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Abstract—Formal methods provide remarkable tools allowing
for high levels of confidence in the correctness of developments.
Their use is therefore encouraged, when not required, for the
development of systems in which safety or security is mandatory.
But effectively specifying a secure system or deriving a secure
implementation can be tricky. We propose a review of some
classical ‘gotchas’ and other possible sources of concernswith
the objective to improve the confidence in formal developments,
or at least to better assess the actual confidence level.

I. I NTRODUCTION

Formal methods applied to the development of systems or
software are very efficient tools that allow for high levels of
assurance in the validity of the results. By defining languages
with clear semantics and by making explicit how to reason
on these languages, they provide a mathematical framework
in which it is possible to ensure the correctness of imple-
mentations. Formal guarantees are often unreachable by more
classical approaches; for example they are exhaustive whereas
tests cover only a part of the possible executions.

For these reasons, the use of formal methods is encouraged,
when not required, by standards for the development of
systems in which safety is mandatory, e.g.IEC 61508[1]. The
situation is similar for the development of secure systems:for
the highest levels of assurance theCommon Criteria(CC, [2])
require the use of formal methods to improve confidence in
the development, as well as to ease the independent evaluation
process. Indeed, the verification that the delivered product
complies with its specification is expected to rely, at leastto
some extent, on a mechanically checked proof of correctness.

One should not however confuse safety with security. They
are overlapping but none includes the other. Safety mostly
aims at limiting consequences of random events (dealing
with probabilities) and security at managing malicious actions
(dealing with the difficulty of an attack). In this paper, we
discuss a few concerns more specifically related to the formal
development of secure systems. These concerns are illustrated
through simple examples (sometimes involving amalicious
developer) inCoq [3] or in B [4] but most of them are relevant
for other deductive formal methods such asFoCal [5], PVS
[6], Isabelle/HOL [7], etc.
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II. FORMAL METHODS

Standard development processes identify several phases
such as specification, design, implementation and verification
operations. Different languages can be used for different
phases; beyond programming languages it is frequent to use
natural language, automata, graphical languages,UML, etc.
The problem of the correctness of a development can then
be seen as a problem oftraceability between the various
descriptions of the system produced at different phases.

Formal methods considered in this paper also allow for
multiple descriptions of a system; they differ from standard
approaches by enforcing the use of languages with explicit
and clear semantics, and by providing a logical framework
to reason on them. Ensuring the correctness then becomes a
mathematical analysis of the traceability (or consistency).

A. About formal specification

At least two descriptions of a system are generally con-
sidered in formal methods, aformal specificationand an
implementation. The specification is often written in a logical
language (e.g. based on predicates) and is ideally declarative,
abstract, high-level and possibly non-deterministic, describing
thewhat. On the other hand, the implementation is imperative,
concrete, low-level, and deterministic, describing thehow. To
emphasise the difference between declarative and imperative
approaches, consider the specification of the integer square
root function,

√
n

2≤n< (
√

n+1)2, which is deterministic (for
anyn there is at most one acceptable value for

√
n) but is not

a program: how it is computed is left to the developer.
Simply writing a formal specification is already an im-

provement compared to standard approaches. Indeed, by using
a formal language, ambiguities are resolved. Furthermore,
formal methods provide ways to check, at least partially, the
consistency of the specification.

B. About refinement

The process of going from a specification to an implemen-
tation, while checking the compliance, is calledrefinement.
This concept captures the activity of designing a system;
it encompasses a lot of subtle activities, including choosing
concrete representations for abstract data or producing op-
erational algorithms matching declarative descriptions.From
a logical point of view, a formal specification describes a



family of models(that is, intuitively, implementations) and the
refinement process consists of choosing one of those models.

Any formal method defines, implicitly or explicitly, a form
of refinement. The definition generally ensures that the re-
finement is transitive (allowing for an arbitrary number of
refinement steps in the development process) and monotone
(allowing for the decomposition of a problem into several sub-
problems that will be refined independently).

Formal methods do not automatically produce refinements
but explain how to check that a refinement is valid, that is they
ensure that very different objects (a logical description and an
operational implementation) are sufficiently ‘similar’. To allow
for this comparison the refinement is by natureextensional: the
objects are seen from a functional point of view, as black boxes
whose only inputs and outputs are relevant. If the specification
is to sort values, any sorting algorithm is valid and any two
algorithms are considered equal (undistinguishable). Note that
the word intensionalis often used to refer to properties that
are not extensional; for example, execution time or memory
use for a sorting algorithm can be considered as intensional.

C. About logic

Behind any formal method, there is logic – or more accu-
rately, a logic. It is not the intent of this paper to discuss at
length the various types of logic, once pointed out the common
fact that a specification can be inconsistent.

A specification isinconsistentif it is self-contradictory – a
trivial example is to specifyv as a natural value equal to both
0 and 1. Such a specification is also said to beunsatisfiable,
that is it does not admit a model in the logical sense. There
are three important points about inconsistent specifications:

• the detection of inconsistency cannot be automated in the
general case (the problem of satisfiability isundecidable);

• an inconsistent specification cannot be implemented;
• an inconsistent specification can prove any property.

Tools implementing formal methods considered in this paper
do not even try to detect inconsistencies (even the trivial
example ofv = 0 = 1), due to the undecidability as well as
because the aim of a formal development being an implemen-
tation, any inconsistency is detected sooner or later. The last
point results from the fact that for any propositionP we have
False⇒P (using false assumptions one can prove anything).
The consequences of these points are discussed in this paper.

III. A SHORT PRESENTATION OFB AND Coq

A. AboutB

The B Method[4] is a formal method widely used by both
the academic world and the industry. Beyond the well-known
examples of developments of safety systems (e.g. [8]), it is
also recognised for security developments.

B defines a first-order predicate logic completed with el-
ements of set theory, theGeneralised Substitution Language
(GSL) and a methodology of development in which the notion
of refinement is explicit and central. The logic is used to
express preconditions, invariants and to conduct proofs. The
GSLallows for definitions of substitutions that can be abstract,

declarative and non-deterministic (that is, specifications) as
well as concrete, imperative and deterministic (that is, pro-
grams). The following example uses the non-deterministic
substitutionANY (a ‘magic’ operator finding a value which
satisfies a property) to specify the square root of a natural
numbern:

ANY x WHERE x2≤n< (x+1)2 THEN
p

(n) :=x

The notion of refinement is expressed betweenmachines
(modules combining astate defined by variables,properties
such as an invariant on the state andoperationsencoded
as substitutions to read or alter the state) and captures the
essence of program correctness w.r.t. their specification as
follows: an implementation refines a specification if the user
cannot exhibit a behaviour of the implementation that is not
compliant with what is required by the specification. This
concept is incorporated into the methodology by the automated
generation of proof obligations at each refinement step, andis
sustained by mathematical justifications not detailed here.

One of the characteristics of the refinement inB is that
it is independent of the internal representation used by the
machines, as illustrated by the following example of a system
returning the maximum of a set of stored natural values:

MACHINE MA

VARIABLES S
INVARIANT S⊆N

INITIALISATION S :=∅
OPERATIONS

store(n) , PRE n∈N THEN S :=S∪{n}
m←get , PRE S 6=∅THEN m :=max(S)

END

MACHINE MC REFINES MA

VARIABLES s
INVARIANT s=max(S∪{0})
INITIALISATION s :=0
OPERATIONS

store(n) , IF s<n THEN s :=n

m←get , m :=s
END

The state of the machines is described in theVARIABLES

clause; for the specificationMA it is a set of natural num-
bers and for the implementationMC a natural number. The
INVARIANT clause defines a constraint over the state;
for MA it indicates thatS is a subset ofN, whereas for
MC it describes theglue between the states ofMA and MC

(intuitively claiming that if both machines are used in parallel
thens is always equal tomax(S)). TheINITIALISATION

clause sets the initial state, while theOPERATIONS clause
details the operations used to read or alter the state. The two
machines differ yetMC refines MA: roughly speaking one
cannot exhibit a property ofMC which contradicts one ofMA.

Note the use of thePRE substitution defining a precondi-
tion, that is a condition that the user has to check before calling
an operation. This is anoffensiveapproach; an operation
(should not but) can be used when this condition is not
satisfied, yet in such a case there is no guarantee about the



result (it may even cause a crash). By opposition thedefensive
approach is represented inB by usingguards(that is anIF)
that prevent unauthorised uses. These notions are standardin
formal methods and will be discussed further later in this
paper.

B. AboutCoq

Coq is a proof assistant based on a type theory. It offers a
higher-order logical framework that allows for the construction
and verification of proofs, as well as the development and
analysis of functional programs in anML-like language with
pattern-matching.

Coq implements theCalculus of Inductive Constructions[9]
and it is frequent in developments to use inductive definitions.
For example,N is defined in thePeanostyle as follows:

Inductive N :=0:N | S :N→N

This definition means thatN is the smallest set of terms closed
under (finite number of) applications of theconstructors0 and
S. N is thus made of the terms0 andSn(0) for any finite n;
being well-founded, structural induction onN is possible (the
induction principle is automatically derived byCoq after the
definition of N). The definition also means thatN contains
no other values (surjectivity) and that∀ (n : N), 0 6= S(n) and
∀ (m n :N), S(m)=S(n)⇒m=n (injectivity).

Contrary toB, there is no enforced development methodol-
ogy in Coq, nor any explicit refinement process. The user can
choose between several styles of specification and implemen-
tation, and has to decide on its own about the properties to
be checked. For example theweak specificationstyle consists
of defining functions as programs in the internalML-like
language and later checking properties of these functions,as
illustrated here by the division by2:

Fixpoint div2(x :N) :N :=
match x with S(S(x′))→ S(div2(x′)) | → 0 end.

Theorem div2 def :
forall (x :N), n=2∗div2(n) ∨ n=2∗div2(n)+1.

Proof .
. . .

Qed.

div2 is a recursive program (usingdiv2(x+2)=div2(x)+1) and
div2 def a property claimed about it; the proof, not detailed
here, ensures thatdiv2 indeed satisfiesdiv2 def.

IV. SPECIFYING SECURE SYSTEMS

We now begin our discussion about developing secure sys-
tems using formal methods by considering more specifically
formal specifications of secure systems.

To start with trivial considerations, we first have to note that
formal methods offer tools to express specifications but that
there is no way to force a developer to describe the properties
required of the system under development. Clearly, using even
the most efficient formal method without adopting the ‘formal
spirit’ is meaningless, as there is no benefit compared to stan-
dard approaches if the formal specification is empty. Note also
that a formal development is a development, and so can also

benefit from standard practices such as naming conventions,
modularity, documentation, etc. In the case of formal methods,
in fact, the very process of deriving a formal specification from
the book of specifications should be documented, justifying
the formalisation choices and identifying, if any, aspectsof
the system left out (as it is generally not reasonable or even
feasible to aim at a full formalisation of a complete system).

Assuming a developer that has adopted the formal spirit,
there are further points to care about in order to develop an
‘adequate’ formal specification for a secure system, that isa
specification not only expressing the required properties,but
also ensuring that those properties are enforced at all stages
of the development as well as in any (reasonable) scenario of
usage of the implementation.

Some of the concerns that will be discussed below are
applicable for safety or any high assurance system; for others
a malicious developer will be assumed (a threat generally
irrelevant for safety but applicable in security). The ultimate
objective of such a malicious developer is to exploit any
weakness of a specification, in order to trap a system while
delivering a mechanically checked proof of compliance. One
could consider that such traps would be detected through code
review or testing. Yet, beyond the fact that formal methods are
expected to reduce the need for such activities, we warn the
reader that our illustrations are voluntarily simplistic,and that
real life examples ofTrojan Horseare difficult to detect.

A. About invalid specifications

As pointed out in Par. II-C, inconsistent specifications are
disastrous. Indeed, whereas inconsistency cannot be automati-
cally detected, it also permits to discharge any proof obligation
expressed – that is an inconsistent specification can in practice
make the developer life more comfortable. An inconsistent
specification is therefore dangerous for safety developments if
a distracted developer fails to notice that its proofs are a little
too easy to produce, and more so for security developments as
a malicious developer identifying such a flaw would be able
to prove whatever he wants.

Of course, an inconsistent specification is not imple-
mentable. It is therefore possible to check the consistencyby
providing an implementation – any one will do the trick, so
even a dummy implementation is sufficient. Yet there are in
security situations in which a formal specification is mandatory
while a formal implementation is not. This is the case for
the CC, at some assurance levels, that just require a formal
specification of theSecurity Policy. An undetected inconsistent
specification is therefore a possibility.

In B the consistency of a specification is partially checked
through proof obligations to be discharged by the developer.
Yet the obligations related to the existence of values satis-
fying the expressed constraints for parameters, variablesand
constants are deferred. Both following specifications are in-
consistent, yet allexplicit proofs obligations can be discharged



(that is, mostB tools will report a ‘100% proven’ status):

MACHINE absurd var
VARIABLES v
INVARIANT

v∈N ∧
v=0 ∧ v=1

ASSERTION 0=1

MACHINE absurd cst
CONSTANTS f
PROPERTIES

f ∈N→N∧
∀ x, y, x<y⇒f(x)>f(y)

ASSERTION 0=1

Of course, delaying such proof obligations is justified, as
implementing the specification will force the developer to
exhibit a witness for v that meets the specification (a con-
structive proof that the specification is satisfiable). Therefore,
B ensures that any inconsistency is detected, at the latest,
at the implementation stage. But we would like to remind
the reader that a formally derived implementation is not
always required. In such a case, one should consider additional
manual verifications to check the existence of valid values for
parameters, constants and variables.

Inconsistencies can be rather easy to introduce, accidentally
or not, by contradictingimplicit hypotheses associated to the
used formal method. InB for example there is a clauseSETS

that allows for the declaration of abstract sets used in a
machine; one can easily forget that such a set is always inB
finite and non-empty. If the developer contradicts one of these
implicit hypotheses the specification becomes inconsistent
without any warning by the tool; in fact the automated prover
will very efficiently detect the contradiction as a lemma usable
to discharge any proof obligation. Contradiction of implicit
principles of the underlying logic can also be illustrated in
Coq with two very simple examples. The first one is a naive
tentative of specifyingZ usingN:

Inductive Z : Set :=plus:N→ Z |minus:N→ Z.
Hypothesis zero unsigned:plus(0)=minus(0).

Unfortunately, as pointed out in Par. III-B, the definition of Z

is not a specification but an implementation (Z is the set of all
terms of the formplus(n) or minus(n)). zero unsignedintroduces
an inconsistency because it contradicts the injectivity principle
for the constructors: for any natural valuesn and m it is
possible to prove inCoq that plus(n) 6=minus(m).

The second example is related to the unexpected conse-
quences of using possibly empty types. This is illustrated by
the following (missed) attempt to define bi-colored lists of
natural values, that is lists with each element marked red or
blue:

Inductive blst:Set := red:blst→ N→ blst
| blue:blst→ N→ blst.

In the absence of an atomic constructor for the empty list,
blst which is the smallest set of terms stable by application
of the constructors is indeed empty. Therefore, assuming the
existence of such a list is inconsistent, and any theorem of the
form ∀ (b : blst), P is provable – hardly a problem from the
developer’s point of view, as he generally tries to prove only
those properties he expects. It would be prudent for any type
T introduced inCoq, to ensure that it is not empty e.g. by
proving a theorem of the form∃ (t :T ), True.

One could also investigate the satisfiability of the precondi-
tions or guards, as defined in Par. III-A, associated to functions
or operations. Indeed, while unsatisfiable preconditions are not
inconsistent, they often represent a form of deadlock, as they
mean that it is never possible to use an operation. They may
however be difficult to detect – there is a famous example of
the database of individuals developed in [4], in which it is
impossible to insert new entries, as pointed out in [10], due
to the fact that any new individual introduced in the database
should have a father and a mother, while the initial state is an
empty database. To avoid such difficulties the use of adequate
tools (animation of models, model-checking, automatic tests
generator, cf. [11]–[15]) can be of considerable help.

We would also like to draw the attention of the readers
to other types of problematic specifications. For example in
some cases it may happen that a specification mixes predicates
of the form P ⇒ Q and P ⇒ ¬Q. Such a specification is
consistent but only as long asP is false; to the least this
type of specification should be considered inappropriate. This
is one of the cases for which specification engineering tools
would be considered useful. Such tools associate for example
to a specification∀ x, P ⇒ Q an additional proof obligation
∃ x, P ; indeed the specification can bevacuouslytrue if P is
always false, but it is unlikely that such a specification convey
the intended meaning [16].

B. About (mis)understandings

Consequences of invalid specifications have been identified
and justify establishing procedures to check consistency.We
now discuss the problem of insufficient specifications, which
is more tricky to detect as it generally refers to a difference
between a specification and its intended meaning.

Our very first concern is related to the understanding of
the chosen formal method. It is not reasonable to expect all
‘users’ of formal methods to be expert. One may consider
for example a situation in which a customer convinced by
the interest of formal methods may however not have any
in-depth knowledge about any of them. In fact, we would
also argue that should formal methods be more widely used
– definitely something we expect for the future – they should
be accessible to people having received a dedicated training
but which are not expert (this is one of the main objectives of
the FoCal project [5], [17]–[19]). The minimum, however, is
to ensure thatany user has a basic understanding of some of
the underlying principles to avoid misinterpretation.

For example, consider the concept of refinement as intro-
duced in Par. II-B. The essence of this concept is to allow to
check that specifications and implementations are ‘similar’.
This similarity should not be too strong, as a refinement
relation reduced to intensional equality of programs (thatis,
the same code) would be useless. It is for example standard to
consider that computations and transient states are irrelevant.
In Coq this is translated by the fact that the equality is modulo
β-reduction (in other words,square(3)=9 because computing
square(3) yields 9). Our concern is illustrated inB by the



following specification of an airlock system:

MACHINE Sas
VARIABLES door1, door2
INVARIANT door1, door2∈{open, locked}∧

¬(door1 =open∧ door2 =open)
OPERATIONS

open
1

, IF door2 = lockedTHEN door1 :=open
close1 , door1 := locked
open

2
, IF door1 = lockedTHEN door2 :=open

close2 , door2 := locked

If the underlying principles of theB are not understood,
one can easily consider that theINVARIANT clause in a
provenB machine is ‘always true’. Therefore, any compliant
implementation of this specification would be considered safe.
Of course, this is not the case, as we may for example refine
the operationopen

1
as follows:

open
1

, IF door2 = lockedTHEN
door1 :=open;
IF attackTHEN door2 :=open; wait; door2 := locked

where wait is a passive but slow operation andattack any
condition the malicious developer can imagine to obfuscate
the dangerous behaviour during tests.

If stronger forms of invariant are required, e.g. to take
into account interruptions, specific modelisation choicesor
dedicated techniques are to be used (cf. [20]).

C. About partial specifications

Another aspect of a formal specification of a secure system
to check istotality: is the behaviour of the system specified in
any possible circumstance? It is frequent in formal methods
to define partial specifications – either to represent a form of
contract (a condition to be realised before having the rightto
use the system) or a form of freedom left to the developer (be-
cause the systems is not planned to be used in such conditions
or because the result is irrelevant). If the first interpretation
can be considered during formal developments, the second
one becomes the only relevant one once leaving the abstract
world of formal methods to tackle with implemented systems.
And the extent of the freedom given to the developer is easily
underestimated, as illustrated in the following examples.

We start by two specifications of theheadfunction (returning
the first element of a list of natural values) inCoq, in the strong
specification style1:

head1(l : list N)(p : l 6=[ ]) :{x :N | ∃ l′ : list N, l=x :: l′}.
head2(l : list N) :{x :N | l 6=[ ]→ ∃ l′ : list N, l=x :: l′}.

Both specifications ensure that the function, called upon a
non empty list, will return the head element. Yet the first
specification is associated to a precondition, the parameter p

being a proof that the list parameterl is not empty – making
it impossibleto call head1 over an empty list as it would not
be possible to build such a proof. The second specification is
on the contrary partial, allowing to usehead2 with an empty
list but not constraining the result in such a case (except for
being a natural value).

1In which the return value of a function is described as satisfying a property.

The point is that these two specifications are not so different:
all the logical parts of aCoq development are eliminated at
extraction(the process that extract proved programs). This is
not specific toCoq: by nature, logical contents in a formal
development are not computable and have therefore to be
discarded in some way before being able to produce a program.
And it is easy to implement both specifications in a way that
produces the same followingOCamlcode, wheresecretis any
value the malicious developer would care to export:

let head= function [ ]→ secret| h :: → h

We illustrate the same concern inB by the specification of a
file system manager. We define the setsUSR(users),Fil⊆FIL
(files), CNT (contents) andRGT (access rights).Cnt associates
for any file a content,Rgt associates for a user and a file
the rights, andcpt gives the number of existing files. Various
operations to create, delete or access the files are assumed to
be specified but are not detailed here, except forread:

MACHINE filesystem
SETS USR; FIL; CNT; RGT={r,w}
CONSTANTS cnul
PROPERTIES cnul∈CNT
VARIABLES Fil , Cnt, Rgt, cpt
INVARIANT Fil⊆FIL∧

Cnt∈Fil → CNT∧
Rgt⊆ (USR×Fil)×RGT∧
cpt=card(Fil)

INITIALISATION Fil :=∅ ‖ Cnt:=∅ ‖ Rgt:=∅ ‖ cpt:=0
OPERATIONS

. . .

out← read(f, u) ,

PRE f ∈Fil ∧ u∈USRTHEN
IF ((u 7→f) 7→r)∈RgtTHEN out:=Cnt(f)

ELSE out:=cnul
. . .

read is specified as returning the content of a filef , provided
that the useru has the right to read it. Yet it is only partially
specified, as we do not describe what happens when the file
does not exist. Any call ofread implemented inB would be
associated to a proof obligation to ensure that the precondition
is met, but this constraint goes as far as goes the use of the
B. So let’s assume the following malicious refinement ofread
is called over a non existing file:

out← read(f, u) ,

IF f ∈Fil THEN
IF ((u 7→f) 7→r)∈RgtTHEN out:=Cnt(f)

ELSE out:=cnul
ELSE Fil :=Fil∪{fS} ‖

Cnt:=Cnt∪{fS 7→S} ‖
Rgt:=Rgt∪{(eni 7→fS) 7→r}

Whereas the specification ofread wasapparentlypassive (not
modifying the state), this refinement creates a filefS storing
a (confidential) valueS, file only accessible by an arbitrary
usereni invented by the developer. Furthermore the invariant
is broken asfS is created yet not accounted for incpt, that is
fS is virtually invisible for the system. Note also that defining
the returned value when the file does not exist is not even



required byB; a malicious developer may however prefer to
returncnul for a better obfuscation of its code.

Clearly, a partial specification cannot enforce security, and
one should favor a total (anddefensive) specification. InB
this would translate into using aIF instead of aPRE.
When the condition associated to anIF substitution is not
satisfied, theELSE branch is executed – if it is absent it
is equivalent to askip substitution, that is itenforcesto do
nothing. On the contrary when the condition associated to
a PRE substitution is not satisfied, there isabsolutely no
guaranteeabout the result. Note that the defensive approach
(with redundant checks) is an implementation of thedefence
in depthconcept.

D. About elusive properties

For our next point, we would like to emphasise that some
concepts often encountered in security can be difficult to
express in a formal specification. Confidentiality is a good
example: while a formal specification may appear toimplicitly
provide confidentiality, one should be extremely careful about
its exact meaning, as illustrated by the following example of
a login manager inB.

The system state is defined byAcc⊆ USR the accounts,
log to identify the currently logged account (nouserencoding
no opened session), andPwd to associate to any account a
password. This last piece of information is confidential and
should not be disclosed. Operations (not detailed in this paper)
allows to log, exit, create or destroy an account, with only the
log operation specified as depending uponPwd to represent
the confidentiality of this data. The operationaccounts, detailed
here, returns the existing accounts:

MACHINE login
SETS USR; PWD
CONSTANTS root, nouser
PROPERTIES root∈USR∧ nouser∈USR\{root}
VARIABLES Acc, log, Pwd
INVARIANT

Acc⊆USR∧ root∈Acc∧ nouser6∈Acc∧
log∈Acc∪{nouser} ∧ Pwd∈Acc→PWD

INITIALISATION
Acc:={root} ‖ log:=nouser‖ Pwd:∈{root}→PWD

OPERATIONS
. . .
out← accounts,

IF log∈AccTHEN
ANY s WHERE s∈seq(USR)∧

ran(s)=Acc∧
size(s)=card(Acc)

THEN out:=s
ELSE out:=∅

. . .

Input and output values being not refinable inB (cf. Par. III-A),
the type of the return value ofaccountshas to be finalised in the
specification. In our example, we have chosen to implement
the setAcc returned byaccountsas a list (or sequence in theB
terminology)s of values ofUSR; ran(s)=Acc ensures that the
same values appear inAcc ands, size(s)=card(Acc) that the
length of the lists is equal to the cardinal ofAcc. The proposed

malicious refinement ofaccountsis the following one:

out← accounts,
IF log∈AccTHEN

ANY s WHERE s∈seq(USR)∧
ran(s)=Acc∧
size(s)=card(Acc)

THEN IF Pwd(root)<guess
THEN out:=sort(s)
ELSE out:=rev(sort(s))

ELSE out:=∅
whereguessis a new variable controlled by the malicious de-
veloper. Combining calls toaccountsand changes ofguess, one
can quickly derivePwd(root) through the artificial dependency
introduced in the returned value.

This example illustrates acovert channelexploit [21], as
discussed in [22]. Even if the implementation storesPwd in
a private memory location protected by a trusted operating
system – a rather optimistic assumption – its confidentiality
cannot be guaranteed without a form of control over depen-
dencies (e.g. consideringdata-flow).

It is of course possible to impose acomplete(or monomor-
phic) specification [23] – a deterministic specification, en-
forcing the extensional behaviour of any implementation. A
complete specification would not let any freedom to the de-
veloper and thus would ensure that there is nocovert channel
to be exploited. In our example, a complete specification
would for example requires to be sorted in ascending order.
This is however an impractical technical solution, an indirect
mean to ensure confidentiality. Furthermore completeness is
not expressible in theB specification language (or in most
languages considered in this paper), is generally undecidable
and is not stable by refinement of the representation of the
data – e.g. refining a set by an ordered structure.

It is also possible to better control dependencies inB by
specifying operations using constant functions. The following
modified specification claims that the operationaccountsbe-
haves like a function depending only upon the setAcc and
returning a list of values ofUSR:

CONSTANTS . . . , fct
PROPERTIES . . . ∧ fct∈P(USR)→seq(USR)
OPERATIONS

out← accounts,
IF log∈AccTHEN out:= fct(Acc) ELSE out:=∅

This approach is not yet fully satisfactory as only the depen-
dencies for theresult are described (the extensional point of
view). It is therefore still possible to affect thebehaviourof
accounts, as in this valid refinement:

out← accounts,
out := encode(Pwd(root));
IF Pwd(root)<guessTHEN wait(10) ELSE wait(20);
IF log∈AccTHEN out:= fct(Acc) ELSE out:=∅

In this refinement the malicious developer implements both a
timed channelas well as a possibly observable transient state
of the output.

This illustration is just intended to show why, in some cases,
expressing confidentiality can be difficult. For such properties,



complementary approaches should be considered, based e.g.
on dependency calculus or non-interference [24], [25], and
associated to standard code analysis. Note that confidentiality
is often formally addressed through access control enforced
by a form ofmonitor, that is according to theOrange Booka
tamperproof, unavoidable, and ‘simple enough to be trusted’
mechanism filtering accesses (cf. recent discussions in [26]–
[28]). Such a monitor can itself implement this type ofcovert
channelattacks if it is poorly specified. Note also that the
confidence in a system implementing a monitor relies on the
confidence in the information used by this monitor, such as
the source of an access request (that would require a form of
authentication) as well as the level of protection required by
the accessed object (a meta-information whose origin is gen-
erally unclear, but for which effective implementations such
assecurity labelsprotected in integrity have been proposed).

We mention authentication and integrity to point out another
source of rather elusive properties, that is the characterisation
of cryptographic functions. For example, a (cryptographic)
hash functionH is such that:

• given h it is not possible to findx s.t. H(x)=h;
• given x it is not possible to findy 6=x s.t. H(x)=H(y);
• it is not possible to findx 6=y s.t. H(x)=H(y).

The first property, for example, guarantees the security of
the Unix login scheme; being able to specify a hash function
(without giving any details on its implementation) by formally
describing these properties has therefore some interest to
certify such a scheme. Yet these properties appear to be rather
difficult to express formally. A naive translation of the last
property would just say thatH is injective, which is false (as
H projects an infinite set in a finite set of binary words of
fixed length) and would lead to an inconsistent specification.
Formally expressing such properties is possible, but generally
less straightforward than one may expect.

E. About the refinement paradox

Most of the examples detailed in Pars. IV-C and IV-D are
illustrations of what is often referred to as therefinement
paradox: some properties are preserved by refinement (safety
ones generally are), other are not (security ones).

Back to the discussion of Par. IV-D, the most simple
example of ‘devious’ refinement that we can exhibit inB is
the following one:

MACHINE Boolean
OPERATIONS out←go , out:= true8 out:= false

This machine is a very simple one, having no state and defining
a single operationgo returning a boolean value. There are of
course two straightforward refinements:

MACHINE Boolean True
REFINES Boolean
OPERATIONS out←go , out:= true

MACHINE Boolean False
REFINES Boolean
OPERATIONS out←go , out:= false

Yet it also accepts other refinements, such as the following
one:

MACHINE Boolean Covert Channel
REFINES Boolean
VARIABLE dump
INVARIANT dump∈N

INITIALISATION dump:=private key
OPERATIONS out←go , IF dumpmod 2=0

THEN out:= true
ELSE out:=false;
dump:=dump/2

One should not believe that the refinement paradox is specific
to those methods which are providing an explicit form of
refinement, such asB or Z for example. Our devious re-
finements include implicitly a non functional refinement of
the representation of data: we accept several implementations
as representing a single abstract value of the specification.
This intuitively describes why some variables arehidden at
the specification level. From this intuition, we suggest the
following counterpart inCoq of the refinement paradox. Let’s
consider the example of the specification of booleans as an
Abstract Data Type, with the equality and a boolean function:

Module Type Boolean Function.
Parameter B :Set.
Parameters⊤⊥ :B.
Parameter ≡:B→B→Prop.
Hypothesis refl :∀ (b :B), b≡b.
Hypothesis sym:∀ (b1 b2 :B), b1≡b2→b2≡b1.
Hypothesis tran:∀ (b1 b2 b3 :B), b1≡b2→b2≡b3→b1≡b3.
Hypothesis inj :¬⊤≡⊥.
Hypothesis surj:∀ (b :B), b≡⊤∨ b≡⊥.
Parameter fnc:B→B.

End Boolean Function.

The straightforward refinement of this specification is of
course to implementB asB, theCoq type of booleans, and to
implementfnc as one of the four possible boolean functions
(true, false, identity or not). But a devious implementation
gives much more freedom; we can for example choose to
implementB asN, even values representing⊥ and odd values
representing⊤:

Module Covert Channel:Boolean Function.
Definition B :=N.
Definition⊥ :=0. Definition⊤ :=1.
Definition ≡ (b1 b2 : B) :=(b1+b2 mod 2=0).
. . .
Definition fnc(b :B) :B :=match ((b/2) mod 4) with
| 0 ⇒ ⊥
| 1 ⇒ ⊤
| 2 ⇒ b
| ⇒ b+1
end.

End Covert Channel.

This implementation introduces a new dimension in the repre-
sentation of the data, which is hidden at specification leveland
can be used by a malicious developer to store information and
modify results:fnc now emulates any of the boolean functions.

Note that the term of refinement paradox may be considered
an overstatement, provided the presentation of refinement in
Par. II-B. Clearly the very concept of refinement is extensional,



whereas on the contrary confidentiality can be considered as
intensional: rather than describingwhat a result should be, it
aims at constraininghow a result is produced (in this case,
without depending upon the confidential value). Similarly,if
refinement is intended to preserve properties described in a
specification, it does not aim at preserving properties of the
specification itself, or any other form ofmeta-properties; so
the fact that for example completeness is not preserved should
not be a surprise.

V. BUILDING ON SAND?

In Par. IV-A, we have shown possible consequences of
inconsistent specifications. Obviously similar or worse con-
sequences can result from other sources of inconsistencies,
such as a bug in the tool implementing the formal method,
or a mistake in the theory of the formal method itself. For a
malicious developer, a paradox (a flaw in the logic that can
be used to prove at the same time bothP and¬P ) discovered
in a theory or in a tool can be used to prove any property
about any development, that is to implement any unpleasant
behaviour while getting a certification.

When trying to assess the level of confidence one may
have in the result of a formal development, the question of
the validity of the tool and of the theory should therefore be
addressed.

A. About the logic

In [29] a deep embedding (cf. [30], [31]) of theB logic in
Coq is described, that is intuitively a form ofB virtual machine
developed inCoq with the objective to check the validity of
theB logic. While this deep embedding has not identified any
paradox2, it has shown that the following ‘theorems’ from [4]
are in fact not provable using the defined logic:

E17→F1 =E27→F2 ⇒ E1=E2

E17→F1 =E27→F2 ⇒ F1 =F2

S1⊆S2 ∧ T1⊆T2 ⇒ S1×T1⊆S2×T2

These results are not provable because of the definition of the
B inference rules, which are not sufficiently precise regarding
the formal definition of what is a cartesian product. To our
knowledge, the fact that these results were not valid inB was
not known by theB community. Being apparently trivial, they
were never checked and have been integrated for example in
provers for theB logic. That means, at a fundamental level,
that these results were in fact taken as additional axioms,
without people knowing it – an approach that could have
created a paradox in the logic.

Further investigations have emphasised another form of
subtile glitch that may appear in the theory of a formal method.
As pointed out in Par. II-A, formal methods allow for multiple
descriptions of a system as well as the verification of the
similarity of these descriptions. This is sometimes obtained
by defining several semantics for a single construct.

In B, substitutions of theGSL (used to write opera-
tions) are defined aspredicate transformers, that is a log-
ical semantic. On the other hand the substitutions of the

2The consistency of theB logic has not been proved either.

B0 sub-language are used for implementation and also
have an operational semantic. This is the case of the
WHILEP DOS INVARIANTI VARIANTV substitution,
illustrated in [4] by the extraction of the minimum of a non-
empty set of natural values:

x :=0;

WHILE x 6∈S
DO x :=x+1
INVARIANT x∈ [0,min(S)]
VARIANT min(S)−x

END

Using the definition of theWHILE substitution as a predicate
transformer, one can indeed show that this substitution realises
(that is, transforms into a tautology) the predicatex=min(S).
In other words the substitution is proven to extract the mini-
mum in any case of use (providedS 6=∅).

By denotingJK the translation producing aC program from
a B0 substitution, the operational semantic is defined by:

u
wwv

WHILE P

DO S

INVARIANT I

VARIANT V

}
��~ = while JP K{JSK}

The interesting point is that this semantic forgetsI (the
loop invariant) andV (the loop variant) that are pure logical
contents, important for the proofs (e.g. of termination) but
irrelevant for the execution.

Modifying the invariant does not change the program (the
operational semantic) and should therefore only have limited
impact on the logical semantic. The surprise is that by re-
placing in the previous example the invariantm∈ [0,min(S)]

by m ∈ N, less precise but still correct, the logical semantic
is radically modified. This modified logical semantic leads to
a refutation of the previous proposition, that is it indicates
that the substitution is not always extracting the minimum.
A rather strange conclusion, as both versions of the logical
semantic describe the same program.

We have also identified a similar concern withCoq. In
this case there is a single language, mixing logical and
computational constructs, an extraction mechanism allowing
for the elimination of the former to derive from the latter a
program in a functional language, e.g. inOCaml.

As already pointed out in Par. IV-A, an inductive definition
such asInductive E : Set := nxt : E → E lacks an atomic
constructor and is therefore empty. Emptyness is not, by itself,
inconsistent but makes possible to prove any result of the
form ∀ (e :E), P . Its extraction inOCaml is a straightforward
translation totype E = Nxt of E. The interesting point is
that this OCaml type is not empty, as it contains the value
let rec e=Nxt(e), not valid inCoq but making possible to use
a program extracted from a fully certifiedCoq library with
unexpected (and therefore unwanted) behaviours.

It is beyond the scope of this paper to further discuss
these questions, once noted that any such bias is a potential
weakness usable by a malicious developer (or a trap for
an honest but inattentive developer). These remarks are not
intended to criticize the tremendous work represented by the



full development of the theories supporting formal methods.
They however justify the interest in mechanically checking
such theories, pursuing works described e.g. in [32]–[34].

B. About the tools

Beyond the concerns about the theory, one may also ques-
tion the validity of the tool implementing a formal method.
For example a prover can be incomplete (unable to prove
results valid in the theory) or incorrect (able to prove results
unprovable in the theory), the latter being more worrying, at
least from the evaluation and certification perspective, asit
may lead to an artificial paradox. And indeed such paradoxes
have been discovered in well established tools.

Clearly, implementing a formal method is a difficult task,
dealing not only with completeness, correctness, but also with
performance, automation, and ergonomy. In our view, the
(potential) existence of bugs in a tool does not mean that
it should not be used, but that the provided results should
be considered with some care, and possibly verified by other
mechanisms. This is addressed for example by [29], [35].

VI. STEPPINGOUT OF THE MODEL

We have discussed at length some concerns regarding the
formal development of secure systems, through questionning
paradoxes in the theory, bugs in the tools or more simply by
identifying gotchas in the specifications. Let’s now assumethat
we have been able to produce a consistent specification with
security properties correctly expressed, and a compliant imple-
mentation whose all proof obligations have been discharged,
using a well-established formal method and a trusted tool –
that is, we finally have aproven securitysystem. That doesnot
mean however that the system is secure, but that any attack has
to contradict at least one of the hypotheses (a good heuristic
for those willing to attack formally validated systems).

Preconditions, for example, are hypotheses whose violation
can be devastating, as illustrated in Par. IV-C. But one should
take care also to identify all theimplicit hypotheses when
developing a system or evaluating its security. Such implicit
hypotheses are not only those that are introduced by the formal
method (cf. Par. IV-A), but also those that are related to the
modelisation choices themselves.

A. About Closure

A frequent implicit hypothesis is related to the use of closure
proofs. For example, proving aB machine requires proving
the preservation of its invariant by any of its operations. This
is justified if there is no other way to influence the system
state than the provided operations. The extent to which this
is enforced in the real system has to be carefully analysed.
Threats considered during security analysis may reflect actions
that are not in the model (data stored in files by proven
applications can be modified by other applications, signals
in electronic circuits can be jammed byfault injection, etc).
There is no silver bullet to address this problem; current
approaches include defensive style programming, redundancy,
and dysfunctional considerations (e.g. by modelling errors
such as unexpected values or inconsistent states).

B. About Typing

A second example of implicit hypothesis, much less ob-
vious, is related to types. An adequate use of types in a
specification (for example modellingIP addresses and ports
as values of abstract sets rather than natural values) ensures
that some forms of error will be automatically detected (such
as using a port where an address is expected). But it is also
important to understand how strong an hypothesis it is, and
how easily it can be violated. Indeed, types are again logical
information that have generally no concrete implementation;
in most programming languages, they just disappear at compi-
lation. So, while ill typed operation callscannotbe considered
during formal analysis, they are in some casesexecutable.

A typical example is provided in [36], describing a flaw in
the PKCS#11API for cryptographic resources, summarised
here. A central authority (e.g. a bank) distributes crypto-
graphic resources to customers. Such a resource can perform
cryptographic operations,C ← cipher(M, K) to cipher the
messageM with the key numberedK, or M←uncipher(C, K)

for the inverse operation. The resource never discloses keys
to the customer, but permits exchange of keys with other
resources through export ofwrapped (cyphered) keys using
D←export(K, W ) whereK is the number of the exported key
andW the number of the wrapping key, andimport(D, W, K)

for the inverse operation (that stores internally the unwrapped
key under numberK without disclosing it). In a model where
cyphertexts and wrapped keys are of different types, one can
prove that no sequence of calls will disclose a sensitive key.
Unfortunately the implementations of cyphertexts and wrapped
keys are indistinguishable, and stored keys are not tagged with
their role. It is so possible to disclose a keyK with the (ill-
typed) sequenceD←export(K, W ); M←uncipher(D, W ).

This demonstrates that it is important to identify implicit
hypotheses associated to the use of types to detect possible
consequences of type violations, or to maintain type informa-
tion in the implementation to prevent such attacks.

VII. C ONCLUSION

We summarise and discuss difficulties related to the devel-
opment of secure systems using formal methods, identifying
– where possible – proposals for improvement. The concerns
described in this paper were identified during a systematic
review of the process of formal development, investigating
possible difficulties.

A quick read of this paper could seem to imply that the
reputation of formal methods to develop correct systems is
overestimated.This is not our message. We consider that
formal methods are very efficient tools to obtain high level
of assurance and confidence for the development of systems
in general, and of secure systems in particular.

Yet to fully benefit from such tools, one has to understand
their strengths but also their limitations. Pretending that proven
secure systems are perfectly secure is nothing more than a re-
newed version of the first myth about formal methods pointed
out in [37], and is to the least inadequate; in fact, we consider
that such a claim is detrimental to formal methods. Taking



this into account, we expect our proposals to help, where
possible, for improving the quality of formal specifications and
the adequacy of formal developments of secure systems (in
some cases relying on other methodologies or technologies);
our second expectation is to shed some light on the difficulties
to at least allow for a better evaluation of the genuine levelof
confidence obtained through the use of formal methods.

Nota: An extended version of this paper is available in French
language at [38].
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