (be- ELSE out:=cnul
cause the systems is not planned to be used in such conditions "
or because the result is irrelevant). If the first interpieta read is specified as returning the content of a fileprovided
can be considered during formal developments, the secdhdt the user has the right to read it. Yet it is only partially
one becomes the only relevant one once leaving the abstigfptcified, as we do not describe what happens when the file
world of formal methods to tackle with implemented systemsgloes not exist. Any call ofead implemented inB would be
And the extent of the freedom given to the developer is eas#gsociated to a proof obligation to ensure that the pretondi
underestimated, as illustrated in the following examples. is met, but this constraint goes as far as goes the use of the
We start by two specifications of tiheadfunction (returning B. So let's assume the following malicious refinementeafd
the first element of a list of natural values)@wog, in the strong is called over a non existing file:
specification stylf out o read(f,u) 2
head (I:listN)(p:1#[]): {=:N|3I":listN, [=z::1'}. IF feFil THEN
heac(I:listN): {z:N|l#[] — II":listN, I=z::1'}. IF ((u— f) 1) €RGtTHEN out:=Cnt( f)

L . ELSE out:=cnul
Both specifications ensure that the function, called upon a ELSE Fil :=Fil U{fs} |

non empty list, will return the head element. Yet the first Cnt:=CntU{ fs — S} ||
specification is associated to a precondition, the paramete Rgt:=RgtU{(eni fs)—r}

being a proof that the list parameteis not empty — making . )
it impossibleto call head over an empty list as it would not Whereas the specification afad wasapparentlypassive (not

be possible to build such a proof. The second specificationni"éjdifyi,ng th_e state), thi; refinement crc—_:‘ates afi&estoring
on the contrary partial, allowing to usead with an empty a (confidential) values, file only accessible by an arbitrary

list but not constraining the result in such a case (except dysereni invented by the developer. Furthermore the invariant
being a natural value) is broken asfs is created yet not accounted for dpt, that is
' fs is virtually invisible for the system. Note also that defigin

11n which the return value of a function is described as sétigfa property. the returned value when the file does not exist is not even



required byB; a malicious developer may however prefer tonalicious refinement oficcountsis the following one:

returncnul for a better obfuscation of its code. A
out +— accounts=

Clearly, a partial specification cannot enforce security a IF loge AccTHEN
one should favor a total (andefensivg specification. InB ANY s WHERE s € seq(USRA
this would translate into using &F instead of aPRE. ran(s) =AccA
When the condition associated to &R substitution is not 4 size(s) =card(Acc)
satisfied, theELSE branch is executed — if it is absent it THEN IF Pwd(root) <guess
. . . _— o THEN out:=sort(s)
is equivalent to askip substitution, that is ienforcesto do ELSE out:=rev(sort(s))
nothing. On the contrary when the condition associated to ELSE out:=()

a PRE substitution is not satisfied, there @&bsolutely no
guaranteeabout the result. Note that the defensive approa
(with redundant checks) is an implementation of thefence
in depthconcept.

V\ﬁhereguessis a new variable controlled by the malicious de-
C L

veloper. Combining calls taccountsand changes afuess one
can quickly derivePwd(root) through the artificial dependency
introduced in the returned value.

D. About elusive properties This example illustrates aovert channekexploit [21], as

. . . discussed in [22]. Even if the implementation stoPeed in
For our next point, we would like to emphasise that so

f di : be difficul private memory location protected by a trusted operating
concepts often encountered In security can be difficult Wgiom _ 5 rather optimistic assumption — its confidenyialit
express in a formal specification. Confidentiality is a goo

. e RN nnot be guaranteed without a form of control over depen-
example: while a formal specification may appeaintplicitly dencies (e.g. considerirdgta-flov)

provide confidentiality, one should be extremely carefidwtb It is of course possible to imposecamplete(or monomor-
|ts| ex_act meanlngr,Bas lllustrated by the following exampile ?)hic) specification [23] — a deterministic specification, en-
a Oﬁm manager Irb. defined h forcing the extensional behaviour of any implementation. A
T e syst_em state is defined Bycc C USR the accou_nts, complete specification would not let any freedom to the de-
log to identify the currently logged accouniduserencoding yq|oner and thus would ensure that there iscogert channel
no opened session), arivd to associate to any account §, pe eypiojted. In our example, a complete specification
password. Th|s_ last piece of m_formatlon IS _conf!den_tlal ar\fgould for example require to be sorted in ascending order.
snould nolt be d|§closed. Ope(zjratlons (not detailed |r_1:]mn;a]pa This is however an impractical technical solution, an iadir
la ows to 09, exit, g;_ezate ord estroal_ an account, with ohly t mean to ensure confidentiality. Furthermore completeress i
0g operation specified as depending upgdmd to represent ., oy hressible in thd specification language (or in most
the confidentiality of this data. The operatiaetounts detailed languages considered in this paper), is generally undeleida

here, returns the existing accounts: and isnot stable by refinement of the representation of the

MACHINE login data — e.g. refining a set by an ordered structure.
SETS USRPWD It is also possible to better control dependencieBiby
gggg%ﬁggﬂssr?oogigﬁgg/\ nousere USR\ {root} Spegifying Ope.rfatiO.nS using constant functiong. The taliy
VARIABLES Acc log, Pwd modlfle(_:i specn‘lcat_lon claims Fhat the operatiactountsbe-
INVARIANT haves like a function depending only upon the set and
AccC USRA roote Acc A nouserZ Acch returning a list of values oISR
loge AcaJ{nouser A Pwde Acc—PWD
INI%‘IALIS{ATIO@N CONSTANTS ~~-vf°]E
Acc:= {root} || log:=nouser|| Pwd:& {root} — PWD PROPERTIES ... Afcte P(USR — seq(USR
OPERATIONS OPERATIONS

out « accounts®

out — accounts2 IF loge AccTHEN out:=fct(Acc) ELSE out:=)

IF loge AccTHEN This approach is not yet fully satisfactory as only the depen
ANY s WHERE s €seq(USRA dencies for thaesult are described (the extensional point of
ran(s) = A\ iew). It is therefore still possible to affect tHeehaviourof
size(s) — card(AcO) view). It is therefore still possible to affec aviouro
THEN out:= s accounts as in this valid refinement:

ELSE out:=0 out — accounts2

out := encod¢Pwd(root));

Input and output values being not refinablesificf. Par[IlI-4), IF Pwd(root) < guessTHEN wait(10) ELSE wait(20);

the type of the return value afcountshas to be finalised in the IF log€ AccTHEN out:=fct(Acc) ELSE out:={
specification. In our example, we have chosen to implemdntthis refinement the malicious developer implements both a
the setAcc returned byaccountsas a list (or sequence in tle timed channebhs well as a possibly observable transient state
terminology)s of values ofUSR ran(s)=Accensures that the of the output.

same values appear Atc ands, size(s) =card(Acc) that the  This illustration is just intended to show why, in some cases
length of the lists is equal to the cardinal &fcc The proposed expressing confidentiality can be difficult. For such praigsr



complementary approaches should be considered, based ¥eg).it also accepts other refinements, such as the following
on dependency calculus or non-interference [24], [25], amdhe:

associated to standard code analysis. Note that confitigntia MACHINE Boolean Covert Channel
is often formally addressed through access control enforce REFINES Boolean
by a form ofmonitor, that is according to th®range Booka VARIABLE dump

INVARIANT dumpe N

tamperproof, unavoidable, and ‘simple enough to be trusted

. S . . INITIALISATION dump.= private ke
mechanism filtering accesses (cf. recent discussions i [26 Hmp=privare ey

OPERATIONS out— go2 IF dumpmod 2=0

[28]). Such a monitor can itself implement this typeaivert THEN out:=true
channelattacks if it is poorly specified. Note also that the ELSE out:= false;
confidence in a system implementing a monitor relies on the dump=dump/2

confidence in the information used by this monitor, such &ne should not believe that the refinement paradox is specific
the source of an access request (that would require a formy@fthose methods which are providing an explicit form of
authenticatiop as well as the level of protection required byefinement, such a8 or Z for example. Our devious re-
the accessed object (a meta-information whose origin is g8fhements include implicitly a non functional refinement of
erally unclear, but for which effective implementationgIsu the representation of data: we accept several implementati
as security labelsprotected in integrity have been proposed)as representing a single abstract value of the specification
We mention authentication and integrity to point out anotherhjs intuitively describes why some variables drelden at

source of rather elusive properties, that is the charaeti#oh the specification level. From this intuition, we suggest the
of cryptographic functions. For example, a (cryptographigo|lowing counterpart inCoqof the refinement paradox. Let's

hash function# is such that: consider the example of the specification of booleans as an
e givenh it is not possible to find: s.t. H(x)=h; Abstract Data Typewith the equality and a boolean function:
e givenz it is not possible to find;#x s.t. H(z)=H(y); Module Type Boolean Function

o it is not possible to find:#y s.t. H(z)=H(y). Parameter B:Set.

The first property, for example, guarantees the security of Parameters T L:B.

the Unix login scheme; being able to specify a hash function H?,r;‘:tlﬁzfs r:e:flj?v_(ﬁB_; Pbrglg_'

(without giving any details on its implementation) by forifga Hypothesis symV (b; by BY, bi=by—by=b,.

describing these properties has therefore some interest toHypothesis tran:V (by bz bs: B), by = by — by =bs — by =bs.
certify such a scheme. Yet these properties appear to berrath Hypothesisinj:=T=_1.

difficult to express formally. A naive translation of the last H;’g:l]gi:;sfﬁg%\f _()béB% b=TVb=L1.

proper.ty would .Jugt_say thqlfl is |_njgct|ve, WhICh is false (as End Boolean_Funétion :

H projects an infinite set in a finite set of binary words of i ] . o .
fixed length) and would lead to an inconsistent specificatiohe straightforward refinement of this specification is of

Formally expressing such properties is possible, but gdiger COUrse to implemens asB, the Coqtype of booleans, and to

less straightforward than one may expect. implementfnc as one of the four possible boolean functions
(true, falsg identity or not). But a devious implementation
E. About the refinement paradox gives much more freedom; we can for example choose to

Most of the examples detailed in Pa-C -D arja(nplemen_tB asN, even values representingand odd values
illustrations of what is often referred to as tmefinement "€Presentingr:
paradox some properties are preserved by refinement (safety Module Covert Channet Boolean Function
ones generally are), other are not (security ones). Definition B:=N. .
Back to the discussion of Paf. IJ-D, the most simple 8222;222L::(:l;?b?-eg?il?gzil;;;on—O)
example of ‘devious’ refinement that we can exhibitBnis e '

the following one: Definition fnc(b: B) : B:=match ((b/2) mod 4) with
0= 1
MACHINE Boolean I 1= T
OPERATIONS out«—go £ out:=true [| out:=false |2 = b
|_ = b+1

This machine is a very simple one, having no state and defining end
a single operatiogo returning a boolean value. There are of gnd Covert Channel

course two straightforward refinements: I L . L
g This implementation introduces a new dimension in the repre

MACHINE Boolean True sentation of the data, which is hidden at specification lanel
REFINES Boolean can be used by a malicious developer to store information and
OPERATIONS out—go = out:=true modify results:fnc now emulates any of the boolean functions.
MACHINE Boolean False Note that the term of refinement paradox may be considered
REFINES Boolean an overstatement, provided the presentation of refinenment i

OPERATIONS out—go 2 out:—false Par[II-B. Clearly the very concept of refinement is extenalp



whereas on the contrary confidentiality can be considered B8 sub-language are used for implementation and also
intensional: rather than describinghat a result should be, it have an operational semantic. This is the case of the
aims at constrainingnow a result is produced (in this case, WHILE PDO SINVARIANT I VARIANT V substitution,
without depending upon the confidential value). Similaifly, illustrated in [4] by the extraction of the minimum of a non-
refinement is intended to preserve properties described irempty set of natural values:

specification, it does not aim at preserving properties ef th WHILE ¢ ¢ 5

specification itself, or any other form aheta-propertiesso DO z:=z+1

the fact that for example completeness is not preservedahou z:=0; INVARIANT z<[0, min(S)]
not be a surprise. E;I/SRIANT min(S)—z

V. BUILDING ON SAND? . - I .
Using the definition of theWHILE substitution as a predicate

In Par. [IV-4, we have shown possible consequences Qf stormer. one can indeed show that this substitutioisesa

inconsistent specifications. Obviously similar or worse-co (that is, transforms into a tautology) the predicatemin(s).
sequences can result from other sources of inconsistenqﬁs

i ; X other words the substitution is proven to extract the mini
such as a bug in the tool implementing the formal metho um in any case of use (provideg0).

or a mistake in the theory of the formal method itself. For a By denoting]] the translation producing @ program from

malicious developer, a paradox (a flaw in the logic that cafigg g pstitution, the operational semantic is defined by:
be used to prove at the same time bétland-P) discovered

in a theory or in a tool can be used to prove any property WHILE P

about any development, that is to implement any unpleasant DO S _ while [PI{IS

behaviour while getting a certification. INVARIANT I [PRISTH
When trying to assess the level of confidence one may VARIANT V

have in the result of a formal development, the question &f,o interesting point is that this semantic forgets(the

the validity of the tool and of the theory should therefore bl%op invariant) andv’ (the loop variant) that are pure logical
addressed. contents, important for the proofs (e.g. of termination} bu

A. About the logic irrelevant for the execution.

- L Modifying the invariant does not change the program (the
In [29] a deep embedding (cf. [30], [31]) of tH&logic in ) ; S
Coqgis described, that is intuitively a form & virtual machine operational semantic) and should therefore only have dahit

developed inCoq with the objective to check the validity of impgct on Lhe Iogi_cal semantilc. ;h? surprise s that by re-
the B logic. While this deep embedding has not identified arﬁ)acmg In the previous example the Invariant [0, min(5)]

parado it has shown that the following ‘theorems’ from [4 y m € N, less precise but still correct, the logical semantic
are in fa,ct not provable using the defined logic: is radically modified. This modified logical semantic leads to

a refutation of the previous proposition, that is it indesat
gl:?:?:? j ?:? that the substitution is not always extracting the minimum.
1 1= L2 2 1=12 . . .
S1C Sy AT CTh = Sy xT1 C SaxTh A rather strange conclusion, as both versions of the logical

h | ble b  the definiti fshemantic describe the same program.
These results are not provable because of the definitioneof th\y have also identified a similar concern wi@og In

B inference rules, which are not sufficiently precise reg‘.egdlthis case there is a single language, mixing logical and

tkhe fcl)rr;al dﬁf'nf't'on r?f W:at IS a (iarte3|an produl_(g..To OWomputational constructs, an extraction mechanism afigwi
nowledge, the fact that these results were not valiB Was ¢, ihe elimination of the former to derive from the latter a

not known by theB community. Being apparently trivial, they

‘ JJrogram in a functional language, e.g.@Caml
were never checked_ and have been integrated for example in ¢ already pointed out in Pdr. IHA, an inductive definition
provers for theB logic. That means, at a fundamental leve

uch asInductive E : Set := nxt: E — E lacks an atomic

that these results were in fact taken as additional axiomsystructor and is therefore empty. Emptyness is not, bfjits

without people knowing it — an approach that could hau§.,sistent but makes possible to prove any result of the

created a paradqx n the logic. . formV (e: E), P. Its extraction inOCamlis a straightforward
Further investigations have emphasised another form of - o400 totype E — Nxtof £. The interesting point is

subtile glitch that may appear in the theory of a formal mdthothat this OCaml type is not empty, as it contains the value

g\s polmt.ed OUtfm Pa, formal ”methor(]js a”O.VfV. for- mult?ol let rec e=Nxt(e), not valid in Coq but making possible to use
escriptions of a system as well as the verification of e o2 extracted from a fully certifiedoq library with
similarity of these descriptions. This is sometimes ol#din unexpected (and therefore unwanted) behaviours

by defining se\_/ergl semantics for a single construct. It is beyond the scope of this paper to further discuss

. In B, subst_|tut|ons Of. theGSL (used to write - opera- yhee guestions, once noted that any such bias is a potential
_tlons) are d_efmed apredicate transformerstha_t 'S a log- weakness usable by a malicious developer (or a trap for
ical semantic. On the other hand the substitutions of ﬂé‘ﬁ honest but inattentive developer). These remarks are not

2The consistency of th® logic has not been proved either. intended to criticize the tremendous work represented by th



full development of the theories supporting formal methodB. About Typing

They howgver justify the interest in_ mechani.cally checking A second example of implicit hypothesis, much less ob-
such theories, pursuing works described e.g. in [32]-[34]. yious, is related to types. An adequate use of types in a

B. About the tools specification (for example modellind® addresses and ports

§_values of abstract sets rather than natural values)emnsur

Beyond the concerns about the theory, one may also qut% A ¢ ¢ il b i tically detected
tion the validity of the tool implementing a formal method. at some forms of error witl be automatically qelecte KBUC
using a port where an address is expected). But it is also

For example a prover can be incomplete (unable to pro_@g L
results valid in the theory) or incorrect (able to prove tessu important to understand how strong an hypothesis it is, and

unprovable in the theory), the latter being more worrying, (;W eailly Iihcinhbe wolated.lllndeed, typets are ?galn Id)gt;_|ca
least from the evaluation and certification perspectiveit as/nformation that have generally no concrete implementatio

may lead to an artificial paradox. And indeed such parado Q@OSI programming Ianguage_s, they just dlsappear. at compl

have been discovered in well established tools. atpn. So, while ill typed operatlop caltsannotbe considered
Clearly, implementing a formal method is a difficult task(,jurlng fprmal analy5|_s, they. are in some caegeputable .

dealing not only with completeness, correctness, but alto w A typical example is provided in [36], describing a flaw in

performance, automation, and ergonomy. In our view, tj%e PKCS#11API for cryptographic resources, summarised

(potential) existence of bugs in a tool does not mean t gre. A central authority (e.g. a bank) distributes crypto-

it should not be used, but that the provided results ShOLﬁ&aphiC resources to _customers: Such a resource can perform
be considered with some care, and possibly verified by ottfYPtographic operations(’ — cipher(M, k) to cipher the

mechanisms. This is addressed for example by [29], [35]. messag.eM with the key numbered, or MFunCiph.e'(C’ K)
for the inverse operation. The resource never discloses key

VI. STEPPINGOUT OF THEMODEL to the customer, but permits exchange of keys with other
We have discussed at length some concerns regarding t@gources through export efrapped (cyphered) keys using
formal development of secure systems, through questignniR — expor{ K, W) where K is the number of the exported key
paradoxes in the theory, bugs in the tools or more simply nd W the number of the wrapping key, amdport(D, W, K)
identifying gotchas in the specifications. Let’s now asstina¢ for the inverse operation (that stores internally the umpeal
we have been able to produce a consistent specification wigy under numbek without disclosing it). In a model where
security properties correctly expressed, and a complapls- cyphertexts and wrapped keys are of different types, one can
mentation whose all proof obligations have been discharggdove that no sequence of calls will disclose a sensitive key
using a well-established formal method and a trusted toolUnfortunately the implementations of cyphertexts and yweap
that is, we finally have aroven securitysystem. That doesot keys are indistinguishable, and stored keys are not taggad w
mean however that the system is secure, but that any attack their role. It is so possible to disclose a kaywith the (ill-
to contradict at least one of the hypotheses (a good heuridfiped) sequenc® — expor( K, W); M —unciphe(D, W).
for those willing to attack formally validated systems). This demonstrates that it is important to identify implicit
Preconditions, for example, are hypotheses whose violatibypotheses associated to the use of types to detect possible
can be devastating, as illustrated in Rar. [V-C. But one khowonsequences of type violations, or to maintain type infrm
take care also to identify all thamplicit hypotheses when tion in the implementation to prevent such attacks.
developing a system or evaluating its security. Such intplic
hypotheses are not only those that are introduced by thealorm

method (cf. Pa) but also those that are related to the Ve summarise and discuss difficulties related to the devel-

VIl. CONCLUSION

modelisation choices themselves. opment of secure systems using formal methods, identifying
— where possible — proposals for improvement. The concerns
A. About Closure described in this paper were identified during a systematic

A frequent implicit hypothesis is related to the use of ctesureview of the process of formal development, investigating
proofs. For example, proving B machine requires proving possible difficulties.
the preservation of its invariant by any of its operationsisT A quick read of this paper could seem to imply that the
is justified if there is no other way to influence the systemeputation of formal methods to develop correct systems is
state than the provided operations. The extent to which tliserestimatedThis is not our messagéNe consider that
is enforced in the real system has to be carefully analysédrmal methods are very efficient tools to obtain high level
Threats considered during security analysis may refle@rat of assurance and confidence for the development of systems
that are not in the model (data stored in files by proven general, and of secure systems in particular.
applications can be modified by other applications, signalsYet to fully benefit from such tools, one has to understand
in electronic circuits can be jammed gult injection etc). their strengths but also their limitations. Pretending graven
There is no silver bullet to address this problem; curresecure systems are perfectly secure is nothing more than a re
approaches include defensive style programming, reduydamewed version of the first myth about formal methods pointed
and dysfunctional considerations (e.g. by modelling erroout in [37], and is to the least inadequate; in fact, we casrsid
such as unexpected values or inconsistent states). that such a claim is detrimental to formal methods. Taking



this into account, we expect our proposals to help, whejm] B. W. Lampson, “A note on the confinement problef@3mmun. ACM
possible, for improving the quality of formal specificatsosnd

the adequacy of formal developments of secure systems [(ZI?'J
some cases relying on other methodologies or technolqgies)
our second expectation is to shed some light on the diffesiltil23]
to at least allow for a better evaluation of the genuine lefel |5,
confidence obtained through the use of formal methods.

Nota: An extended version of this paper is available in French

language at [38]
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