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Existence and properties of travelling waves for the

Gross-Pitaevskii equation

Fabrice Béthuel 1, Philippe Gravejat 2, Jean-Claude Saut 3

Abstract

This paper presents recent results concerning the existence and qualitative properties of
travelling wave solutions to the Gross-Pitaevskii equation posed on the whole space RN .
Unlike the defocusing nonlinear Schrödinger equations with null condition at infinity, the
presence of non-zero conditions at infinity yields a rather rich and delicate dynamics. We
focus on the case N = 2 and N = 3, and also briefly review some classical results on the
one-dimensional case. The works we survey provide rigorous justifications to the impressive
series of results which Jones, Putterman and Roberts [46, 45] established by formal and
numerical arguments.

1 Introduction

The Gross-Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ(1 − |Ψ|2) on R
N × R, (GP)

appears as a relevant model in various areas of physics: nonlinear optics, fluid mechanics, Bose-
Einstein condensation... (see, for instance, [57, 40, 44, 46, 45, 48, 12]). It corresponds to a version
of the defocusing nonlinear Schrödinger equations. If one considers finite energy solutions, as
suggested by the formal conservation of the energy (see (1.1) below), then Ψ should not vanish
at infinity, but instead |Ψ(x, ·)| should in some sense tend to 1 when |x| → +∞. As a matter of
fact, this condition ensures that (GP) has a non-trivial dynamics, contrary to the case of null
condition at infinity, where the dynamics is expected to be trivial (dispersion, scattering...).

In nonlinear optics, (GP) classically appears in the context of optical dark solitons, that is
localized nonlinear waves (or ”holes”) which exist on a stable continuous wave background (see
the review paper by Kivshar and Luther-Davies [48] or paper [49], where different scenarios for
the transverse instability of one-dimensional black solitons are proposed in the context of (GP)).
The boundary condition |Ψ(x, ·)| → 1 is due to this non-zero background.

The Gross-Pitaevskii equation has also been intensively used as a model for superfluid Helium
II and for Bose-Einstein condensation. We refer to [40, 21], and to the survey by Berloff [7].

At least on a formal level, the Gross-Pitaevskii equation is hamiltonian. The conserved
Hamiltonian is a Ginzburg-Landau energy, namely

E(Ψ) =
1

2

∫

RN

|∇Ψ|2 +
1

4

∫

RN

(1 − |Ψ|2)2 ≡
∫

RN

e(Ψ). (1.1)
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Similarly, the momentum

~P (Ψ) =
1

2

∫

RN

〈i∇Ψ ,Ψ − 1〉 (1.2)

is formally conserved. We will denote by p, the first component of ~P , which is hence a scalar.
Another quantity which is formally conserved by the flow is

m(Ψ) =
1

2

∫

RN

(
|Ψ|2 − 1

)
.

If Ψ does not vanish, one may write

Ψ =
√
ρ exp iϕ.

This leads to the hydrodynamic form of the equation

{
∂tρ+ div(ρv) = 0,

ρ(∂tv + v.∇v) + ∇ρ2 = ρ∇
(

∆ρ
ρ

− |∇ρ|2
2ρ2

)
,

(1.3)

where
v = −2∇ϕ.

If one neglects the right-hand side of the second equation, which is often referred to as the
quantum pressure, system (1.3) is similar to the Euler equation for a compressible fluid, with
pressure law p(ρ) = ρ2. In particular, the speed of sound waves near the constant solution
Ψ = 1, that is ρ = 1 and v = 0, is given by

cs =
√

2.

When N = 1, (GP) is integrable by the inverse scattering method, and it has been formally
analyzed (with the non-trivial boundary condition at infinity) in [61]. The (local and global)
Cauchy problem associated to (GP) with non-zero condition at infinity has been recently thor-
oughly investigated (see the survey by Gérard [30] in this volume). The possible existence
of non-trivial travelling wave solutions highly suggests that the long time behaviour of global
unsteady solutions should be non-trivial (as it would be in the presence of zero condition at
infinity).

Travelling waves are solutions to (GP) of the form

Ψ(x, t) = u(x1 − ct, x⊥), x⊥ = (x2, . . . , xN ).

Here, the parameter c ∈ R corresponds to the speed of the travelling waves (we may restrict to
the case c ≥ 0 using complex conjugation). The equation for the profile u is given by

ic∂1u+ ∆u+ u(1 − |u|2) = 0. (TWc)

Travelling waves of finite energy play an important role in the dynamics of the Gross-
Pitaevskii equation. Whereas the one-dimensional case can be integrated explicitly, solutions
are not explicitly known in higher dimensions.

The first attempts to prove existence of travelling waves and to study their properties were
based on formal expansions and numerics. They were mostly performed by physicists. The three-
dimensional case was considered by Iordanskii and Smirnov [44], whereas Jones, Putterman and
Roberts [46, 45] developed a thorough analysis in dimensions two and three: they found a branch
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of solutions with speeds c covering the full subsonic range (0,
√

2), and they conjectured the non-
existence of travelling waves for supersonic speeds. Moreover, they showed the connections with
solitary waves for the Kadomtsev-Petviashvili equation (KP I).

More recently, the program of Jones, Putterman and Roberts [46, 45] has been provided with
rigorous mathematical proofs. One of the purposes of these notes is to review some of these
mathematical progresses and to stress a number of open problems.

The next section provides a rather extensive survey of the one-dimensional case. We review
classical results and also prove some new ones. Sections 3 and 4 are devoted to recent progresses
on the rigorous mathematical proofs of the program of Jones, Putterman and Roberts [46, 45]:
qualitative properties and existence of travelling waves in higher dimensions. Section 5 presents
some related problems. In particular, we establish new results on the nonlinear Schrödinger flow
around an obstacle, modelled by a potential.

2 The one-dimensional case

2.1 The integration of equation (TWc)

In the one-dimensional case, equation (TWc) is entirely integrable using standard arguments
from ordinary differential equation theory. Hence, it is possible to classify all the travelling
waves with finite energy according to their speed c.

Theorem 1 ([66, 54, 36, 29, 25, 7]). Assume N = 1 and c ≥ 0, and let v be a solution of finite
energy to (TWc).
i) If c ≥

√
2, v is a constant of modulus one.

ii) If 0 ≤ c <
√

2, up to a multiplication by a constant of modulus one and a translation, v is
either identically equal to 1, or to

v(x) = vc(x) ≡
√

2 − c2

2
th
(√2 − c2

2
x
)
− i

c√
2
. (2.4)

Moreover, vc may be written as

vc(x) =

√√√√√1 − 2 − c2

2ch2

(√
2−c2

2 x

) exp i

(
arctan

(√
2 − c2

c
th
(√2 − c2

2
x
))

− π

2

)
, (2.5)

if 0 < c <
√

2.

For sake of completeness, we briefly recall the proof of Theorem 1.

Proof. Denoting v = v1 + iv2, equation (TWc) becomes

v′′1 − cv′2 + v1(1 − v2
1 − v2

2) = 0, (2.6)

v′′2 + cv′1 + v2(1 − v2
1 − v2

2) = 0. (2.7)

Multiplying (2.6) by v2 and (2.7) by v1 yields

(v1v
′
2 − v2v

′
1)

′ =
c

2
η′, (2.8)
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where η ≡ 1−|v|2. Since v is a finite energy solution to (TWc), it is smooth and bounded on R.
Moreover, v′(x) and η(x) tend to 0, as x→ ±∞. In particular, the integration of (2.8) leads to

v1v
′
2 − v2v

′
1 =

c

2
η. (2.9)

Multiplying (2.6) by v′1, and (2.7) by v′2, and integrating the resulting equation, we also deduce
that

|v′|2 =
η2

2
. (2.10)

Computing

η′′ = −2|v′|2 − 2(v1v
′′
1 + v2v

′′
2 ) = −2|v′|2 − 2c(v1v

′
2 − v2v

′
1) + 2η − 2η2,

where we invoke (TWc) for the second identity, we finally obtain from (2.9) and (2.10),

η′′ + (c2 − 2)η + 3η2 = 0. (2.11)

Multiplying (2.11) by η′ and integrating, it follows that

η′2 + (c2 − 2)η2 + 2η3 = 0. (2.12)

As previously mentioned, η is a smooth, bounded function on R, such that η(x) → 0, as x→ ±∞.
In case it is not identically equal to 0 on R, we can assume, up to a translation, that

|η(0)| = max
{
|η(x)|, x ∈ R

}
> 0, (2.13)

so that
η′(0) = 0. (2.14)

Using (2.12), we are led to

η(0) =
2 − c2

2
. (2.15)

In particular, if c =
√

2, η(0) = 0, which gives a contradiction with (2.13). Hence, η is identically
equal to 0 if c =

√
2. On the other hand, if c >

√
2, then, by (2.12),

(c2 − 2 + 2η)η2 = −η′2 ≤ 0.

so that, by (2.15) and the continuity of η,

η(x) ≤ 2 − c2

2
< 0, ∀x ∈ R.

This gives a contradiction with the fact that η ∈ L2(R). Therefore, η is identically equal to 0 if
c >

√
2. Finally, if 0 ≤ c <

√
2, it follows from (2.14), (2.15), and Cauchy-Lipschitz’s theorem

that there exists a unique local solution η to (2.11)-(2.14)-(2.15) on some neighbourhood of the
point 0. One can check that this solution is given by

η(x) =
2 − c2

2ch2
(√

2−c2

2 x
) , (2.16)

so that it can be extended to be the unique, up to some translation, non-constant solution to
(2.11) in L2(R). In conclusion, either η is identically equal to 0 (in particular, when c ≥

√
2),

either it is given, up to a translation, by (2.16).
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When c 6= 0, it follows that |v| =
√

1 − η does not vanish on R, so that we can construct a
lifting ϕ of v, that is a smooth function ϕ such that

v = |v| exp iϕ =
√

1 − η exp iϕ.

Invoking (2.9), we are led to

ϕ′ =
cη

2 − 2η
, (2.17)

so that ϕ ≡ ϕ0 is identically constant when η = 0, whereas ϕ is given by

ϕ(x) = ϕ0 + arctan

(√
2 − c2

c
th
(√2 − c2

2
x
))

,

when η is given by (2.16). This completes the proofs of assertion i), and of identity (2.5).
Identity (2.4) follows from standard trigonometric identities, in particular, from the fact that

cos
(
arctan(x)

)
=

1√
1 + x2

, and sin
(
arctan(x)

)
=

x√
1 + x2

.

When c = 0, either η is identically equal to 0, so that, by (2.10), v is a constant of modulus
one, or η is given, up to some translation, by

η(x) =
1

ch2
(

x√
2

) .

In this case, v(0) = 0, so that, by (2.10), we may assume, up to the multiplication by a constant
of modulus one, that

v′(0) =
1√
2
.

Hence, by Cauchy-Lipschitz’s theorem, there exists a unique local solution to (TWc), with c = 0,
on some neighbourhood of the point 0. One can check that this solution is given by

v0(x) = th
( x√

2

)
,

so that, up to the invariances,

v(x) = v0(x) = th
( x√

2

)
.

This completes the proof of Theorem 1.

Let us next draw some remarks concerning qualitative properties of non-constant finite energy
travelling waves, which we deduce from formulae (2.4) and (2.5).

The first observation is that the one-dimensional non-constant travelling waves form a smooth
branch of subsonic solutions to (TWc). As seen in Theorem 1, there exist neither sonic, nor
supersonic non-constant travelling waves. Moreover, formula (2.4) yields the spatial asymptotics
of the non-constant solutions to (TWc). Notice in particular that

vc(x) → v
±∞
c ≡ ±

√
1 − c2

2
− i

c√
2
, as x→ ±∞.

Hence, vc(x) converges to a constant v±∞
c of modulus one, as x→ ±∞. This constant is different

for the limit x → −∞, and the limit x → +∞. In contrast, the solution we will find in the
higher dimensional case will have a limit at infinity which is independent on the direction (see
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Theorem 9). Notice also that the function vc − v±∞
c has exponential decay, whereas the decay

is algebraic in higher dimensions (see also Theorem 9). This fact is related to the properties of
the kernel of the linear part of the equation. The Fourier transform of the kernel K associated
to (TWc) (more precisely, to (2.11)) is given by

K̂(ξ) =
1

2 − c2 + ξ2
,

hence has some exponential decay, when 0 ≤ c <
√

2.

A second observation is, in view of identity (2.5), that vc(x) does not vanish, unless c = 0. In
the case c = 0, the non-constant solution of finite energy to (TWc) is given, up to the invariances,
by

v0(x) = th
( x√

2

)
,

which vanishes at x = 0. This stationary solution, which is real-valued, is often termed a kink
solution. In contrast with the one-dimensional case, it can be shown in higher dimensions, using
Pohozaev’s identity, that the only finite energy solutions with c = 0 are constants (see [11]).
The energy of the kink solution is given by

E(v0) =
2
√

2

3
.

The kink solution has the following remarkable minimization property.

Lemma 1. We have

E(v0) = inf
{
E(v), v ∈ H1

loc(R), inf
x∈R

∣∣v(x)
∣∣ = 0

}
.

In particular, if E(v) < 2
√

2
3 , then,

inf
x∈R

∣∣v(x)
∣∣ > 0.

Proof. We consider a minimizing sequence (vn)n∈N for the minimization problem

E0 = inf

{∫ +∞

0
e(v), v ∈ H1

loc([0,+∞)), v(0) = 0

}
,

which is well-defined by Sobolev’s embedding theorem. We notice that the functions v′n are uni-
formly bounded in L2([0,+∞)), and that vn(0) = 0. Hence, by Rellich’s compactness theorem,
there exists some function u ∈ H1

loc([0,+∞)), with u(0) = 0, such that, up to a subsequence,

v′n ⇀ u′ in L2([0,+∞)), and vn → u in L∞
loc([0,+∞)), as n→ +∞.

By Fatou’s lemma, we are led to

∫ +∞

0
e(u) =

1

2

∫ +∞

0

(
u′
)2

+
1

4

∫ +∞

0
lim inf
n→+∞

((
1 − |vn|2

)2) ≤ lim inf
n→+∞

(∫ +∞

0
e(vn)

)
,

so that the infimum E0 is achieved by the function u. In particular, the solution u is critical for
the Ginzburg-Landau energy, i.e. solves

u′′ + u(1 − |u|2) = 0.
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Integrating this equation yields u(x) = v0(x) = th
(

x√
2

)
(see the proof of Theorem 1), so that

E0 =

∫ +∞

0
e(v0) =

√
2

3
.

Next consider a map v ∈ H1
loc(R), with finite Ginzburg-Landau energy, and which vanishes at

some point x0. In view of the invariance by translation, we may assume that x0 = 0, whereas
the minimality of v0 yields ∫ +∞

0
e(v) ≥

√
2

3
,

and the same inequality holds for the energy on (−∞, 0], so that

E(v) ≥ 2
√

2

3
= E(v0).

The proof of Lemma 1 follows.

Remark 1. When E(v) < 2
√

2
3 , v has no zero, so that we may write

v = ̺ exp iϕ.

In particular, the energy density of v can be expressed as

e(v) =
1

2

(
(̺′)2 + ̺2(ϕ′)2

)
+

1

4

(
1 − ̺2

)2
, (2.18)

whereas, for the scalar momentum, we have

〈iv′, v〉 = −̺2ϕ′. (2.19)

2.2 Energy and momentum of travelling wave solutions

A general principle states that travelling wave solutions are critical points of the energy, keeping
the momentum fixed. A natural question is therefore to determine whether this principle applies
to the solutions vc. However, the precise definition of the momentum raises a serious difficulty.

In the context of nonlinear Schrödinger equations, the momentum of solutions should be
defined as

P (Ψ) =
1

2

∫

R

〈iΨ′,Ψ〉.

This quantity has a physical meaning and at least formally, describes the evolution center of
mass in the (GP) dynamics. This fact is shown for instance by the relation

d

dt

(
1

2

∫

R

x
(
|Ψ(x, t)|2 − 1

)
dx

)
= 2P (Ψ(t)). (2.20)

The momentum P (vc) is well-defined in view of the exponential decay of the quantity 〈iv′c, vc〉,
and is equal to

P (vc) = −c
√

2 − c2

2
.

Notice that, if c 6= 0, then we may write vc = ̺c exp iϕc, so that we have

P (vc) = −1

2

∫

R

̺2
cϕ

′
c.
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In the variational context we have in mind, we need to extend this definition to a larger class of

maps v. S We restrict ourselves to the case the case E(v) < 2
√

2
3 , since we wish to establish a

minimality property for the solution vc, which is known to have an energy satisfying E(vc) <
2
√

2
3 .

Assuming E(v) < 2
√

2
3 , it follows from Lemma 1 that v has no zero and the continuity of v

combined with the finiteness of its energy yield

δ = inf
x∈R

|v(x)| > 0,

so that we may write v = ̺ exp iϕ. However, the quantity

P (v) = −1

2

∫

R

̺2ϕ′ =
1

2

∫

R

(1 − ̺2)ϕ′ − 1

2

∫

R

ϕ′,

is only well-defined if we are able to give a meaning to the last integral
∫

R
ϕ′, since the first one

may be bounded by Cauchy-Schwarz’s inequality,
∣∣∣∣
∫

R

(1 − ̺2)ϕ′
∣∣∣∣ ≤

1

2

∫

R

(1 − ̺2)2 +
1

2δ2

∫

R

̺2(ϕ′)2.

The integral
∫

R
ϕ′ is well-defined in particular if the limits ϕ(±∞) = lim

x→±∞
ϕ(x) do exist, in

which case we have
∫

R
ϕ′ = ϕ(+∞) − ϕ(−∞). This leads us to consider the set

Z0(R) =
{
v ∈ H1

loc(R), s.t. E(v) <
2
√

2

3
, and v±∞ = lim

x→±∞
v(x) exist

}
.

In view of the above discussion, the momentum P (v) is well-defined for any v ∈ Z0(R). However,
we have

Lemma 2. Let p > 0. We have

inf
{
E(v), v ∈ Z0(R), s.t. P (v) = p

}
= 0.

Proof. Let n ≥ 1, and consider the map vn = exp iψn ∈ H1
loc(R) defined by

ψn(x) =





0, if x ≤ −n,
−p

x+n
n
, if − n ≤ x ≤ n,

−2p, if x ≥ n.

Since

E(vn) =
p2

n
→ 0, as n→ +∞, (2.21)

vn(x) → 1, as x→ −∞, and vn(x) → exp(−2ip), as x→ +∞, the map vn belongs to Z0(R), for
any n sufficiently large. Moreover, we compute

P (vn) = p,

so that Lemma 2 follows from (2.21) taking the limit n→ +∞.

We do not actually know if the space Z0(R), and the limits at infinity for maps in that space
are preserved by the (GP) flow. However, this is the case if one imposes more regularity on the
initial condition. Consider, for instance, the space

Z2(R) =
{
v ∈ Z0(R), s.t. v|(0,±∞) ∈ {v±∞} +H2(0,±∞)

}
.

We have
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Lemma 3. Assume Ψ0 ∈ Z2(R), and let Ψ be the solution to (GP) with initial datum Ψ0.
Then, Ψ(t) belongs to Z2(R) for any t ∈ R, and Ψ±∞(t) = Ψ0,±∞.

We will not provide a proof of Lemma 3 in this survey.

Lemmas 2 and 3 lead us to introduce a notion of renormalized momentum p, whose physical
meaning seems less obvious, but whose variational properties are more relevant for our study.

We set, for any function v ∈ H1
loc(R) such that E(v) < 2

√
2

3 ,

p(v) ≡ 1

2

∫

R

(1 − ̺2)ϕ′, (2.22)

where we use the polar form v = ̺ exp iϕ of v. Notice that, by construction,

P (v) = p(v) − 1

2

(
ϕ(+∞) − ϕ(−∞)

)
,

when the limits ϕ(±∞) exist. We next compute the values of the energy and renormalized
momentum.

Proposition 1. Assume N = 1 and 0 ≤ c <
√

2, and let vc be the non-constant solution of
equation (TWc) given by (2.4). Then, the energy of vc is equal to

E(vc) =
(2 − c2)

3

2

3
, (2.23)

whereas its renormalized momentum is given by

p(vc) =
π

2
− arctan

( c√
2 − c2

)
− c

2

√
2 − c2. (2.24)

Remark 2. It should also be noticed that

|vc|2 − 1 =
c2 − 2

2ch2
(√

2−c2

2 x
) < 0,

and that this quantity is integrable, so that the mass of vc is equal to

m(vc) = −
√

2 − c2,

whereas its mass center is given by

1

2

∫

R

x
(
|vc(x)|2 − 1

)
dx = 0.

Remark 3. In view of identity (2.24), it is tempting to pass to the limit c→ 0, and state that

p(v0) =
π

2
. (2.25)

As a matter of fact, this identity might be recovered using the singular lifting

v0(x) =
∣∣∣th
( x√

2

)∣∣∣ exp
(
i
(
sign(x) − 1

)π
2

)
,

so that the derivative of the phase ϕ0 is equal to πδ0, and formula (2.22), in the sense of measures,
yields (2.25).
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Proof. It follows from (2.4) and (2.10) that

2|v′c(x)|2 = (1 − |vc(x)|2)2 =
(
1 − c2

2

)2
(

1 − th
(√2 − c2

2
x
)2
)2

,

so that

E(vc) =
(2 − c2)

3

2

4

∫ +∞

−∞

(
1 − th(u)2

)2
du =

(2 − c2)
3

2

3
.

Using definition (2.22) and identity (2.17), we next compute

p(vc) =
c

4

∫

R

η2
c

1 − ηc
=
c

4

(
−
∫

R

ηc +

∫

R

ηc

1 − ηc

)
,

where ηc ≡ 1 − |vc|2. By (2.4), we are led to

p(vc) =
c
√

2 − c2

4

(
−
∫ +∞

−∞

(
1 − th(u)2

)
du+ 2

∫ +∞

−∞

1 − th(u)2

c2 + (2 − c2)th(u)2
du

)

= − c
√

2 − c2

2
+

√
2 − c2

c

∫ 1

0

dv

1 + (2−c2)v2

c2

dv = −c
√

2 − c2

2
+ arctan

(√
2 − c2

c

)
,

which gives formula (2.24).

Invoking formula (2.24), we notice that the function c 7→ p(vc) is smooth, decreasing, and
satisfies

d

dc

(
p(vc)

)
= −

√
2 − c2. (2.26)

Hence, it performs a diffeomorphism from (0,
√

2) on (0, π
2 ), so that we can express E(vc) ≡

E(p(vc)) as a function of p(vc) to obtain the following graph.

-

6

0

E

pπ
2

2
√

2
3

E = E(p)

The curve E = E(p) is smooth, increasing and strictly concave, and lies below the line
E =

√
2p. Each point of the curve represents a non-constant solution vc to (TWc) of energy

E(vc) and scalar momentum p(vc). The speed of the solution vc (and as a result, its position
on the curve) is given by the slope of the curve. Indeed, it follows from (2.23) and (2.26) that

dE
dp

(
p(vc)

)
=

d

dc

(
E(vc)

)( d

dc

(
p(vc)

))−1

= c.
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2.3 The variational interpretation of equation (TWc)

It is a rather general principle that travelling waves could be obtained minimizing the Ginzburg-
Landau energy keeping the momentum fixed. In view of Lemma 2, the appropriate notion of
momentum is given by formula (2.22). In this context, we consider the set

Xp =
{
v ∈ H1

loc(R), s.t. E(v) <
2
√

2

3
, and p(v) = p

}
,

for any p ≥ 0, and the minimization problem

Emin(p) = inf
{
E(v), v ∈ Xp

}
. (Pp)

For any 0 < p < π
2 , let c = c(p) be the only speed c such that

p =
π

2
− arctan

( c√
2 − c2

)
− c

2

√
2 − c2.

We have

Theorem 2. Let 0 < p < π
2 . Then, Xp is not empty, and we have

E(vc(p)) = inf
{
E(v), v ∈ Xp

}
,

that is (Pp) is achieved, and the only minimizer, up to invariances, is vc(p).

Remark 4. For p = 0, the solutions to the minimization problem (Pp) are the constants of
modulus one, for which

Emin(0) = 0.

Remark 5. Notice that the set Xp is empty when p ≥ π
2 . It is formally tempting to assert that

Emin(p) =
2
√

2

3
,

for any p ≥ π
2 . Indeed, any map which vanishes at some point has an energy larger than 2

√
2

3 ,
and we can construct minimizing sequences with the appropriate limiting energy. For instance,
we may consider the functions vn defined by

vn(x) =
∣∣∣th
( x√

2

)∣∣∣ exp iψn(x),

where

ψn(x) =





0, if x ≥ 1
n
,

qn(nx− 1), if − 1
n
≤ x ≤ 1

n
,

−2qn, if x ≤ − 1
n
,

with n ≥ 1 and qn = p√
2nth

(
1√
2n

) , and compute

E(vn) =
2
√

2

3
+ 2

√
2q2nn

2

(
1√
2n

− th
( 1√

2n

))
→ 2

√
2

3
, as n→ +∞,

whereas

p(vn) =
1

2

∫

R

(
1 − th

( x√
2

)2)
ψ′

n(x)dx =
√

2qnnth
( 1√

2n

)
= p.
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In order to prove Theorem 2, we need to analyse minimizing sequences for (Pp). More
generally, for given 0 < p < π

2 , we consider a sequence (un)n∈N verifying

pn ≡ p(un) → p, and E(un) → Emin(p), as n→ +∞. (2.27)

Minimizing sequences for Emin(p) are a special example of sequences satisfying (2.27). We have

Theorem 3. Let 0 < p < π
2 be given, and let (un)n∈N be a sequence of maps satisfying (2.27).

Then, there exist a subsequence (uσ(n))n∈N, a sequence of points (an)n∈N, and a real number θ
such that

uσ(n)

(
· +aσ(n)

)
→ exp iθ vc(p)(·), as n→ +∞,

uniformly on any compact subset of R. Moreover,

1 − |uσ(n)

(
· +aσ(n)

)
|2 → 1 − |vc(p)(·)|2 in L2(R), as n→ +∞,

and
u′σ(n)

(
· +aσ(n)

)
→ exp iθ v

′
c(p)(·) in L2(R), as n→ +∞.

The proof of Theorem 3 relies on several mostly uncorrelated observations, which we next
present as separate lemmas. The first elementary observation emphasizes the role of the sonic
speed

√
2.

Lemma 4. Let ̺ and ϕ be real-valued, smooth functions on some interval of R, such that ̺ is
positive. Set v = ̺ exp iϕ. Then, we have the pointwise bound

∣∣∣(1 − ̺2)ϕ′
∣∣∣ ≤

√
2

̺
e(v).

Proof. Notice that we have by (2.18),

e(v) =
1

2

(
(̺′)2 + ̺2(ϕ′)2

)
+

1

4

(
1 − ̺2

)2
≥ 1

2

(
̺2|ϕ′|2 +

1

2
(1 − ̺2)2

)
.

The conclusion follows from the inequality |ab| ≤ 1
2(a2 + b2) applied to a = 1√

2
(1 − ̺2) and

b = ̺ϕ′.

As a consequence, we have

Corollary 1. Let 0 < p < π
2 , and v ∈ Xp. Then,

inf
x∈R

|v(x)| ≤ E(v)√
2p
.

In particular, if δ(v) ≡ 1 − E(v)√
2p

> 0, then, given any 0 < δ < δ(v), there exists some point

xδ ∈ R such that
1 − |v(xδ)| ≥ δ.

Proof. Set ̺0 = inf
x∈R

|v(x)|. It follows from Lemma 4 that we have the pointwise bound

∣∣∣(1 − ̺2)ϕ′
∣∣∣ ≤

√
2

̺0
e(v),

and the conclusion follows by integration.
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The next observation shows that the size of regions where |v| is away from 1 can be bounded
in terms of the energy.

Lemma 5. Let E > 0 and 0 < δ0 < 1 be given. There exists an integer ℓ0 = ℓ0(E, δ0), depending
only on E and δ0, such that the following property holds: given any map v ∈ H1

loc(R) satisfying
E(v) ≤ E, either ∣∣1 − |v(x)|

∣∣ < δ0, ∀x ∈ R,

or there exists ℓ points x1, x2, . . ., and xℓ satisfying ℓ ≤ ℓ0,

∣∣1 − |v(xi)|
∣∣ ≥ δ0, ∀1 ≤ i ≤ ℓ,

and ∣∣1 − |v(x)|
∣∣ ≤ δ0, ∀x ∈ R \ ℓ∪

i=1

[
xi − 1, xi + 1

]
.

Proof. Set
A =

{
z ∈ R, s.t.

∣∣1 − |v(z)|
∣∣ ≥ δ0

}
,

and assume that A is not empty. Considering the covering R = ∪
i∈N

Ii, where Ii = [i− 1
2 , i + 1

2 ],

we claim that, if Ii ∩ A 6= ∅, then ∫

Ĩi

e(v) ≥ µ0, (2.28)

where Ĩi = [i − 1, i + 1], and µ0 is some positive constant. To prove the claim, we first notice
that

|v(x) − v(y)| ≤ ‖v′‖L2(R)|x− y| 12 ≤
√

2E
1

2 |x− y| 12 , (2.29)

for any (x, y) ∈ R2. Therefore, if z ∈ A, then,

∣∣1 − |v(y)|
∣∣ ≥ δ0

2
, ∀y ∈ [z − r, z + r],

where r =
δ2
0

8E
. Choosing r0 = min{r, 1

2}, we are led to

∫ z+r0

z−r0

e(v) ≥ 1

4

∫ z+r0

z−r0

(1 − |v|)2 ≥ µ0 ≡ r0δ
2
0

8
.

In particular, if z ∈ Ii ∩ A for some i ∈ N, then [z − r0, z + r0] ⊂ Ĩi, and claim (2.28) follows.
To conclude the proof, we notice that

∑

i∈N

∫

Ĩi

e(v) = 2E(v) ≤ 2E,

so that, in view of (2.28),
ℓµ0 ≤ 2E,

where ℓ = Card{i ∈ N, s.t. Ii ∩ A 6= ∅}. The conclusion follows setting ℓ0 = 2E
µ0

= 128E2

δ4
0

, and

choosing some point xi ∈ Ii ∩A, for any i ∈ N such that Ii ∩A 6= ∅ (relabelling if necessary, the
points xi).

We will also need the following construction.
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Lemma 6. Let 0 < |q| ≤ 1
32 and 0 ≤ µ ≤ 1

4 . There exists some number ℓ > 1, and a map
w = |w| exp iψ ∈ H1([0, ℓ]), such that

w(0) = w(ℓ), 0 <
∣∣1 − |w(0)|

∣∣ ≤ µ, (2.30)

q =
1

2

∫ ℓ

0
(1 − |w|2)ψ′, (2.31)

and
E(w) ≤ 14|q|. (2.32)

Proof. Consider the functions f1 and ψ1 defined on the interval [0, 2] by

f1(s) = s on
[
0,

1

2

]
, f1(s) = 1 − s on

[1
2
, 1
]
, and f1(s) = 0 on

[
1, 2
]
,

and
ψ1(s) = s on [0, 1], and ψ1(s) = 2 − s on [0, 1].

For a given positive number λ > 0, we consider the functions defined on [0, 2λ] by

fλ(s) =
1

λ
f
( s
λ

)
, and ψλ(s) = ψ

( s
λ

)
,

so that |fλ| ≤ 1
2λ

, |ψ′
λ| = 1

λ
, fλ(0) = fλ(2λ) = 0, ψλ(0) = ψλ(2λ) = 0, and

∫ 2λ

0
fλψ

′
λ =

1

4λ
,

∫ 2λ

0
fλ =

1

4
,

∫ 2λ

0
f2

λ =
1

12λ
,

∫ 2λ

0
(f ′λ)2 =

1

λ3
, and

∫ 2λ

0
(ψ′

λ)2 =
2

λ
. (2.33)

We then choose λ = 1
8|q| , so that, 1

λ
≤ 1

4 , introduce a new parameter δ > 0 to be determined
later, and consider the function

ρλ,δ =
√

1 − δ − fλ,

so that 1 − ρ2
λ,δ = fλ + δ. It follows from our choice of parameter λ that

|q| =
1

2

∫ 2λ

0
fλψ

′
λ =

1

2

∫ 2λ

0
(fλ + δ)ψ′

λ =
1

2

∫ 2λ

0
(1 − ρ2

λ,δ)ψ
′
λ. (2.34)

We finally choose ℓ = 2λ and

w =

{
ρλ,δ exp iψλ, if q > 0,
ρλ,δ exp(−iψλ), if q < 0.

Condition (2.31) is fullfilled with this choice of w in view of (2.34). Moreover, by construction,
w(0) = w(ℓ) = ρλ,δ =

√
1 − δ, so that conditions (2.30) are satisfied for any δ ≤ µ2. We finally

compute

E(w) =

∫ 2λ

0

(
(f ′λ)2

8(1 − δ − fλ)
+
(
1 − δ − fλ

)(ψ′
λ)2

2
+
f2

λ

4
+
δfλ

2
+
δ2

4

)
,

so that, since

0 ≤ fλ + δ ≤ 1

2λ
+ δ ≤ µ2 +

1

8
≤ 1

2
,

it follows from (2.33) that

E(w) ≤
∫ 2λ

0

(
(f ′λ)2

4
+

(ψ′
λ)2

2
+
f2

λ

4
+
δfλ

2
+
δ2

4

)
≤ 1

4λ3
+

1

λ
+

1

48λ
+
δ

8
+
δ2λ

2
.

Inequality (2.32) follows choosing δ = min{µ2, 1
λ
}.
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We are now in position to undertake the study of sequences satisfying (2.27). We set

δn = δ(un) = 1 − E(un)√
2p(un)

,

so that, by (2.27), δn → δp ≡ 1 − Emin(p)√
2p

, as n→ +∞. Moreover, it follows from the properties

of the curve p 7→ E(p) (see Subsection 2.2) that

δp > 0, (2.35)

for any 0 < p < π
2 , so that

δn >
δp

2
, (2.36)

for n sufficiently large. We first have

Lemma 7. Let 0 < p < π
2 , and let (un)n∈N be a sequence of maps satisfying (2.27). Then, there

exists a subsequence (uσ(n))n∈N, some numbers θ and x̃, and a solution vc to (TWc) such that

uσ(n) ⇀ exp iθ vc(· + x̃) weakly in H1([−A,A]), as n→ +∞,

for any A > 0. In particular, we have

∫ A

−A

e(vc) ≤ lim inf
n→+∞

(∫ A

−A

e(un)

)
, and

∫ A

−A

(1 − ̺2
c)ϕ

′
c = lim

n→+∞

(∫ A

−A

(1 − ̺2
n)ϕ′

n

)
, (2.37)

where we have written un = ̺n exp iϕn, and vc = ̺c exp iϕc.

Proof. Since (E(un))n∈N is bounded by assumption (2.27), it follows from standard compactness
results that there exists a subsequence (uσ(n))n∈N, and a map u ∈ H1

loc(R) such that

uσ(n) ⇀ u in H1([−A,A]), as n→ +∞,

for any A > 0. Assertions (2.37) follow using Rellich’s compactness theorem, and the lower
semi-continuity of E. Hence, it remains to prove that the limiting map u solves (TWc) on
(−A,A). For that purpose, we consider a smooth map ξ, with compact support in (−A,A),
such that ∫

R

〈iu, ξ′〉 = 0. (2.38)

We claim that, for any t sufficiently small,

∫ A

−A

e(uσ(n) + tξ) ≥
∫ A

−A

e(uσ(n)) +O(t2) + o(1)
n→∞

. (2.39)

To establish the claim, we first observe that, in view of (2.27), we may assume without loss of

generality that E(un) < 2
√

2
3 , so that un has no zero. Expandind p(un + tξ), we obtain

p(un + tξ) = p(un) + t

∫

R

〈iun, ξ
′〉 +O(t2)

= pn +O(t2) = p +O(t2) + o(1)
n→∞

,

so that, setting qn,t = p − p(un + tξ), we are led to

qn = O(t2) + o(1)
n→∞

.
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We next construct a comparison map vn,t for Emin(p) applying several modifications to the map
un + tξ. For that purpose, we invoke Lemma 6 with q = qn,t, and µ = µn,t = inf{1

4 , νn,t},
where νn,t = sup{|1 − |un(x)||, x 6∈ [−A,A]}. This yields a positive number ℓn,t > 1, and a map
wn,t = |wn| exp iψn, defined on [0, ℓn(t)] such that

wn(0) = wn(ℓn,t), and
∣∣1 − |wn,t(0)|

∣∣ ≤ µn,t,

and such that

qn,t =
1

2

∫ ℓn,t

0
(1 − |wn,t|)2ψ′

n,

and
E(wn,t) ≤ 14|qn,t| = O(t2) + o(1)

n→∞
. (2.40)

In view of the mean value theorem, there exists some point xn in [A,+∞) such that |un(xn)| =
|wn,t(0)|. Multiplying possibly wn,t by a constant complex number of modulus one, we may
therefore assume, without loss of generality, that un(xn) = wn(0). We define the comparison
map vn,t as follows

vn,t(x) = un(x) + tξ(x), ∀x < xn,

vn,t(x) = wn(x− xn), ∀xn ≤ x ≤ xn + ℓn,t,

vn,t(x) = un(x− ℓn,t) + tξ(x− ℓn,t), ∀x ≥ xn + ℓn,t.

(2.41)

We verify that

E(vn,t) = E(un + tξ) + E(wn,t), and p(vn,t) = p(un + tξ) + qn,t = p, (2.42)

so that vn,t is a comparison map for Emin, and therefore

E(vn,t) ≥ Emin(p). (2.43)

On the other hand, we have in view of assumption (2.27),

E(un) = Emin(p) + o(1), (2.44)

whereas, since ξ has compact support in (−A,A),

E(un + tξ) − E(un) =

∫ A

−A

(
e(un + tξ) − e(un)

)
. (2.45)

Combining (2.45) with (2.44), (2.43) and (2.40), we establish claim (2.39).

To complete the proof of Lemma 7, we expand the integral in (2.39) so that

t

∫ A

−A

(
u′nξ

′ + ξun(1 − |un|2)
)
≥ O(t2) + o(1)

n→∞
.

We then let n tend to +∞. This yields, in view of the compact embedding of H1([−A,A]) in
C0([−A,A]),

t

∫ A

−A

(
u′ξ′ + ξu(1 − |u|2)

)
≥ O(t2).

Letting t tend to 0+ and 0−, we deduce
∫ A

−A

u′ξ′ + ξu(1 − |u|2) = 0.

Since ξ is any arbitrary function with compact support verifying (2.38), this shows that there
exists some constant c such that u solves (TWc), and hence is of the form u = exp iθ vc(· + x̃),
for some c > 0.
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Remark 6. At this stage, we might only consider maps vc with positive speed c, using the
convention that, for any c < 0, vc(x) = v−c(−x).

It might happen that the limit map provided by Lemma 7 is a constant one. To capture the
possible losses at infinity, we need to implement a concentration-compactness argument. The
first step in this argument is to invoke Lemma 5, and Corollary 1 to assert

Proposition 2. Let 0 < p < π
2 be given, and let (un)n∈N be a sequence of maps satisfying (2.27).

There exists an integer ℓp, depending only on p, such that there exists ℓn points xn
1 , xn

2 , . . ., and
xn

ℓn
satisfying ℓn ≤ ℓp, and

∣∣1 − |un(xn
i )|
∣∣ ≥ δp

4
, ∀1 ≤ i ≤ ℓn, (2.46)

and ∣∣1 − |un(x)|
∣∣ ≤ δp

4
, ∀x ∈ R \ ℓn∪

i=1

[
xn

i − 1, xn
i + 1

]
. (2.47)

Passing possibly to a subsequence, we may assume that the number ℓn does not depend on
n, and set ℓ = ℓn. A standard compactness argument shows, that passing again possibly to a
further subsequence, and relabelling possibly the points xn

i , we may find some integer 1 ≤ ℓ̃ ≤ ℓ,
and some number R > 0 such that

|xn
i − xn

j | → +∞, as n→ +∞, ∀1 ≤ i 6= j ≤ ℓ̃, (2.48)

and

xn
i ∈ ℓ̃∪

i=1
B(xn

i , R), ∀ℓ̃ < i ≤ ℓ. (2.49)

Going back to Proposition 2, we deduce

∣∣1 − |un(x)|
∣∣ ≤ δp

4
, ∀x ∈ R \ ℓ̃∪

i=1
B(xn

i , R + 1), (2.50)

so that, invoking Lemma 4, we have on R \ ℓ̃∪
i=1
B(xn

i , R+ 1),

1

2

∣∣∣(|un|2 − 1)ϕ′
n

∣∣∣ ≤ e(un)√
2
(
1 − δp

4

) . (2.51)

We are now in position to provide the proof to Theorem 3.

Proof of Theorem 3. We divide the proof into several steps.

Step 1. For any 1 ≤ i ≤ ℓ̃, there exists numbers ci 6= 0, x̃i and θi such that

un(· + xn
i ) ⇀ exp(iθi)vci

(· + x̃i).

Applying Lemma 7 to the sequence un(·+xn
i )n∈N yields the existence of the limiting solution

to (TWc), exp(iθi)vci
(·+x̃i). It remains to prove that the function vci

is not a constant function.
This is a consequence of the fact that

|un(xn
i )| ≤ 1 − δp

4
,

so that, since by compact embedding, we have uniform convergence on compact sets, we obtain

|vci
(x̃i)| ≤ 1 − δp

4
.

Hence, vci
is not a constant map.
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Step 2. Given any number µ > 0, there exists a number Aµ > 0, and nµ ∈ N, such that, if
n ≥ n0, then

∫
ℓ̃
∪

i=1
B(xn

i ,Aµ)
e(un) ≥

ℓ̃∑

i=1

E(vci
) − µ,

and ∣∣∣∣
1

2

∫
ℓ̃
∪

i=1
B(xn

i ,Aµ)
(̺2

n − 1)ϕ′
n −

ℓ̃∑

i=1

pi

∣∣∣∣ ≤ µ,

where pi = p(vci
).

To prove Step 2, we choose A > R+ 1 so that, for any 1 ≤ i ≤ ℓ̃, we have
∫ A

−A

e(vci
) ≥ E(vci

) − µ

2ℓ̃
,

and
1

2

∣∣∣∣
∫ A

−A

(|vci
|2 − 1)ϕ′

c − pi

∣∣∣∣ ≤
µ

2ℓ̃
.

The conclusion follows from the convergences stated in (2.37).

Step 3. We have
∣∣∣∣
1

2

∫

R\
ℓ̃
∪

i=1
B(xn

i ,A)
(̺2

n − 1)ϕ′
n

∣∣∣∣ ≤
1√

2
(
1 − δp

4

)
∫

R\
ℓ̃
∪

i=1
B(xn

i ,A)
e(un).

To establish this inequality, it is sufficient to integrate (2.51).

Passing possibly to a further subsequence, we may assume that there exist some numbers pµ

and Eµ such that

1

2

∫

R\
ℓ̃
∪

i=1
B(xn

i ,A)
(̺2

n − 1)ϕ′
n → pµ, and

∫

R\
ℓ̃
∪

i=1
B(xn

i ,A)
e(un) → Eµ, as n→ +∞.

Going back to Step 2, and letting n→ +∞, we are led to the estimates

∣∣∣∣p −
ℓ̃∑

i=1

pi − pµ

∣∣∣∣ ≤ µ, and E(p) ≥
ℓ̃∑

i=1

E(pi) + Eµ − µ,

whereas Step 3 yields
√

2
(
1 − δp

4

)
pµ ≤ Eµ.

Letting µ→ 0, we may assume that for some subsequence (µm)m∈N tending to 0, we have

pµm → p̃, and Eµm → Ẽ, as m→ +∞.

Our previous inequalities then yield

p =

ℓ̃∑

i=1

pi + p̃,

E(p) ≥
ℓ̃∑

i=1

E(pi) + Ẽ,

(2.52)

with √
2
(
1 − δp

4

)
p̃ ≤ Ẽ. (2.53)
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Step 4. We have Ẽ = p̃ = 0, and ℓ̃ = 1.

This statement is a consequence of properties of the curve p 7→ E(p), and the definition of δp.
Assume first that p̃ ≤ 0. Then, it follows from (2.52) that

p ≥
ℓ̃∑

i=1

|pi|, (2.54)

and

E(p) ≥
ℓ̃∑

i=1

E(|pi|). (2.55)

On the other hand, as observed before, the function E is concave on R+, non-decreasing, and
E(0) = 0, so that E is subadditive, and hence in view of (2.54),

E(p) ≤
ℓ̃∑

i=1

E(|pi|),

so that (2.55) becomes an equality. However, since E is strictly concave, this is possible if and
only if ℓ = 1, and (2.54) is an equality. Step 4 therefore follows in the case considered.

It remains to handle the case p̃ ≥ 0. In view of the definition on δp, we have

E(p)

p
=

√
2
(
1 − δp

)
<

√
2
(
1 − δp

4

)
, (2.56)

so that by concavity, we have for any 0 < s < p,

E(s) > s
E(p)

p
= s

√
2
(
1 − δp

)
. (2.57)

Setting p̌ = p − p̃ =
ℓ̃∑

i=1
E(pi), we obtain using (2.52), (2.53), (2.56) and (2.57),

E(p̌) ≥ p̌
E(p)

p
= E(p) − p̃

E(p)

p
= E(p) −

√
2p̃
(
1 − δp

)

> E(p) −
√

2p̃
(
1 − δp

4

)
≥ E(p) − Ẽ

>

ℓ̃∑

i=1

E(|pi|).

(2.58)

We then conclude following the first case, replacing p by p̌, and using the subadditivity of the
function E .

Step 5. Proof of Theorem 2 completed.

At this stage, we have shown that there exist some θ = θ1, and some solution vc = vc1 such
that

un(· + an) ⇀ exp iθ vc1,

weakly in H1(R), as n → +∞, where an = xn
1 − x̃1, and that we have the convergence of the

energy E(un) → E(vc1). In particular,

u′n(· + an) → exp iθ v
′
c1
,

strongly in L2(R) as n→ +∞, and the conclusion follows by compact embedding.
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2.4 Orbital stability

We recall first the classical notion of orbital stability (see, for instance, [5]). A solution vc to
(TWc) is said to be orbitally stable in a metric space X(R), if and only if given any ε > 0, there
exists some δ > 0 such that for any solution Ψ to (GP) in X(R), if

dX

(
Ψ(·, 0), vc

)
≤ δ,

then

sup
t∈R

(
inf

(a,θ)∈R2
dX

(
Ψ(·, t), exp iθ vc(· − a)

))
≤ ε,

As a preliminary step, this definition requires of course to prove first that the Cauchy problem
for (GP) is globally well-posed in X(R) (see [30]). A natural choice is the energy space

X 1(R) = {w ∈ L∞(R), s.t. w′ ∈ L2(R), 1 − |w|2 ∈ L2(R)}. (2.59)

Given any v0 ∈ X 1(R), Zhidkov [67] (see also [30]) established that (GP) has a global solution
Ψ with initial datum v0. Moreover, the Ginzburg-Landau energy is conserved,

E(Ψ(·, t)) = E(v0), ∀t ∈ R. (2.60)

Notice that E is a continuous function on X 1(R). If we assume moreover that

E(v0) <
2
√

2

3
,

using (2.60), we are led to

E(Ψ(·, t)) < 2
√

2

3
, ∀t ∈ R,

so that, by Remark 1, we may write Ψ(·, t) = ̺(·, t) exp iϕ(·, t) for any t ∈ R. We may therefore
define the scalar momentum p(Ψ(·, t)) using (2.22). It is shown in [50] that the scalar momentum
p is then a conserved quantity, i.e.

p(Ψ(·, t)) = p(v0), ∀t ∈ R. (2.61)

Given any A > 0, we consider on X 1(R) the distance dA,X 1 defined by

dA,X 1(v1, v2) ≡ ‖v1 − v2‖L∞([−A,A]) + ‖v′1 − v′2‖L2(R) + ‖|v1| − |v2|‖L2(R). (2.62)

Following ideas from Grillakis-Shatah-Strauss [39], Zhiwu Lin [50] proved the orbital stability
of the solutions vc to (TWc), for any 0 < c <

√
2, when the perturbations w are taken in the

space X 1(R).

Using our study of the minimization problem (Pp), we would like to give a short proof of the
result of Zhiwu Lin [50] which follows the classical compactness argument of [17]. We first recall

Theorem 4 ([50]). For v0 ∈ X 1(R), consider the global in time solution Ψ having initial datum
v0. Let 0 < c <

√
2 be given. For any numbers ε > 0 and A > 0, there exists some positive

number δ, such that, if
dA,X 1(v0, vc) ≤ δ, (2.63)

then, we have

sup
t∈R

(
inf

(a,θ)∈R2
dA,X 1Ψ(·, t), exp iθ vc(· − a))

)
< ε. (2.64)
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Proof. We assume by contradiction that vc is not orbitally stable for the distance dA,X 1 . In
this case, we may find a positive number ε0, sequences of numbers (δn)n∈N and (tn)n∈N, and a
sequence of functions (vn

0 )n∈N such that δn → 0, as n→ +∞,

dA,X 1(vn
0 , vc) < δn, (2.65)

and
inf

(a,θ)∈R2
dA,X 1(Ψn(·, tn), exp iθ vc(· − an)) ≥ ε0, (2.66)

where Ψn denotes the solution to (GP) with initial datum vn
0 . Denoting wn ≡ Ψn(·, tn), the

conservation of the Ginzburg-Landau energy and of the scalar momentum implies that

E(wn) = E(vn
0 ), and p(wn) = p(vn

0 ), (2.67)

for any n ∈ N. Moreover, the energy is continuous on X 1(R), so that, invoking (2.65),

E(vn
0 ) → E(vc) = Emin(p), as n→ +∞,

where p = p(vc) is given by formula (2.24). Therefore, by (2.67),

E(wn) → Emin(p), as n→ +∞. (2.68)

In view of (2.22), the scalar momentum may be written as

p(v) =
1

2

∫

R

|v|2 − 1

|v|2 〈iv, v′〉, (2.69)

for any function v ∈ X 1(R). By (2.65), we have

〈ivn
0 , v

n
0
′〉 → 〈ivc, v

′
c〉 in L2(R), as n→ +∞. (2.70)

On the other hand, in view of (2.4), the modulus of vc has a minimum value equal to c√
2

on R

which is achieved at the origin. Since (|vn
0 |)n∈N uniformly converges to |vc| on R as n→ +∞ by

(2.65), we may assume that

inf
x∈R

|vn
0 (x)| ≥ c

2
√

2
,

for n sufficiently large, so that
∣∣∣∣
|vn

0 |2 − 1

|vn
0 |2

− |vc|2 − 1

|v2
c |

∣∣∣∣ ≤
4

c4

∣∣∣|vn
0 |2 − |vc|2

∣∣∣.

By (2.65), it follows that

|vn
0 |2 − 1

|vn
0 |2

→ |vc|2 − 1

|v2
c |

in L2(R), as n→ +∞,

so that by (2.69), and (2.70),

p(vn
0 ) → p(vc) = p, as n→ +∞.

By (2.67), we are led to
p(wn) → p, as n→ +∞, (2.71)

so that, by (2.68), the sequence (wn)n∈N verifies assumptions (2.27). Hence, by Theorem 3,
there exist some points (an)n∈N, and some real number θ such that, up to some subsequence,

wn

(
· +an

)
→ exp iθ vc(p)(·), as n→ +∞, (2.72)
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uniformly on any compact set of R, and

w′
n

(
· +an

)
→ exp iθ v

′
c(p)(·) in L2(R), as n→ +∞. (2.73)

In view of (2.68) and (2.73), we have

∫

R

(
1 − |wn|2

)2 →
∫

R

(
1 − |vc|2

)2
, as n→ +∞,

whereas, by (2.68) and (2.72), up to some subsequence, we have

1 −
∣∣wn

(
· +an

)∣∣2 ⇀ 1 −
∣∣vc(p)(·)

∣∣2 in L2(R), as n→ +∞.

This yields
1 −

∣∣wn

(
· +an

)∣∣2 → 1 −
∣∣vc(p)(·)

∣∣2 in L2(R), as n→ +∞.

Hence, by (2.72) and (2.73),

wn

(
· +an

)
→ exp iθ vc(p)(·) in X 1(R), as n→ +∞,

which gives a contradiction with (2.66), and completes the proof of Theorem 4.

Remark 7. Di Menza and Gallo [25] proved the linear stability of v0 submitted to small per-
turbations in {v0} +H1(R) (see also [30]).

2.5 Relating (TWc) to the Korteweg-de Vries equation

Travelling wave solutions to (TWc) are related to the soliton of the Korteweg-de Vries equation
as follows. Set ε =

√
2 − c2, and consider the scaled function

Nε(x) =
1

ε2
ηc

(x
ε

)
, (2.74)

where ηc ≡ 1 − |vc|2. Invoking (2.16), we are led to

Nε(x) = N(x) ≡ 1

2ch2
(

x
2

) .

A remarkable property of N is that it represents the classical soliton to the Korteweg-de-Vries
equation

∂tw + ∂3
xw + 6w∂xw = 0. (KdV)

Concerning the phase ϕc of vc, we consider the scale change

Θε(x) =

√
2

ε
ϕc

(x
ε

)
, (2.75)

so that we similarly obtain from (2.17),

Θε(x)
′ =

√
1 − ε2

2

N(x)

1 − ε2N(x)
−→ N(x), as ε→ 0.

It is also of interest to compute the corresponding energies. Using scale changes (2.74) and
(2.75), we are led to

E(vc) =
ε5

8

∫

R

(N ′)2

1 − ε2N
+
ε3

4

(
1 − ε2

2

)∫

R

N2

1 − ε2N
+
ε3

4

∫

R

N2,
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and

p(vc) =
ε3

2
√

2

√
1 − ε2

2

∫

R

N2

1 − ε2N
,

so that the quantity
√

2p(vc) − E(vc) is governed, at the limit ε→ 0, by

√
2p(vc) − E(vc) ∼ −ε

5

4
EKdV (N),

where EKdV (N) is the energy of the soliton to (KdV), namely

EKdV (N) ≡ 1

2

∫

R

(N ′)2 −
∫

R

N3.

3 Qualitative properties of travelling waves in higher dimen-
sions

We next turn to finite energy travelling waves in higher dimensions, and describe a number of
qualitative properties, which have been rigorously established so far. Many of the results in this
section were already guessed in the quoted seminal papers of Jones, Putterman and Roberts
[46, 45]. Some mathematical proofs turn out to be quite different from the physical intuition.

3.1 Range of speeds and energies

The following results are proved in [34, 36]. They describe the possible spectrum of speeds c,
excluding in particular the possibility of non-constant supersonic travelling waves.

Theorem 5 ([34, 36]). i) Let N ≥ 2. Any travelling wave of finite energy and of supersonic
speed c >

√
2 is constant.

ii) Let N = 2. Any travelling wave of finite energy and of sonic speed c =
√

2 is constant.

We briefly sketch the proof of Theorem 5 in the supersonic case. The proof is similar in the
sonic case.

Proof. Let v be a finite energy solution to (TWc) of speed c >
√

2. In order to prove that v
is a constant function, we compute some integral identities (relating the energy and the scalar
momentum), so that the energy of v is necessarily equal to 0, i.e. v is a constant function
of modulus one. The first identities are the so-called Pohozaev’s identities [58], obtained by
multiplying (TWc) by the test function 〈x,∇v(x)〉, and integrating by parts.

Lemma 8. Let N ≥ 1 and c ≥ 0, and consider a finite energy solution v to (TWc). Then,

E(v) =

∫

RN

|∂1v|2, (3.1)

and for any 2 ≤ j ≤ N ,

E(v) =

∫

RN

|∂jv|2 + cp(v). (3.2)

Identities (3.1) and (3.2) are not sufficient to ensure that the energy of v is equal to 0 1 , so
that another integral relation is required.

1Notice that (3.1) and (3.2) are sufficient to ensure that any travelling wave of finite energy and of speed c = 0
is constant (see [46, 11]).
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Lemma 9. Let N ≥ 2 and c >
√

2, and consider a finite energy solution v to (TWc). Then,
∫

RN

(
|∇v|2 +

(
1 − |v|2

)2)
= 2c

(
1 − 2

c2

)
p(v). (3.3)

Identity (3.3) is obtained using the singularities of the kernels associated to (TWc) in case
c >

√
2. Indeed, assuming that v does not vanish on RN (in order to simplify the proof), v may

be written as
v = ̺ exp iϕ,

where ̺ = |v|, and ϕ are smooth, real-valued functions. By (TWc), the function η = 1 − ̺2 is
solution to

∆2η − 2∆η + c2∂2
1,1η = −∆F + 2c∂1div(G), (3.4)

where
F = 2|∇v|2 + 2η2 − 2cη∂1ϕ, and G = −η∇ϕ. (3.5)

Notice in particular that the nonlinearities F and G are related to the density of energy and
momentum (equal to −G in view of (2.22)). Taking the Fourier transform of (3.4), we are led
to

η̂(ξ) = K̂0(ξ)F̂ (ξ) − 2c
N∑

j=1

K̂j(ξ)Ĝ(ξ), (3.6)

where K̂0(ξ) = |ξ|2
|ξ|4+2|ξ|2−c2ξ2

1

, and K̂j(ξ) =
ξ1ξj

|ξ|4+2|ξ|2−c2ξ2
1

, for any 1 ≤ j ≤ N . The singular

nature of the kernels K0 and Kj now gives some relation between F̂ (0) and Ĝ(0). This in turn
yields a relation between the energy and the scalar momentum. Indeed, since v is of finite
energy, the function η̂ in the left-hand side of (3.6) belongs to L2(RN ), whereas the functions

F̂ and Ĝ in the right-hand side are continuous. When 0 ≤ c <
√

2, K̂0 and K̂j are sufficiently

smooth, so that (3.6) can hold without additional assumption. In contrast, when c >
√

2, K̂0

and K̂j have singularities on the set

Γ =
{
ξ ∈ R

N , |ξ|4 + 2|ξ|2 − c2ξ21 = 0
}
.

Since (3.6) holds, this leads to a relation between F̂ (ξ) and Ĝ(ξ) on the set Γ. Taking some
limit ξ → 0, this yields identity (3.3). Combining (3.1), (3.2) and (3.3), it may be shown that
the energy of v is equal to 0, so that v is a constant of modulus one. This completes the proof
of Theorem 5.

In the three-dimensional subsonic case, small energy solutions are also excluded in view of
the following theorem (see [9]).

Theorem 6 ([9]). Let N = 3 and 0 < c <
√

2. There exists some positive universal constant E0

such that any non-constant finite energy solution to (TWc) on R3 satisfies

E(v) ≥ E0.

Theorem 6 improves an earlier result by Tarquini (see [65]), which states that any solutions
of sufficiently small energy, with respect to their speed, are excluded in any dimension N ≥ 2.

Theorem 7 ([65]). Let N ≥ 2 and 0 < c <
√

2. There exists some positive constant E(c,N),
depending only on c and N , such that any non-constant finite energy solution to (TWc) on R3

satisfies
E(v) ≥ E(c,N).

Moreover,
E(c,N) → 0, as c→

√
2.
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Theorem 6 leaves some hope for a complete scattering theory for solutions with small energy
in the three-dimensional case. Such a theory has been established in any dimension N ≥ 4 by
Gustafson, Nakanishi and Tsai (see [41], or [56] in the present volume). In dimension three,
they were able to establish the existence of global dispersive solutions to (GP) (see [42] or [56]
in the present volume). On the other hand, two-dimensional travelling waves of small energy
are known to exist (see Theorem 13), excluding scattering in the energy space.

For sake of completeness, we briefly sketch the proof of Theorem 6.

Proof. The proof relies on equation (3.6), using the next elementary observation. If some quan-
tity E satisfies

E ≤ KE2, (3.7)

where K is some positive constant, then E is either equal to 0, or

E ≥ 1

K
.

Taking the L2-norm of (3.6), we are led to an inequality of the form (3.7), where the energy
E(v) plays the role of the quantity E, whereas K is equal to some linear combination of the
L2-integrals of the kernels K0 and Kj.

Indeed, first notice that the nonlinearities F and G in the right-hand side of (3.6) are (al-
most) quadratic quantities with respect to η and ∇ϕ, related to the densities of energy and
of momentum. In particular, their L1-norms are bounded by the energy up to some positive
universal constant K, so that

|F̂ | + |Ĝ| ≤ KE(v).

Taking the L2-norm of (3.6), we are led to

‖η‖L2(RN ) = ‖η̂‖L2(RN ) ≤ KE(v)‖K̂0‖L2(RN ).

On the other hand, it is proved in [9] that any finite energy solution v to (TWc), with the
additional assumption |v| ≥ 1

2 (which holds in case E(v) is sufficiently small (see [9])), satisfies

E(v) ≤ 7c2‖η‖2
L2(R3),

so that, by the above elementary observation,

E(v) ≥ 1

7c2K2‖K̂0‖2
L2(RN )

. (3.8)

A direct computation now gives

‖K̂0‖2
L2(R3) =

π2

c
arcsin

( c√
2

)
,

so that

E(v) ≥ 1

7π2K2c arcsin
(

c√
2

) ≥ E0 =

√
2

7π3K2
.

This completes the proof of Theorem 6.

Remark 8. The proof above cannot be performed in the two-dimensional case. Indeed, a direct
computation gives

‖K̂0‖2
L2(R2) =

π√
2(2 − c2)

,
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so that (3.8) now becomes

E(v) ≥ E(c) =

√
2(2 − c2)

7πK2c2
, (3.9)

where E(c) → 0, as c→
√

2. In particular, (3.9) does not prevent the existence of solutions with
energy as small as possible (see Theorem 13).

3.2 Regularity and decay at infinity

The following results were proved in [26] and [9] (see also [11, 35, 65, 64]). They describe the
regularity of subsonic travelling waves (in particular their real-analyticity).

Theorem 8 ([26, 9]). Let N ≥ 2 and 0 ≤ c <
√

2, and consider a finite energy solution v to
(TWc). Then, v is a real-analytic, bounded function on RN such that

|v| ≤
√

1 +
c2

4
. (3.10)

For sake of completeness, we briefly sketch the proof of Theorem 8.

Proof. The smoothness of v follows from a standard bootstrap argument using the finiteness of
the energy, and the elliptic nature of (TWc). Bound (3.10) essentially results from the maximum
principle for the function |v|2, which verifies

∆|v|2 + 2|v|2
(
1 +

c2

4
− |v|2

)
= 2|∇v|2 − 2c〈i∂1v , v〉 +

c2

2
|v|2 ≥ 0,

by (TWc) (see [26, 65, 64] for more details).

Real-analyticity is established following an argument of Bona and Li [13, 14] (see also [47,
52, 53]). The idea is to prove the uniform convergence of Taylor’s series of v,

Tv,x(z) =
∑

α∈NN

∂αv(x)

α!
(z − x)α,

on a complex neighbourhood of any arbitrary point x ∈ RN . The required estimates for the
derivatives are provided by (TWc), using standard Lq-multiplier theory, Sobolev’s embedding
theorem, Gagliardo-Nirenberg’s inequality, and the superlinear nature of the nonlinearities.

Indeed, denoting v1 = Re(v) − 1 and v2 = Im(v), equation (TWc) may be recast as

∂2
jkv1 = Hj,k ∗ F1(v1, v2) − icH1,j,k ∗ F2(v1, v2), (3.11)

∂2
jkv2 = icH1,j,k ∗ F1(v1, v2) +Kj,k ∗ F2(v1, v2), (3.12)

where the nonlinearities F1 and F2 are defined from C2 to C by

F1(z1, z2) = 3z2
1 + z2

2 + z3
1 + z1z

2
2 , and F2(z1, z2) = 2z1z2 + z2

1z2 + z3
2 ,

and the kernels Hj,k, H1,j,k and Kj,k are given by

Ĥj,k(ξ) =
ξjξk|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
, Ĥ1,j,k(ξ) =

ξ1ξjξk

|ξ|4 + 2|ξ|2 − c2ξ21
, K̂j,k(ξ) =

ξjξk(2 + |ξ|2)
|ξ|4 + 2|ξ|2 − c2ξ21

,

for any 1 ≤ j, k ≤ N . By a result from Lizorkin [51], the kernels Hj,k, H1,j,k and Kj,k are
Lq-multipliers for any 1 < q < +∞. Coupled to (3.11) and (3.12), this provides Lq-estimates of
any derivatives of v1 and v2.
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Lemma 10. Let 1 ≤ j, k ≤ N , α ∈ NN and 1 < q < +∞. There exists some positive number
K1(q), possibly depending on q, but not on α, such that

‖∂α∂2
jkv1‖Lq(RN ) + ‖∂α∂2

jkv2‖Lq(RN ) ≤ K1(q)
(
‖∂αF1(v1, v2)‖Lq(RN ) + ‖∂αF2(v1, v2)‖Lq(RN )

)
.

(3.13)

The second step is to transform Lq-estimates (3.13) into uniform ones. This follows from
Sobolev’s embedding theorem and Gagliardo-Nirenberg’s inequality.

Lemma 11. Let 1 ≤ j ≤ N , α ∈ NN and N
2 < q < +∞. There exist some positive numbers

K2(q) and K3(q), possibly depending on q, but not on α, such that

‖∂αv1‖L∞(RN ) + ‖∂αv2‖L∞(RN ) ≤K2(q)Fq(α),

‖∂α∂jv1‖Lq(RN ) + ‖∂α∂jv2‖Lq(RN ) ≤K3(q)Fq(α),
(3.14)

where we have set

Fq(α) = max
0≤β≤α

(
‖∂βF1(v1, v2)‖Lq(RN ) + ‖∂βF2(v1, v2)‖Lq(RN )

)
.

In view of (3.14), the convergence of Taylor’s series Tv1,x(z) and Tv2,x(z) reduces to the
convergence of the series

Sq,x0
(z) =

∑

α∈NN

Fq(α)

α!
|z − x0||α|,

for z sufficiently close to x0, and q suitably chosen. Combining the superlinear nature of F1 and
F2 with estimates (3.13) and (3.14), an inductive argument based on Abel’s identity as in [52],
yields

Lemma 12. Let α ∈ NN and N
2 < q < +∞. There exists some positive number K4(q), possibly

depending on q, but not on α, such that

Fq(α) ≤ K4(q)
|α|αα̃, (3.15)

where we have set α̃ = (max{α1 − 1, 0}, . . . ,max{αN − 1, 0}).

In view of (3.15), choosing q = N , the series Sq,x0
(z) is convergent for any z such that

|z − x0| < e
K4(N) . Taylor’s series Tv1,x0

(z) and Tv2,x0
(z) converge the same way, so that v is a

real-analytic function on RN .

Jones, Putterman and Roberts [46, 45] investigated the decay properties of subsonic travelling
waves in dimensions two and three. They computed some formal asymptotics of axisymmetric
solutions to (TWc) in [46, 45]. Their formal derivation was confirmed, and somewhat extended,
in [33, 35, 37, 38].

Theorem 9 ([33, 35, 37, 38]). Let N ≥ 2 and 0 ≤ c <
√

2, and consider a finite energy solution
v to (TWc). There exist a complex number λ∞, such that |λ∞| = 1, and a smooth, real-valued
function v∞ : SN−1 → R, such that

|x|N−1
(
v(x) − λ∞

)
− iλ∞v∞

( x
|x|
)
→ 0 in L∞(SN−1), as |x| → +∞. (3.16)

Moreover, there exist some real constants α, β2, . . ., and βN such that the function v∞ is equal
to

v∞(σ) = α
σ1

(
1 − c2

2 +
c2σ2

1

2

)N
2

+

N∑

j=2

βj
σj

(
1 − c2

2 +
c2σ2

1

2

)N
2

,∀σ ∈ S
N−1. (3.17)
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The constants α and βj are given by

α =
Γ(N

2 )

2π
N
2

(
1 − c2

2

)N−3

2

(
4 −N

2
cE(v) +

(
2 +

N − 3

2
c2
)
p(v)

)
, (3.18)

βj =
Γ(N

2 )

π
N
2

(
1 − c2

2

)N−1

2

Pj(v), (3.19)

where Pj(v) = 1
2

∫
Rn〈i∂jv, v − 1〉. The constants βj are equal to 0, when v is axisymmetric

around axis x1.

Notice that a finite energy solution v tends to some constant λ∞ at infinity. Since multipli-
cation by a constant of modulus 1 keeps (TWc) invariant, we may, without loss of generality,
assume that λ∞ = 1. Notice also that the decay of the function v−1 is algebraic. More precisely,
v(x) − 1 decays as 1

|x|N−1 , as |x| → +∞. This yields the following corollary of Theorem 9.

Corollary 2 ([35, 37]). Let N ≥ 2 and 0 ≤ c <
√

2, and consider a finite energy solution v to
(TWc).
i) The function v− 1 belongs to Lq(RN ) for any q > N

N−1 , and its gradient ∇v is in Lq(RN ) for

any q > 1. Moreover, any higher order derivative ∂αv belongs to Lq(RN ) for any q ≥ 1.
ii) Assume N = 2, and v is non-constant and axisymmetric around axis x1. Then, the function
v − 1 does not belong to L2(R2). In particular, it does not belong to H1(R2).

Corollary 2 has some significant consequences. It first leads to a rigorous definition of the
momentum ~P (v) of a finite energy solution v to (TWc). Indeed, formula (1.2) makes sense,

in any dimension, for Ψ = v, since v − 1 and ∇v respectively belong to L4(RN ) and L
4

3 (RN ).
Actually, it makes sense for any w ∈W (RN ) = {1} + V (RN ), where V (RN ) is defined by

V (RN ) = {v : R
N 7→ C, s.t. (∇v,Re(v)) ∈ L2(RN )2, Im(v) ∈ L4(RN ) and ∇Re(v) ∈ L

4

3 (RN )}.
(3.20)

Notice that
W (RN ) ⊂ E(RN ),

where
E(RN ) = {v ∈ H1

loc(R
N ), s.t. E(v) < +∞},

denotes the energy space. This last observation plays an important role in the variational
argument of [9] for the construction of finite energy solutions to (TWc) (see Section 4 below).
Our choice of the variational space is indeed W (RN ) = {1} + V (RN ).

Statement ii) of Corollary 2 has to be considered in connection with the stability problem
of two-dimensional travelling waves v. This analysis requires to find some functional space, on
which the Gross-Pitaevskii equation is known to be globally well-posed, which preserves both the
energy and the momentum, and which contains the travelling waves. As a matter of fact, there
are several functional spaces where the two-dimensional Gross-Pitaevskii equation is known to
be globally well-posed: for instance in {1} +H1(R2) (see [11, 30]), in the energy space E(RN )
(see [31, 30]), and also in the space {w} +H1(RN ) (see [28, 30]), for any w in the energy space
E(RN ). Taking w = v, the space {v} + H1(R2) seems appropriate to address the question of
stability near a travelling wave v. Two important advantages of the space {v} + H1(R2) are
that v belongs to this space (in contrast with {1} +H1(R2), in view of Corollary 2), and that
the momentum is well-defined (in contrast with the energy space).

For sake of completeness, we briefly sketch the proof of Theorem 9.
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Proof. The proof is reminiscent of a series of articles by Bona and Li [13], De Bouard and Saut
[24], and Maris [52, 53]. It relies on the use of convolution equations, in particular on a careful
analysis of the kernels they involve. Indeed, assuming that v does not vanish on RN (in order
to simplify the proof), v may be written as v = ̺ exp iϕ, where ̺ and ϕ are smooth, real-valued
functions. By (TWc), the functions η = 1 − ̺2 and ∇ϕ are solutions to (3.4), and

∆ϕ =
c

2
∂1η + div(G), (3.21)

where F and G are the nonlinearities given by (3.5). Taking the Fourier transform of (3.4) and
(3.21), equation (TWc) reduces to the convolution equations

η =K0 ∗ F + 2c

N∑

j=1

Kj ∗Gj ,

∂jϕ =
c

2
Kj ∗ F + c2

N∑

k=1

Lj,k ∗Gk +

N∑

k=1

Rj,k ∗Gk,

where K0, Kj, Lj,k and Rj,k are the kernels given by

K̂0(ξ) =
|ξ|2

|ξ|4 + 2|ξ|2 − c2ξ21
, K̂j(ξ) = R̂1,j(ξ)K̂0(ξ),

R̂j,k(ξ) =
ξjξk

|ξ|2 , et L̂j,k(ξ) = R̂1,j(ξ)R̂1,k(ξ)K̂0(ξ).

(3.22)

Both the decay properties and the asymptotics of v follow from the decay properties and the
asymptotics of the kernels given by (3.22). The first step is to derive them. In view of (3.22),
this reduces to the analysis of K0 and Rj,k.

The kernels Rj,k are directly related to Riesz’s operators Rj , given by

R̂j(ξ) = −i ξj|ξ| ,

since they may be written as
Rj,k = −Rj ∗Rk.

The properties of Riesz’s operators are well-known (see [63]), partly because of their explicit
expression

Rj(x) =
Γ
(

N+1
2

)

π
N+1

2

p.v.

(
xj

|x|N+1

)
,

where p.v. stands for the principal value. There is a similar expression for the kernels Rj,k,

Rj,k(x) =
Γ
(

N
2

)

2π
N
2

p.v.

(
δj,k|x|2 −Nxjxk

|x|N+2

)
, (3.23)

so that their asymptotics are straightforward.

In view of its non-homogeneity, the analysis of K0 is more involved. However, we have

Lemma 13 ([35]). Let N ≥ 2 and N − 2 < α ≤ N . There exists some positive constant Kα

such that

|K0(x)| ≤
Kα

|x|α , ∀x ∈ R
N .

In particular, K0 belongs to Lq(RN ) for any N
N−1 < q < N

N−2 .
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Lemma 13 results from some integrability estimates of the derivatives of K̂0. They provide
the algebraic decay of K0 by the inverse Fourier transform formula. Notice that this formula,
coupled with some stationary phase estimates, states that the asymptotic properties of K0 are
mainly given by the behaviour of K̂0 close to the origin. In view of (3.22), this behaviour is
given by

K̂0(ξ) ∼
|ξ|2

(2 − c2)ξ21 + 2|ξ⊥|2
=

1

2 − c2
R̂1,1

(√
2 − c2ξ1,

√
2ξ⊥

)
+

1

2

N∑

j=1

R̂j,j

(√
2 − c2ξ1,

√
2ξ⊥

)
.

Up to some scale changes, the asymptotics of K0 are therefore the same as the asymptotics of
Rj,j. This gives for instance,

Lemma 14 ([37]). Assume N ≥ 2 and consider a smooth function f such that

|f(x)| ≤ K

1 + |x|2N
, and |∇f(x)| ≤ K

1 + |x|2N+1
, ∀x ∈ R

N , (3.24)

where K is some positive constant. Then,

RNK0 ∗ f(Rσ) →
Γ
(

N
2

)
c2
(
2 − c2

)N−3

2

(
2 − c2 + (c2 − 2N)σ2

1

)

2
√

2π
N
2

(
2 − c2 + c2σ2

1

)N+2

2

(∫

RN

f

)
, as R→ +∞. (3.25)

The asymptotics of a travelling wave v given by formulae (3.16), (3.17), (3.18) and (3.19) are
derived using formulae like (3.25) for the kernels K0, Kj , Lj,k and Rj,k, and the nonlinearities
F and G. Notice in particular that the presence of the energy and the scalar momentum in
formulae (3.18) and (3.19) is due to the presence of the integrals of F and G in formula (3.25)
above (see the proof of Theorem 5 above).

Notice also that the proof of (3.25) first requires to establish (3.24), that is some algebraic
decay for the function f convoluted to K0, and its gradient ∇f . This is the second step of
the proof. As in earlier papers [13, 24, 52, 53], this relies on some inductive argument using
the superlinear nature of the nonlinearities F and G, which are almost quadratic functions of
the variables η and ∇ϕ in view of (3.5). When the nonlinearities are superlinear, the algebraic
decay of a solution is identical to the algebraic decay of the kernels of the convolution equations
it satisfies.

To get a feeling for this claim, let us consider the simplified model

f = K ∗ f r, (3.26)

for which we have

Lemma 15 ([35]). Assume r > 1, and consider smooth solutions f and K to (3.26), such that
f belongs to Lr(RN ), and K is in L1(RN ), and satisfies

|K(x)| ≤ A

1 + |x|αK
.

If there exists some positive constant 0 < α0 < αK such that

|f(x)| ≤ A

|x|α0
,

then,

|f(x)| ≤ A

|x|αK
,

where A denotes some positive, possibly different, constants.
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Lemma 15 states that the algebraic decay of f is exactly the same as the algebraic decay of
K, if some small decay may be first established for f . Its assumptions are quite restrictive, but
may be extended to more involved equations with only additional technicalities. The proof is
by induction. Indeed, by (3.26),

|x|α|f(x)| ≤A
(∫

RN

|x− y|α|K(x− y)||f(y)|rdy +

∫

RN

|K(x− y)||y|α|f(y)|rdy
)

≤A
(∥∥| · |αK

∥∥
L∞(RN )

∥∥f
∥∥r

Lr(RN )
+
∥∥K
∥∥

L1(RN )

∥∥| · |α
r f
∥∥r

L∞(RN )

)
.

(3.27)

Using the assumptions of Lemma 15, equation (3.27) reduces to
∥∥| · |αf

∥∥
L∞(RN )

≤ A+A‖| · |α
r f‖r

L∞(RN ), (3.28)

if 0 ≤ α ≤ αK . Equation (3.28) now links the algebraic decay with exponent α of f to its
algebraic decay with exponent α

q
. In particular, if we know some algebraic decay with a small

exponent α0 > 0, a bootstrap argument yields the algebraic decay of f for α = qα0, α = q2α0,
. . ., that is for any α ∈ [α0, αK ]. This provides the optimal decay of f , which is the decay of the
kernel K.

However, in order to perform the inductive argument of Lemma 15, and to get the decay of
a travelling wave v, we must establish some small decay for v. Multiplying equations (3.4) and
(3.21) by η and ϕ, and integrating by parts on the complementary of a ball, we may establish
the following integral decay.

Lemma 16 ([10, 35]). Let N ≥ 2 and 0 ≤ c <
√

2, and consider a finite energy solution v to
(TWc). There exists some positive constant α0 such that

∫

RN

|x|α0e(v)(x)dx < +∞.

Lemma 16 gives the small decay required to use the inductive argument of Lemma 15. Cou-
pled with the decay and integrability properties of the kernels (see Lemma 13 and formula
(3.23)), this first gives the decay of a travelling wave v, then its asymptotics, using formulae like
formula (3.25) of Lemma 14. This completes the proof of Theorem 9.

4 The existence problem in higher dimensions

4.1 The variational approach

As mentioned in the introduction, the existence problem in dimensions two and three has been
widely investigated in the physical literature: rigorous mathematical proofs have been provided
more recently, using a variational approach.

It is a classical observation that one may obtain travelling waves by minimizing the energy
E keeping the momentum p fixed. For a given p ≥ 0, we therefore consider the minimization
problem

Emin(p) = inf{E(v), v ∈W (RN ), p(v) = p},
where the definition of the space W (RN) is given by (3.20). In this approach, equation (TWc) is
the Euler-Lagrange equation to this constrained minimization problem. The speed c appears as
a Lagrange multiplier, and is therefore not fixed a priori. Instead of using minimization under
constraint, an alternate approach is to introduce, for given c, the Lagrangian

Fc(v) = E(v) − cp(v),
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whose critical points are solutions to (TWc). Solutions may then be found applying a mountain-
pass argument. As a matter of fact, both techniques have been used so far. The first existence
results were based on asymptotic Ginzburg-Landau’s theory: the solutions obtained in that
context had small speeds c > 0 and possessed vorticity, i.e zeroes with non-trivial topological
degree. For instance, in dimension two, one may obtain, using the mountain-pass lemma, a
branch of solutions parametrized by the speed c > 0.

Theorem 10 ([11]). Assume N = 2. There exists c0 > 0 such that there exists a non-constant
finite energy solution v to (TWc) for any 0 < c < c0. Moreover, v exactly has two vortices with
degree ±1 located at a distance ∼ 2

c
, as c→ 0, whereas

E(v) ∼ 2π ln(c), and p(v) ∼ 2π

c
, as c→ 0.

-

6

�
��

�
��

-

-

6

?

0

x2

x1

∼ 2
c

−1

+1

In dimension three, the constrained minimization approach provides the following theorem
for large momentums.

Theorem 11 ([10]). Assume N = 3. There exists p∞ > 0 such that, for any p ≥ p∞, there
exists a solution up to (TWc), with c = c(up), verifying p(up) = p,

E(up) ∼ π
√

p ln(p), and c(up) ∼
π ln(p)

2
√

p
, as p → +∞.

Moreover, v presents a vortex ring whose diameter is ∼ 2
√

p

π
, as p → +∞.

-

6

	

-

-

��
��

��
��

6

?

0

x1

x2

x3

∼ 2 | ln(c)|
c

As a matter of fact, the mountain-pass lemma can also be used in dimension three to assert
the existence of a branch parametrized by the speed.
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Theorem 12 ([18]). Assume N = 3. There exists c0 > 0 such that there exists a non-constant
finite energy solution uc to (TWc) for any 0 < c < c0. Moreover, v presents a vortex ring whose

diameter is ∼ 2| ln(c)|
c

, as c→ 0, and

E(uc) ∼
2π2| ln(c)|2

c
, and p(uc) ∼

π2 ln(c)2

c2
, as c→ 0.

Remark 9. One may conjecture that both approaches exactly yield the same solutions.

In [9], we revisit the minimization under constraint method, and are able to construct the
full branch of minimizers parametrized by p in both dimensions.

Theorem 13 ([9]). Assume N = 2 and p > 0. There exists a non-constant finite energy solution
up ∈ W (R2) to equation (TWc), with c = c(up), and p(up) = p, such that up is solution to the
minimization problem

E(up) = Emin(p) = inf{E(v), v ∈W (R2), p(v) = p}.

Remark 10. In particular, Theorem 13 shows that there exist travelling wave solutions of
arbitrary small energy. This suggests that scattering in the energy space is not likely to hold.

In dimension three, the existence result is somewhat different.

Theorem 14 ([9]). Assume N = 3. There exists some constant p0 > 0 such that
i) For any 0 < p < p0,

Emin(p) = inf{E(v), v ∈W (R3), p(v) = p} =
√

2p,

and the infimum is not achieved in W (R3).
ii) For any p ≥ p0, there exists a non-constant finite energy solution up ∈ W (R3) to equation
(TWc), with c = c(up) and p(up) = p. Moreover, E(up0

) = Emin(p0) =
√

2p0, and for any
p > p0,

E(up) = Emin(p) = inf{E(v), v ∈W (R3), p(v) = p} <
√

2p.

Besides the existence of minimizers, our analysis yields also properties of the curve Emin as
well as of the speed c(up). More precisely, we have

Theorem 15 ([9]). i) Let N = 2 or N = 3. For any p, q ≥ 0, we have the inequality

|Emin(p) − Emin(q)| ≤
√

2|p − q|,

i.e. the real-valued function p 7→ Emin(p) is Lipschitz, with Lipschitz’s constant
√

2. Moreover,
it is positive and non-decreasing on R+.
ii) Assume N = 2. Then, the function p 7→ Emin(p) is strictly concave.
iii) Assume N = 3. Then,

Emin(p) =
√

2p, ∀0 ≤ p ≤ p0,

whereas Emin is strictly concave on (p0,+∞).

In particular, the function Emin is differentiable except possibly for a countable set of values.
Its derivative at the points of differentiability is given by the speed c(up), which satisfies for any
p > 0,

0 < c(up) <
√

2.
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It remains an open problem to determine whether the curve Emin is differentiable or not. This
question is related to the problem of uniqueness, up to symmetries, for the minimizer up, which
is completely open as well. As a matter of fact, uniqueness for any p > 0 of the minimizer
would lead to the differentiability of the full curve. We believe that, if at some point Emin were
not differentiable, then there are at least two different minimizers with different speeds. In that
case, the function p 7→ c(up) is not single valued. However, we can prove that it is a decreasing
(possibly multivalued) function.

In dimension two, the function Emin has the following graph:

6

-

0

E

p

E =
√

2p

E = Emin(p)

In dimension three, the graph of Emin has the following form:

6

-

0

E

p

E =
√

2p

E = Emin(p)

E = Eup(p)

p0

E(up0
)

Our results are in full agreement with the corresponding figure given in [46]. In dimension
three, the numerical value found in [46] for p0 is close to 80. Jones and Roberts have also shown
in [46], mainly by numerical means, that in dimension three, the branch of solutions can be
extended past the curve E =

√
2p. Its representation in the E-p diagram bifurcates at some

point, then is asymptotic to the curve E =
√

2p (see the curve Eup on the diagram above).
At this stage, there is no mathematical proof of the existence of the upper branch of solutions.
However, it is proved in [9] that the slope of the curve at the point (p0,

√
2p0) is strictly less

than
√

2. This leaves some hope to use an implicit function theorem to construct the curve Eup,
at least near (p0,

√
2p0).

Remark 11. Jones, Putterman and Roberts [46, 45] conjectured the existence of some momen-
tum p1 such that the minimizer up has vortices for p ≥ p1, and has no vortex otherwise. The
numerical value found in [46] for p1 is close to 75 in dimension three. There is no evidence of
the existence of such a number p1. In particular, we do not know if p1 > p0 in dimension three.
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Taking advantage of the analyticity property of finite energy solutions to (TWc), we may
derive the following additional property of the minimizing solutions we obtained in Theorems
13 and 14.

Theorem 16 ([9]). Let N = 2 or N = 3, p > 0 and assume that Emin(p) is achieved by up.
Then up is, up to a translation, axisymmetric around axis x1. More precisely, there exists a
function up : R × R+ such that

up(x) = up(x1, |x⊥|), ∀x = (x1, x⊥) ∈ R
N .

4.2 The (KP I) transonic limit in dimension two

In [46, 45], it is formally shown that, if uc is a two-dimensional solution to (TWc), then, after a
suitable rescaling, the function 1− |uc|2 converges, as the speed c converges to

√
2, to a solitary

wave solution to the Kadomtsev-Petviashvili equation (KP I), which writes

∂tu+ u∂1u+ ∂3
1u− ∂−1

1 (∂2
2u) = 0. (KP I)

Notice that the first terms correspond to the Korteweg-de Vries equation, whereas the last term
is a transverse perturbation. As (GP), equation (KP I) is hamiltonian, with Hamiltonian given
by

EKP (u) =
1

2

∫

R2

(∂1u)
2 +

1

2

∫

R2

(∂−1
1 (∂2u))

2 − 1

6

∫

R2

u3,

and the L2-norm of u is conserved as well. Solitary wave solutions u(x, t) = w(x1 − σt, x2)
may be obtained in dimension two minimizing the Hamiltonian, keeping the L2-norm fixed (see
[22, 23]). The equation for the profile w of a solitary wave of speed σ = 1 is given by

∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w) = 0. (4.1)

In contrast with (TWc), the range of speeds is the positive axis. Indeed, for any given σ > 0, a
solitary wave wσ of speed σ is deduced from a solution w to (4.1) by the scaling

wσ(x1, x2) = σw(
√
σx1, σx2).

We term ground state, a solitary wave w which minimizes the action S given by

S(v) = EKP (v) +
1

2

∫

R2

v2,

among all the solutions to (4.1) (see [24] for more details). In dimension two, it is shown in [22]
that w is a ground state if and only if it minimizes the Hamiltonian EKP keeping the L2-norm
fixed. We denote SKP , the action S(w) of the ground states w.

The correspondence between (TWc) and (4.1) is given as follows. Setting ε ≡
√

2 − c2 and
ηc ≡ 1 − |uc|2, and performing the change of variables

Nε(x) =
6

ε2
ηc

(x1

ε
,

√
2x2

ε2

)
,

it is shown that Nε approximatively solves (4.1) as c converges to
√

2. The minimizing branch
constructed in Theorem 13 contains transonic solutions in the limit p → 0, as shown in the
following proposition.
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Proposition 3. Assume N = 2. There exist some constants p1 > 0, K0 and K1 such that we
have the asymptotic behaviours

48
√

2

S2
KP

p
3 −K0p

4 ≤
√

2p − Emin(p) ≤ K1p
3, ∀0 ≤ p ≤ p1. (4.2)

Let up be as in Theorem 13. Then, there exist some constants p2 > 0, K2 > 0 and K3 such that

K2p
2 ≤

√
2 − c(up) ≤ K3p

2, ∀0 ≤ p < p2. (4.3)

We next consider the map
Np = Nεp ,

where εp = ε(up) =
√

2 − c(up)2. In [8], we prove

Theorem 17 ([8]). There exists a subsequence (pn)n∈N tending to 0, as n → +∞, a ground
state w of (KP I), and a universal constant γ0 > 0 such that, for any 0 ≤ γ < γ0, we have

Npn → w in C0,γ(R2), as n→ +∞.

Remark 12. There is an explicit solitary wave solution to (KP I) of speed 1, namely the so-
called ”lump” solution, which is written as

wℓ(x1, x2) = 24
3 − x2

1 + x2
2

(3 + x2
1 + x2

2)
2
.

It is usually conjectured that the ”lump” solution is a ground state. It is also conjectured that
the ground state solution is unique, up to the invariances of the problem. If this is the case,
then the full family (Np)p>0 converges to wℓ, as p → 0.

Remark 13. If uc is a solution to (TWc) in dimension three, then it is also formally shown in
[44, 46, 45], that the function wc defined by

wc(x) =
6

ε2

(
1 −

∣∣∣vc

(x1

ε
,

√
2x2

ε2
,

√
2x3

ε2

)∣∣∣
2
)
,

converges, as the parameter ε =
√

2 − c2 converges to 0, to a solitary wave solution w to the
three-dimensional Kadomtsev-Petviashvili equation (KP I), which writes

∂tu+ u∂1u+ ∂3
1u− ∂−1

1 (∂2
2u+ ∂2

3u) = 0.

In particular, the equation for the solitary wave w is now written as

∂1w − w∂1w − ∂3
1w + ∂−1

1 (∂2
2w + ∂2

3w) = 0.

So far, there is no rigorous proof of the existence of a branch of solutions in the transonic limit.
This branch of solution is conjectured in [46], and represented on our graph above as the upper
branch Eup.

5 Related problems

5.1 Infinite energy solutions

So far, we have restricted ourselves to finite energy solutions. Solutions with infinite energy are
also of interest. In dimension two, a typical example is the stationary symmetric vortices for the
Ginzburg-Landau equation (see e.g [6]). In dimension three, for small speeds, Chiron [19, 20]
established the existence of solutions having vorticity concentrated on helices. Such solutions
are reminiscent to some flows for the incompressible Euler equation.
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5.2 Nonlinear Schrödinger flow past an obstacle

As mentioned in the introduction, the Gross-Pitaevskii equation provides a model describing
superfluidity in the Hartree approximation. When impurities or an obstacle are present in the
superfluid, one may model these new elements adding an external potential V to the equation.
As done by Hakim [43] in the one-dimensional case, the flow of a superfluid past an obstacle
moving with constant positive speed c in direction x1, may be described by the Gross-Pitaevskii
equation with a coupling with an additional potential V , namely

i∂tΨ(x, t) = ∆Ψ(x, t)+Ψ(x, t)
(
1−|Ψ(x, t)|2−V (x1−ct, x⊥)

)
,
(
x = (x1, x⊥), t

)
∈ R

N×R. (5.1)

As before, one adds the condition |Ψ(x)| → 1, as |x| → +∞, to describe a superfluid which is
at rest at infinity. In the frame of the moving obstacle, equation (5.1) may be recast as

i∂tΦ = ic∂1Φ + ∆Φ + Φ
(
1 − |Φ|2 − V

)
, (5.2)

where we denote Φ(x, t) = Ψ(x1 + ct, x⊥, t). Stationary solutions v to (5.2) satisfy the elliptic
equation

ic∂1v + ∆v + v
(
1 − |v|2 − V

)
= 0. (5.3)

Equation (5.2) formally remains hamiltonian. For a superfluid at rest at infinity, the conserved
Hamiltonian may be written as

F V
c (Φ) =

1

2

∫

RN

|∇Φ|2 +
1

4

∫

RN

(1 − |Φ|2)2 − 1

2

∫

RN

V (1 − |Φ|2) − c

2

∫

RN

〈i∂1Φ,Φ − 1〉. (5.4)

The previous variational formulation leads us to restrict ourselves to solutions v for which the
following modified Ginzburg-Landau energy is finite, that is

EV (v) ≡ 1

2

∫

RN

|∇v|2 +
1

4

∫

RN

(1 − |v|2)2 − 1

2

∫

RN

V (1 − |v|2) < +∞.

In [43], a formal and numerical analysis of stationary solutions to (5.2) was initiated in the
one-dimensional case, whereas in [54], still in dimension one, Maris established the existence
of solutions to (5.3) minimizing the Hamiltonian F V

c , assuming the potential V is a bounded
measure with small total variation compared to the speed c. Assuming additionally that V is
compactly supported, Maris [54] also exhibited excited states.

In higher dimensions, the flow of a superfluid past an obstacle has been widely investigated
both formally and numerically (see, for instance, [27, 59, 60, 62, 1, 2, 16]). In [64], Tarquini
proved that, under suitable assumptions on the localized potential V , there are no finite energy
supersonic solutions to (5.3), that is with speed c >

√
2. He also computed an explicit bound

for the solutions to (5.3), and described their regularity and convergence at infinity.

To our knowledge, the existence problem of finite energy solutions to (5.3) has not been
addressed yet for a general class of potentials, although some special cases have been considered
in [4, 3]. Therefore, we would like to provide in this paper an existence result in dimension two.

Theorem 18. Let 0 ≤ c <
√

2 and V ∈ L2(R2). There exists a constant K(c) > 0 depending
only on c, such that, if ∫

R2

|V |2 ≤ K(c)2, (5.5)

then equation (5.3) has at least one finite energy solution uc.
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The solutions uc provided by Theorem 18 are constructed minimizing the Hamiltonian F V
c

given by (5.4) locally near the constant solutions to (TWc). As a matter of fact, in the case
the potential is 0, the solutions we construct correspond to the constant solutions to (TWc). So
far, we have not tried to construct excited states (as done in the one-dimensional case by Maris
[54]). For a zero potential, these solutions would correspond to the non-constant two-dimensional
solutions to (TWc) we have discussed before.

Remark 14. Though we did not address this question here, we believe that the solutions uc

provided by Theorem 18 are local minimizers of F V
c on suitable variational spaces (see [9], where

a similar question is addressed for the equation without potential, and [64] for the choice of the
suitable variational space, in case V has compact support). In particular, the argument used to
prove Theorem 18 does not establish that either F V

c (uc) or p(uc) are finite.

As mentioned above, we construct the solutions uc by locally minimizing the Hamiltonian
F V

c given by (5.4). When the potential V belongs to L2(R2), F V
c is well-defined and of class

C1 on the space {1} +H1(R2). However, the construction of minimizers for F V
c presents some

difficulty in view of the lack of compactness. To circumvent this difficulty, we introduce, as in
[10, 9], minimizing problems on expanding tori, for which the existence of minimizers presents
no major difficulty, and then pass to the limit when the size of the torus tends to infinity. More
precisely, we introduce the flat torus defined by

Tn ≃ Ωn ≡ [−πn, πn]2,

for any n ∈ N∗ (with opposite faces identified), and the space

Xn = H1(Tn,C) ≃ H1
per(Ωn,C)

of 2πn-periodic H1-functions. We define the energy EV
n and the momentum pn on Xn by

EV
n (v) =

1

2

∫

Ωn

|∇v|2 +
1

4

∫

Ωn

(1 − |v|2)2 − 1

2

∫

Ωn

V (1 − |v|2), (5.6)

and

pn(v) =
1

2

∫

Ωn

〈i∂1v, v − 1〉,

so that the Hamiltonian F V
c,n on Xn is given by

F V
c,n(v) = EV

n (v) − cpn(v). (5.7)

Notice that the function V in (5.6) and (5.7) denotes the 2πn -periodic restriction of V to Ωn.
For given Λ > 0, we introduce the open set En(Λ) defined by

En(Λ) =

{
v ∈ Xn, s.t. En(v) ≡ 1

2

∫

Ωn

|∇v|2 +
1

4

∫

Ωn

(1 − |v|2)2 < Λ

}
,

which is a neighbourhood of the set of constant functions, and consider the minimization problem

FV
c,n(Λ) ≡ inf

v∈En(Λ)

(
F V

c,n(v)
)
. (5.8)

Our purpose is to prove, that for a suitable choice of Λ = Λ(c) with respect to the speed c,
independent of n, the previous minimization is achieved. The main ingredient in the proof of
Theorem 18, which allows in particular to prove that F V

c is bounded from below on any set of
functions with sufficiently small energy, is the following estimate.
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Lemma 17. Let δ0 > 0 and δ1 > 0 such that

δc =
c√
2
< δ0 < δ1 < 1,

and consider a function v ∈ En(Λ). Then, there exists some integer n0, and some positive
constant Λ0, depending only on δ0 and δ1, such that

c|pn(v)| ≤ δc

δ0
En(v) +

cδ1√
π(1 − δ21)(δ1 − δ0)

En(v)
3

2 +
2
√

2c

(1 − δ21)(δ1 − δ0)2δ0
En(v)2, (5.9)

for any n > n0, and any Λ < Λ0.

Proof. The proof of Lemma 17 is reminiscent of the proof of Lemma 4. When En(v) is small
enough, the modulus of v is close to 1. Assuming that we may construct a lifting v = ̺ exp iϕ
of v, we compute

c|pn(v)| ≈ c

2

∣∣∣∣
∫

Ωn

(
1 − ̺2

)
∂1ϕ

∣∣∣∣ ≤
c√
2

∫

Ωn

e(v)

̺
≈ δc

∫

Ωn

e(v) = δcEn(v). (5.10)

Lemma 17 reduces to estimate any error terms in (5.10) to obtain (5.9).

Therefore, we consider some function v ∈ En(Λ), assuming, up to a density argument, that
v is smooth on Ωn. In order to estimate how the modulus of v is close to 1, and to construct a
lifting of v, we study the level sets

Ω(ξ) =
{
x ∈ Ωn, s.t. |v(x)| = ξ

}
,

for any given ξ ∈ R+. By Sard’s lemma, the sets Ω(ξ) are one-dimensional, smooth submanifolds,
for almost any ξ ∈ R+, so that their Hausdorff’s length

L(ξ) = H1
(
Ω(ξ)

)
,

is finite for almost any ξ ∈ R+. Moreover, the coarea formula gives

∫ δ1

δ0

(∫

Ω(ξ)
|∇v|

)
dξ ≤

∫

δ0<|x|<δ1

|∇v(x)|2dx ≤ 2En(v),

and ∫ δ1

δ0

L(ξ)dξ ≤
∫

δ0<|x|<δ1

|∇v(x)|dx ≤
√

2En(v)
1

2 |U(δ1)|
1

2 ,

where we denote U(ξ) = {x ∈ Ωn, s.t. |v(x)| < ξ}, for any ξ ∈ R+. Since

|U(δ1)| ≤
4

(1 − δ21)
2
En(v),

we are led to ∫ δ1

δ0

L(ξ)dξ ≤ 2
√

2

1 − δ21
En(v).

The mean value inequality then provides the existence of δ0 < ξ0 < δ1 such that the length of
the one-dimensional submanifold Ω(ξ0) verifies

L(ξ0) ≤
2
√

2

(1 − δ21)(δ1 − δ0)
En(v) ≤ 2

√
2Λ

(1 − δ21)(δ1 − δ0)
, (5.11)
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and ∫

Ω(ξ0)
|∇v| ≤ 2

δ0 − δ1
En(v) ≤ 2Λ

δ0 − δ1
. (5.12)

We first deduce from (5.11) that, up to some new unfolding of the torus Tn, Ω(ξ0) is, for

n ≥ 2
√

2Λ
π(1−δ2

1
)(δ1−δ0)

, a collection of smooth, connected, closed curves (γi)i∈I of Ωn. Moreover,

since

|U(ξ0)| ≤ |U(δ1)| ≤
4

(1 − δ21)
2
En(v) ≤ 4Λ

(1 − δ21)
2
,

we may assume that the complementary of U(ξ0) contains the boundary of Ωn for any n ≥
2
√

Λ
π(1−δ2

1
)
.

It now follows from (5.12) that

sup
x∈γi

∣∣∣∣
v(x)

|v(x)| −
v(y)

|v(y)|

∣∣∣∣ ≤
1

ξ0

∫

Ω(ξ0)
|∇v| ≤ 2Λ

δ0(δ1 − δ0)
, ∀y ∈ γi,

so that, assuming that Λ < δ0(δ1 − δ0), the topological degree of v
|v| on each curve γi is equal

to 0. This provides the existence of a smooth lifting v = ̺ exp iϕ of v on the complementary of
U(ξ0), so that, using the periodicity of v, we can compute

pn(v) =
1

2

∫

Ωn

〈i∂1v, v〉 =
1

2

∫

U(ξ0)
〈i∂1v, v〉 −

1

2

∫

Ωn\U(ξ0)
̺2∂1ϕ. (5.13)

The first term in the right-hand side of (5.13) can be estimated by

∣∣∣∣
1

2

∫

U(ξ0)
〈i∂1v, v〉

∣∣∣∣ ≤
|ξ0|
2

∫

U(ξ0)
|∂1v| ≤

δ1

2
|U(ξ0)|

1

2

(∫

U(ξ0)
|∂1v|2

) 1

2

,

so that, using the isoperimetric inequality

4π|U(ξ0)| ≤ L(ξ0)
2,

and (5.12), we are led to
∣∣∣∣
1

2

∫

U(ξ0)
〈i∂1v, v〉

∣∣∣∣ ≤
δ1√

π(1 − δ21)(δ1 − δ0)
En(v)

3

2 . (5.14)

On the other hand, the second term in the right-hand side of (5.13) is written as

− 1

2

∫

Ωn\U(ξ0)
̺2∂1ϕ =

1

2

∫

Ωn\U(ξ0)
(1 − ̺2)∂1ϕ− 1

2

∑

i∈I

∫

γi

(ϕ− ϕi)ν1, (5.15)

where ν1 denotes the first component of the outward normal to γi, and

ϕi =
1

|γi|

∫

γi

ϕ.

Using the result of Lemma 4, we obtain

∣∣∣∣
∫

Ωn\U(ξ0)
(1 − ̺2)∂1ϕ

∣∣∣∣ ≤
√

2

∫

Ωn\U(ξ0)

e(v)

̺
≤

√
2

ξ0
En(v),

whereas ∣∣∣∣
∑

i∈I

∫

γi

(ϕ− ϕi)ν1

∣∣∣∣ ≤
∑

i∈I

∫

γi

(∫

γi

|∇ϕ|
)

≤ L(ξ0)

ξ0

∫

Ω(ξ0)
|∇v|,
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so that using (5.11), (5.12) and (5.15), we are led to

∣∣∣∣
1

2

∫

Ωn\U(ξ0)
̺2∂1ϕ

∣∣∣∣ ≤
1√
2δ0

En(v) +
2
√

2

δ0(1 − δ21)(δ1 − δ0)2
En(v)2. (5.16)

Inequality (5.9) finally follows from (5.13), (5.14) and (5.16), provided that

Λ < Λ0 ≡ δ0(δ1 − δ0), and n ≥ n0 ≡ max

{
2
√

2δ0
π(1 − δ21)

,
2
√
δ0(δ1 − δ0)

π(1 − δ21)

}
. (5.17)

As a consequence of Lemma 17, we have

Lemma 18. Let 0 < c <
√

2 and n ≥ n0, where n0 is the integer of Lemma 17. There exists
positive constants K(c), Λ(c) and κ(c) < Λ(c) such that, if ‖V ‖L2(R2) ≤ K(c), then

F V
c,n(v) ≥ FV

c,n(κ(c)), (5.18)

for any function v ∈ En(Λ(c)). Moreover,

− Λ(c) ≤ FV
c,n(Λ(c)) ≤ 0. (5.19)

Proof. The proof reduces to compute an upper and a lower bound for the function F V
c,n given

by

F V
c,n(v) = En(v) − 1

2

∫

Tn

V (1 − |v|2) − cpn(v), (5.20)

on the set En(Λ), which amounts to estimate the second and the third term of the right-hand
side of (5.20). We use Lemma 17 to provide an upper bound for the scalar momentum pn(v).
Therefore, we consider numbers δ0, δ1, δ2 and µ such that

δc =
c√
2
< δ2 < δ0 < δ1 < 1, and

δc

δ2
< µ < 1, (5.21)

and assume that n ≥ n0 and Λ < Λ0, where n0 and Λ0 are provided by Lemma 17. By Lemma
17, we have

|cpn(v)| ≤ δc

δ2
En(v),

provided that En(v) < Λ1(c), where Λ1(c) denotes some positive constant depending only on c.
On the other hand, we compute

∣∣∣∣
1

2

∫

Ωn

V (1 − |v|2)
∣∣∣∣ ≤

1

4(1 − µ)

∫

Ωn

V 2 + (1 − µ)En(v),

so that
(
µ− δc

δ2

)
En(v) − 1

4(1 − µ)

∫

R2

V 2 ≤ F V
c,n(v) ≤

(
1 + µ+

δc

δ2

)
En(v) +

1

4(1 − µ)

∫

R2

V 2. (5.22)

We now fix
Λ(c) = min{Λ0,Λ1(c)} > 0,

and choose some positive number K(c) and κ(c) such that

(
1 + 2µ

)
κ(c) ≤ Λ(c), and K(c)2 < 4

(
1 − µ

)(
µ− δc

δ2

)
κ(c), (5.23)
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so that, assuming that ‖V ‖L2(R2) ≤ K(c), and n ≥ n0, (5.22) provides

F V
c,n(v) ≥

(
µ− δc

δ2

)
κ(c) − 1

4(1 − µ)
K(c)2 > 0 = F V

c,n(1) ≥ FV
c,n(κ(c)),

for any function v ∈ Xn such that κ(c) ≤ En(v) ≤ Λ(c). Hence, we are led to (5.18), that is

FV
c,n(κ(c)) = FV

c,n(Λ(c)) ≤ 0. (5.24)

On the other hand, (5.22) also yields, using (5.23),

|F V
c,n(v)| ≤

(
1 + µ+

δc

δ2

)
κ(c) +

1

4(1 − µ)
K(c)2 ≤

(
1 + 2µ

)
κ(c) ≤ Λ(c),

for any function v ∈ En(κ(c)), so that (5.19) follows from (5.24).

We next have

Lemma 19. Let 0 < c <
√

2 and n ≥ n0, where n0 is the integer of Lemma 17, and let K(c) and
Λ(c) be as in Lemma 18. Assume moreover that condition (5.5) holds for K(c) and V . Then,
the minimization problem (5.8) for Λ = Λ(c) has a solution un

c in En(Λ(c)). In particular, un
c is

solution to (5.3) on Ωn, and verifies

En(un
c ) ≤ κ(c) < Λ(c), and − Λ(c) ≤ F V

c,n(un
c ) = FV

c,n(Λ(c)) ≤ 0. (5.25)

Proof. Lemma 19 follows from standard variational arguments. For given n ∈ N and Λ > 0,
F V

c,n is bounded from below on En(Λ). Indeed, there exists some constant K(n,Λ) such that
∫

Ωn

|∇v|2 +

∫

Ωn

|v|4 ≤ K(n,Λ),

for any function v ∈ En(Λ), so that

F V
c,n(v) ≥ −

√
Λ
(
‖V ‖L2(Tn) + c‖v − 1‖L2(Tn)

)
≥ −K(n,Λ).

Next, consider a minimizing sequence (wm)m∈N for F V
c,n on Λ(c), and assume n ≥ n0. In view

of (5.18), we have
F V

c,n(wm) ≥ FV
c,n(κ(c)),

so that we may assume, since 0 < κ(c) < Λ(c), and hence En(κ(c)) ⊂ En(Λ(c)), that wm ∈
En(κ(c)) for any m ∈ N, or equivalently,

En(wn) ≤ κ(c) < Λ(c).

Using Rellich’s compactness theorem, there exists, up to some subsequence, a function un
c ∈ Xn

such that
∇wm ⇀ ∇un

c in L2(Ωn), and wm → un
c in L4(Ωn), as m→ +∞,

so that
F V

c,n(un
c ) ≤ lim inf

m→+∞

(
F V

c,n(wm)
)

= FV
c,n(Λ).

The same argument also provides

En(un
c ) ≤ lim inf

m→+∞

(
En(wm)

)
≤ κ(c) < λ(c).

when ‖V ‖L2(R2) ≤ K(c). Hence, the minimization problem (5.8) for Λ = Λ(c) is attained by un
c

in the open set En(Λ(c)). Since F V
c,n is of class C1 on Xn, un

c is a critical point of F V
c,n, that is a

solution to (5.3) on Ωn.
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Proof of Theorem 18. Passing to the limit n→ +∞ requires to prove some compactness for the
sequence (un

c )n≥n0
. We first provide a uniform estimate for (un

c )n≥n0
using (5.25), and standard

elliptic estimates. By (5.25),

∫

B(x0,2)

(
|∇un

c |2 + |un
c |4
)
≤ Λ(c),

where we denote B(x0, 2) = {x ∈ Ωn, |x− x0| < 2} for any x0 ∈ Ωn. Using Hölder’s inequality,
we are led to ∫

B(x0,2)

(∣∣un
c (1 − |un

c |2)
∣∣ 43 +

∣∣V un
c

∣∣ 43 +
∣∣ic∂1u

n
c

∣∣ 43
)
≤ Λ(c),

so that, by equation (5.3), and standard elliptic estimates, the sequence (un
c )n≥n0

is bounded in

W 2, 4
3 (B(x0, 1)). Therefore, by Sobolev’s embedding theorem, there exists some positive constant

Λ(c) such that
‖un

c ‖L∞(Ωn) ≤ Λ(c), ∀n ≥ 1. (5.26)

Moreover, (5.25) also gives
‖∇un

c ‖L2(Ωn) ≤ Λ(c), ∀n ≥ 1. (5.27)

Since any compact set K of R2 is included in Ωn for n sufficiently large, we then construct,
using (5.26), (5.27), Rellich’s compactness theorem, and a diagonal argument, a function uc ∈
H1

loc(R
2), such that, up to some subsequence,

∇un
c ⇀ ∇uc in L2(K), and un

c → uc in Lq(K), as n→ +∞, (5.28)

for any compact set K of R2, and any 1 ≤ q < +∞. Since un
c is solution to (5.3) on Ωn,

convergences (5.28) first yield that uc is solution to (5.3) on R2. Moreover, they also provide

1

2

∫

K

|∇uc|2 +
1

4

∫

K

(1 − |uc|2)2 ≤ lim inf
n→+∞

(
1

2

∫

K

|∇un
c |2 +

1

4

∫

K

(1 − |un
c |2)2

)
≤ Λ(c),

so that by monotone convergence,
E(uc) ≤ Λ(c).

Hence,

EV (uc) ≤ E(uc) + ‖V ‖L2(R2)E(uc)
1

2 < +∞,

so that uc is a finite energy solution to (5.3) on R2.

Remark 15. Notice that it follows from (5.17), (5.21) and (5.23) that the constant K(c) in
Theorem 18 tends to 0, as c →

√
2, so that the considered potential V must be smaller and

smaller as c→
√

2.

5.3 Nucleation by impurities

An interesting generalization of (GP) (see [32]) concerns the modelling of vortex nucleation by
an impurity, e.g. an electron. In the Hartree approximation, the equations governing the one-
particle wave function of the condensate ψ, and the wave function of the impurity φ, are a pair
of coupled equations

i~∂tΨ = − ~2

2M
∆Ψ + (U0|Φ|2 + V0|Ψ|2 − E)Ψ,

i~∂tΦ = − ~2

2µ
∆Φ + (U0|Ψ|2 − Ee)Φ,

(5.29)
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where M and E are the mass and single-particle energy for the bosons, and µ and Ee are the
mass and energy of the impurity, while U0 (resp. V0) denotes the mass of the Dirac interaction
potentials between bosons and impurity (resp. bosons).
In dimensionless variables, (5.29) is written as (see [32])

i∂tΨ = −∆Ψ +
1

ε2

( 1

ε2
|Φ|2 + |Ψ|2 − 1

)
Ψ,

iδ∂tΦ = −∆Φ +
1

ε2

(
q2|Ψ|2 − ε2k2

)
Φ.

(5.30)

Here, δ = µ
M

is the ratio of the mass of the impurity over the boson mass (δ ≪ 1), q2 = δU0

V0
,

k10 =
µ5E5

eU2
0

2π2M2E4~6 is a dimensionless measure of the single-particle impurity energy, and ε10 =
2π2~6

EM3U2
0

is a dimensionless constant, which in applications is about 0.2.

Assuming that we are in a frame in which the condensate is at rest at infinity yields the formal
boundary conditions

|ψ(x)| → 1, and φ(x) → 0, as |x| → +∞.

Similarly to the Gross-Pitaevskii equation, (5.30) has a formally conserved Hamiltonian,

E(Ψ,Φ) =
1

2

∫

RN

(
ε4|∇Ψ|2 +

ε2

q2
|∇Φ|2 +

ε2

2

(
1 − |Ψ|2

)2
+ |Φ|2|Ψ|2 − ε2k2

q2
|Φ|2

)
≡
∫

RN

e(Ψ,Φ).

It moreover conserves

m(Φ) =

∫

RN

|Φ|2.

The finite energy travelling waves of (5.30) have been formally investigated in [32]. No rigorous
existence results seem to be known so far in dimensions two and three, but Bouchel [15], ex-
tending the analysis of [34, 35] for (GP), has proved decay estimates for finite energy travelling
waves of (5.30), together with the non-existence of supersonic travelling waves. On the other
hand, Maris [55] has proved that one-dimensional travelling waves to (5.30) exist if and only if
their velocity is less than the sound velocity at infinity, and that in this case, the set of travelling
waves contains global subcontinua in appropriate Sobolev spaces.

6 Conclusion

Although travelling waves have been widely discussed in the physical literature, the field is
still widely open for mathematical investigation. In the course of our discussion, we already
mentioned a number of open problems and research directions: differentiability of the curve
Emin, existence of solutions to (TWc) for all values of speeds 0 < c <

√
2, uniqueness, up

to the invariances, of constrained minimizers as well as of ground states of (KP I), existence
of the upper branch Eup in dimension three, and its possible transonic limit, non-existence of
sonic travelling waves in dimension three, similar questions for the related problems above... To
complete this survey, we wish to emphasize the question of stability: even the orbital stability
of constrained minimizers presents serious yet unsolved difficulties in dimensions two and three.
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