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Christophe Charrier Gilles Lebrun Olivier Lezoray
Université de Caen-Basse Normandie, GREYC UMR CNRS 6072, Equipe Image

120, route de l’exode, 50000 Saint-Lô, France

ABSTRACT

A crucial step in image compression is the evaluation of its performance, and more precisely the available way
to measure the final quality of the compressed image. In this paper, a machine learning expert, providing a final
class number is designed. The quality measure is based on a learned classification process in order to respect the
one of human observers. Instead of computing a final note, our method classifies the quality using the quality
scale recommended by the UIT. This quality scale contains 5 ranks ordered from 1 (the worst quality) to 5 (the
best quality). This was done constructing a vector containing many visual attributes. Finally, the final features
vector contains more than 40 attibutes.

Unfortunatley, no study about the existing interactions between the used visual attributes has been done. A
feature selection algorithm could be interesting but the selection is highly related to the further used classifier.
Therefore, we prefer to perform dimensionality reduction instead of feature selection. Manifold Learning methods
are used to provide a low-dimensional new representation from the initial high dimensional feature space.

The classification process is performed on this new low-dimensional representation of the images. Obtained
results are compared to the one obtained without applying the dimension reduction process to judge the efficiency
of the method.
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1. INTRODUCTION

Nowadays, it is usual for anyone to take photos with digital cameras, to upload the images on computers, and
to use some software to apply many image processing algorithms on these images (compression, blurring, ...).
This is a simple and representative example of the growing of digital media that is everywhere. By the way,
many Tera-bytes transit on the Internet. In order to reduce the amount of transmitted data, one typical applied
processing on an image is compression, that allows to reach high compression levels, so that few data is to be
further transmitted.

Image compression maps an original image into a bit stream suitable for communication over or storage in a
digital medium. It consists in one or more of the following operations :

• Signal representation: the first and the most important element is the transform of the image to the most
suitable domain. A frequential or spatial transform is applied to have an efficient image representation.
The goal is to concentrate energy in a few coefficient or to provide a useful data structure.

• Quantization: this conversion can operate on individual pixels (scalar quantization) or group of pixels
(vector quantization). This operation is nonlinear and noninvertible: it is a lossy process. In our study,
this conversion operates on a group of pixels by Vector Quantization (VQ).

• lossless compression: the compression is achieved by invertible code. The idea is to assign codewords with
few bits to likely symbols and codewords with more bits to unlikely symbols so that the average number
of bits is minimized.
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A crucial step in image compression is the evaluation of its performance, and more precisely the available
way to measure the final quality of the compressed image. There is a very rich literature on image quality
criteria, generally dedicated to specific applications (optics, detector, compression, restoration, . . . ). The quality
evaluation is divided into two topics: objective and subjective evaluation. The first topic gives place to two
families of criteria: unweighted and weighted criteria. The first family corresponds to the traditional criteria
known as mathematical measures, because they result from geometry (concept of distance) or from the signal
processing (signal to noise ratio). These criteria do not give an estimate of the visual quality of the image. The
second family of criteria takes into account the characteristics of the human visual system in particular by a
weighting of the image of error. Lastly, the second topic relates to the psychophysical experiments allowing to
add a subjective dimension in the quality evaluation process. Due to the time expensive aspect of this last topic,
objective quality measures have been intensively investigated to quantify the quality of a compressed image.

The usually applied scheme consists in performing 1) a color space transformation to obtain decorrelated
color coordinates and 2) a decomposition of these new coordinates towards perceptual channels. An error is then
estimated for each one of these channels. A final quality score is obtained by pooling these errors in both spatial
and frequential domain. The most common way to perform this pooling is to use the Minkowski error metric.
Some studies1 have shown that this summation does not perform well. The same final value can be computed
for two different degraded images even if the visual quality of the two images is drastically different. This can
be due to the fact that the implicit assumption of this metric is based on the independancy of all signal samples.
It is commonly assumed that this is not true when one uses perceptual channels. This explains the reason why
the Minkowski metric might fail to generate a good final score.

In our previous work, a machine learning expert, providing a final class number and its associated confidence
probability, has been designed.2 The quality measure is based on a learned classification process in order to
respect the one of human observers. Instead of computing a final note, our method classifies the quality using
the quality scale recommended by the UIT. This quality scale contains 5 ranks ordered from 1 (the worst quality)
to 5 (the best quality). The selected class of the proposed method represents the opinion score OS. This was
done constructing a vector containing many visual attributes such as those defined by Wang et al. in their
SSIM measure,3 and ones obtained computing a cortex filter based on a multi-channel decomposition,4 and so
on. Finally, the final features vector contains more than 40 attibutes.

Unfortunatley, no study about the existing interactions between the used visual attributes has been done
so far. A feature selection algorithm could be interesting but the selection is highly related to the further
used classifier. Therefore, we prefer to perform dimensionality reduction instead of feature selection. Linear
dimensionality reduction methods have shown their limits and a lot a different nonlinear methods have emerged
these last years. This is known as Manifold Learning and attempts at providing a low-dimensional representation
from an initial high dimensional feature space.

The paper is structured as follows. In Section 2, we present the of features used to describe the quality of
images. In Section 3, Manifold Learning methods are described. Section4 details how classification is performed
with Support Vector Machines. Section 5 provides obtained results. Last Section concludes.

2. FEATURES VECTOR

This section describes the set of features used to describe the quality of images. Four types of attributes contained
in that set are: 1) full-reference image SVH-based features and 2) full-reference image features, both for them
a reference image is needed and 3) no-reference images SVH-based features and 4) no-reference images features,
both for them no reference image is needed.

2.1 Full-reference image SVH-based features

When using full-reference image features, both original and degraded images are first subject to a transforma-
tion towards an antogonist luminance chrominance color space. From all existing opponent color spaces, the
Krauskopf5 one is selected. This coordinates system is computed from the LMS primaries that correspond to
the HVS cone responses. Thus, from this color space one are able to take into account the spatial-frequency
sensitivity of the SVH. Actually, it is well known that the HVS analyzes the visual input by a set of channels,



each of them being selectively sensitive to a restricted range of spatial frequencies and orientations. Several psy-
chophysical experiments have been conducted by different researchers to characterize these channels. Currently,
concerning the luminance component the most used decompositions are from Daly,4 Watson6 and the Lubin’s
one.7 are often used. The two first are characterized by a diadic radial selectivity (five one octave bandwidth
channels) and a constant angular selectivity. The main difference is situated around the value of the bandwith:
30 degrees for Daly’s model and 45 degrees for the Watson’s one. Lubin’s decomposition needs seven radial
bands and four orientations.

In this paper, the cortex transform introduced by Daly8 is used. Actually that transformation uses a
radial frequency selectivity that is symmetric on a log frequency axis with bandwidths nearly constant at one
octave. Their decompositions consist in one isotropic low-pass and three bandpass channels. The angular
selectivity is constant and is equal to 45 degrees. Many different filters have been proposed as approximations
to the multi-channel representation of visual information in the HVS. In this paper, a radial selectivity filter
domi(u, v) and a angular selectivity filter fank,θ(u, v) are used that are combined to obtain the cortex filter
mboxCortexk,θ,i(u, v) = domi(u, v).fank,θ(u, v), where u and v are the cartesian spatial frequencies, θ is the
orientation and k represents the direction. Then, the image is then filtered by each one of the cortex filter to
obtain a set of subimages ak,θ,i(u, v) defined by

ak,θ,i(u, v) = Cortexk,θ,i(u, v).S(u, v)

where S(u, v) represents the image spectrum.

Each one of those images corresponds to the structural content of the image with respect to the frequency
and the orientation.

2.1.1 Contrast masking

Then, from each one of those filtered images, a contrast masking score is computed.

To obtain a good definition of the masking contrast, one have to take into account together the spatial and
frequential resolution. Peli9 has proposed such a model known as the limited band local contrast. This contrast
is local since it quantifies the human observer’s sentivitity to the luminance variation with respect to the local
mean luminance. In addition, it is a limited band contrast since the degradation perception depends on its
spectral location. When using the above mentionned cortex decomposition, one has to take into account both
angular and radial to define the limited band local contrast such as:

ci,j(u, v) =
Li,j(u, v)

∑i−1
k=0

∑card(l)
l=0 Li

k,l(u, v)
(1)

where Lij(u, v) and ci,j(u, v) respectively specifies the luminance and the contrast located to the coordinates
(u, v) of the ith radial channel and the jth angular sector. card(l) represents the number of angular sectors of
the kth radial band.

Then, the perceived errors are modeled by the contrast masking for one spatial frequency and orientation
channel and one spatial location, into a single objective score for each one of the 31 filtered image.

From this step, 31 scores, labeled to as feature si, are available and integrated within the feature vector.

2.2 full-reference image features

2.2.1 Structural criteria

In addition, the three criteria integrated in the metric proposed by Wang and Bovik3 are added to the vector.
These criteria are 1) a luminance distorsion, 2) a constrast distortion and 3) a structure comparison. The
authors proposed to represent an image as a vector in an image space. In that case, any image distortion can
be interpreted as adding a distortion vector to the reference image vector. In this space, the two vectors that
represent luminance and contrast changes span a plane that is adapted to the reference image vector. The image
distortion corresponding to a rotation a such a plane by an angle can be interpreted as the structural change.



The luminance comparison is defined as

l(I, J) =
2µIµJ + C1

µ2
Iµ

2
J + C1

(2)

where µI and µJ respectively represent the mean intensity of the image I and J , and C1 is a constant avoiding
instability when µ2

I + µ2
J ≈ 0. According to the Weber’s law, the magnitude of a just-noticeable luminance

change δL is proportional to the background luminance L. In that case, µI = αµJ , where α represents the ratio
of the luminance of the distorted signal relative to the reference one. The luminance comparison can be now
defined as

l(I, J) =
2αµ2

I + C1

(1 + α2)µ2
I + C1

(3)

The contrast distortion measure is defined in a similar form:

cd(I, J) =
2σIσJ + C2

σ2
Iσ2

J + C2
(4)

where C2 is a non negative constant, and σI (resp. σJ) represents the standard deviation .

The structure comparison is performed after luminance substraction and contrast normalization. The struc-
ture comparison function is defined as:

s(I, J) =
2σI,J + C3

σ2
Iσ2

J + C3
(5)

where σIJ = 1
N−1

∑N

i=1(Ii − µi)(Ji − µJ), and C3 is a small constant. s(I, J) can take negative values which is
interpreted as local image structures inversion.

2.2.2 color criteria

Two local descriptors based on visual attention are used.10 Those descriptors are not ponctually defined in
I(x, y) but with respect to the mean value µ(x, y) of neigborhood V of the pixel (x, y) . IM

(ci)
(x, y) and Im

(ci)
(x, y)

respectively represent the maximal and minimal value of the ci axis within V for the image I at the pixel located
to (x, y).

The two used features are:

1. local chrominance that measures the sensitivity of an observer to color degradation within a uniform area.
The calculation of this descriptor is performed in the L∗a∗b∗ color space.

2. local colorimetric dispersion that measures the spatio-colorimetric dispersion in each one of the two color
images. This comparison which is performed over a neighborhood.

These descriptors have been defined according to the same scale ranging from 0 to 1 ; 0 corresponding to the
most noticeable differences and 1 corresponding to the least noticeable difference.

2.3 No-reference image SVH-based features

2.3.1 Blockiness measures

The measure of blocking artefact has an important weight in the final judgment of the image quality. Blocking
artefact results from a visible block structure appearing in reconstructed images. This is mainly due to the
block-based compression algorithms used to compressed images.

Many techniques to quantify blockiness effects have been proposed. Yet, these techniques require to have
access to the original image. In our case, three no-reference blockiness metrics have been used: 1) the Wang et

al. one,,11 2) the one developed by Vlachos12 and 3) the blockiness measure as defined by Wu and Yuen.13

Wang et al. model the blocky image as a non-blocky image interfered with a pure blocky signal. To estimate
the blockiness of an image MB , they assume that the vertical MBv

and th horizontal MBh
effects are of the same

importance, and the relationship between MB and both MBv
and MBh

effects is MB = (MBv
+ MBh

)/2.



In order to define the two effects, they apply a 1-D FFT to the horizontal and vertical difference signals. From
these signals, the average horizontal and vertical power spectra is computed. Peaks in these spectra are then
identified by their locations in the spectra. The power spectra of non-blocky images is approximated by applying
a median filter on these curves. The final blockiness measure is then computed as the difference between the
resulting power spectra and the peaks location.

In the Vlachos’s model, the used algorithm is based on the cross-correlation of subsmapled images. The
original image is first decomposed in 8 × 8 size blocks. Every generated sub-image contains one specefic pixels
from each original blocks. Eight sub-images are generated as follows: 1) four sub-images are generated from the
four corner pixels of each blocks and 2) four other sub-images are constructed from four neighboring pixels in
the top left corner of each block. Then, the cross-correlations from the former four sub-images are normalized
by the computed cross-correlations of the latter four sub-images to score the blockiness measure.

For Wu and Yuen the blockiness measure is based on the vertical and horizontal differences between the
columns and the rows all 8× 8 boundaries. The mean and the standard deviation obtained from adjacent blocks
to each boundary are respectively used to define weight respectively dedicated to perceptual luminance effects
and texture masking effects. Then, the final blockiness measure is obtained from the latter measure normalized
by the mean of the same measures computed at non-boundary columns and rows.

2.3.2 Blurriness measure

Blur in an image is due to the attenuation of high spatial frequencies in the image. It is characterized by a
smearing of sharp edges and a general loss of details. This artefact commonly occurs during a compression
process.

To measure the blurry effect on an image, one first have to detect edges. In order to detect edges in a
color image, the Cumani edge detector14 is used on the color image expressed in the Krauskopf space. Then an
opening operator from mathematical morphology is applied on the resulting thresholded image in order to remove
noise and non-important edges. Then, taking into account the gradient orientation, a measure of blurriness is
performed along the actual local edges. To measure the width of a located edge, one used the Achromatic
component and seeds obtained from the former edge image. Then both local maximum and local minimum
are extracted from the achromatic image and correspond to luminance extrema closest to the edge seed. The
difference between the location of those two extrema is computed to define the width of the edge. Finally the
global blurriness measure is obtained by averaging the local blurriness measure over all detected edges.

2.4 No-reference image features

As no-reference image features, one has used three of the objectives features used by Gastaldo et al. to provide
an objective assessment of JPEG compressed image using neural networks.15 The three features are expressed
from a color correlogram that allows us to have information about the spatial correlation of color changes with
distance. The used features are:

1. Energy, that corresponds to a summation of all squared elements of the color correlogram,

2. Information Entropy correponding to amount of information bringing by the color correlogram

3. Coefficient of homogeneity indicating the degree data approximates the Guttman implicatory scales. It
measures the consistency of data matrices

3. DIMENSIONALITY REDUCTION

Given a set of visual attributes describing an image, we use a Manifold Learning method to project the data
on a new low-dimensional space. Thus, nonlinear new discriminant features of the input data are yielded. The
obtained low dimensional sub-manifold is used as a new representation that is transmitted to classifiers.

When data objects that are the subject of analysis using machine learning techniques are described by a
large number of features (i.e. the data is high dimension) it is often beneficial to reduce the dimension of the
data. Dimension reduction can be beneficial not only for reasons of computational efficiency but also because it



can improve the accuracy of the analysis. Indeed, traditional algorithms used in machine learning and pattern
recognition applications are often susceptible to the well-known problem of the curse of dimensionality, that refers
to the degradation in the performance of a given learning algorithm as the number of features increases. To deal
with this issue, dimension reduction techniques are often applied as a data pre-processing step or as part of the
data analysis to simplify the data model. This typically involves the identification of a suitable low-dimensional
representation for the original high-dimensional data set. By working with this reduced representation, tasks such
as classification or clustering can often yield more accurate and readily interpretable results, while computational
costs may also be significantly reduced. Dimensionality reduction methods can be divided into two sets wether
the transformation is linear or nonlinear. We detail here the principles of two well-known linear and nonlinear
dimensionality reduction methods: Principal Components Analysis (PCA)16 and Laplacian Eigenmaps (LE).17

Let X = {x1,x2, · · · ,xn} ∈ R
p be n sample vectors. Dimensionality reduction consists in finding a new low-

dimensional representation in R
p with q ≪ p.

3.1 Principal Components Analysis

The main linear technique for dimensionality reduction, principal components analysis (PCA), performs a lin-
ear mapping of the data to a lower dimensional space in such a way, that the variance of the data in the
low-dimensional representation is maximized. Traditionally, principal component analysis is performed on the
symmetric covariance matrix Ccov or on the symmetric correlation matrix Ccor. We will denote C one of these
two matrices in the sequel. From such a symmetric matrix, we can calculate an orthogonal basis by finding its
eigenvalues and eigenvectors. Therefore, PCA simply consists in computing the eigenvectors and eigenvalues
of the matrix C: C = UΛUT where Λ = diag(λ1, · · · , λn) is the diagonal matrix of the ordered eigenvalues
λ1 ≤ · · · ≤ λn, and U is a p× p orthogonal matrix containing the eigenvectors. Dimensionality reduction is then
obtained by the following operator hPCA : xi → (y1(i), · · · , yq(i)) where yk(i) is the ith coordinate of eigenvector
yk. In the rest of this paper, we will denote hCov

PCA and hCor
PCA, dimensionality reduction performed with PCA of

the covariance or the correlation matrix.

3.2 Laplacian Eigenmaps

Given a neighborhood graph G associated to the vectors of X, one considers its adjacency matrix W where weights

Wij are given by a Gaussian kernel Wij = k(xi,xj) = e
(

−
||xi−xj ||

2

σ2

)

. Let D denote the diagonal matrix with

elements Dii =
∑

j Wij and ∆ denote the un-normalized Laplacian defined by ∆ = D−W . Laplacian Eigenmaps
dimensionality reduction consists in searching for a new representation {y1,y2, · · · ,yn} with yi ∈ R

n, obtained
by minimizing 1

2

∑

ij

∥

∥yi − yj

∥

∥

2
Wij = Tr(YT ∆Y)with Y = [y1,y2, · · · ,yn]. This cost function encourages

nearby sample vectors to be mapped to nearby outputs. This is achieved by finding the eigenvectors y1,y2, · · · ,yn

of matrix ∆. Dimensionality reduction is obtained by considering the q lowest eigenvectors (the first eigenvector
being discarded) with q ≪ p and is defined by the following operator hLE : xi → (y2(i), · · · , yq(i)) where yk(i)
is the ith coordinate of eigenvector yk.

4. CLASSIFICATION METHOD

From all existing classification schemes, a Support Vector Machine (SVM)-based technique has been selected
due to high classification rates obtained in previous works,18 and to their high generalization abilities.

The SVMs were developed by Vapnik et al.19 and are based on the structural risk minimization principle
from statistical learning theory. SVMs express predictions in terms of a linear combination of kernel functions
centered on a subset of the training data, known as support vectors (SV).

Given the training data S = {(xi, yi)}i={1,...,m}, xi ∈ R
n , yi ∈ {−1,+1}, SVM maps the input vector x

into a high-dimensional feature space H through some non linear mapping functions φ : R
n → H, and builds

an optimal separating hyperplane in that space. The mapping operation φ(·) is performed by a kernel function
K(·, ·) which defines an inner product in H. The separating hyperplane given by a SVM is: w · φ(x) + b = 0.
The optimal hyperplane is characterized by the maximal distance to the closest training data. The margin is



inversely proportional to the norm of w. Thus computing this hyperplane is equivalent to minimize the following
optimization problem:

V (w, b, ξ) =
1

2
‖w‖2 + C

(

m
∑

i=1

ξi

)

(6)

where the constraint ∀m
i=1 : yi [w · φ (xi) + b] ≥ 1 − ξi , ξi ≥ 0 requires that all training examples are correctly

classified up to some slack ξ and C is a parameter allowing trading-off between training errors and model
complexity.

This optimization is a convex quadratic programming problem. Its whole dual19 is to maximize the following
optimization problem:

W (α) =

m
∑

i=1

αi −
1

2

m
∑

i,j=1

αiαjyiyjK (xi, xj) (7)

subject to ∀m
i=1 : 0 ≤ αi ≤ C ,

∑m

i=1 yiαi = 0.

The optimal solution α∗ specifies the coefficients for the optimal hyperplane w∗ =
∑m

i=1 α∗
i yiφ (xi) and defines

the subset SV of all support vector (SV). An example xi of the training set is a SV if α∗
i ≥ 0 in the optimal

solution. The support vectors subset gives the binary decision function h:

h(x) = sign(f(x)) with f (x) =
∑

i∈SV

α∗
i yiK (xi, x) + b∗ (8)

where the threshold b∗ is computed via the unbounded support vectors19 (i.e., 0 < α∗
i < C). An efficient

algorithm SMO (Sequential Minimal Optimization)20 and many refinements21,22 were proposed to solve dual
problem. SVM being binary classifiers, several binary SVM classifiers are induced for a multi-class problem. A
final decision is taken from the outputs of all binary SVM.23

4.1 SVM model selection

Kernel function choice is critical for the design of a machine learning expert. Radial Basic Function (RBF) kernel
function is commonly used with SVM. The most important reason is that RBF functions work like a similarity
measure between two examples. As no a priori knowledge exists on the relative importance of each feature sk,
the classical RBF function has been extended in order to reflect this fact and the kernel function has been defined
as follow

Kβ(si, sj) = exp(−
n
∑

k=1

βk(sk
i − sk

j )2/r2) (9)

where sk
i is the kth feature of the ith image. To have efficient SVM inducers, a parameter tuning process has to

be realized. This procedure is the so-called model selection. The selection of the SVM hyper-parameter (C), the
radius of RBF function (r) has been realized by using cross-validation. In this paper, βk could only take binary
values and modelize if the sk feature is used or not. When βk values are not fixed by human priors, they are
determined by using a feature selection paradigm. The quality of a subset of features for the design of a binary
SVM is measured by its recognition performance. This corresponds to a wrapper feature selection approach.24

SVMs being binary classifiers, multi-class decision using SVMs are usually implemented by combining several
two-classes SVM decision. Several combination schemes of binary classifiers exist.23

In this paper, the common One-Versus-One (OO) decomposition scheme is used to create 10 binary classifiers.
Let ti,j ,∀i ∈ [1, 5], j ∈ [2, 5] be a binary problem with ti,j ∈ {+1,−1}. The number 5 represents the final quality
classes according to the ones recommended by the UIT. Let hi(·) be the SVM decision function obtained by
training it on the ith binary problem. Table 4.1 gives binary problems transformation used in the OO scheme.

The binary problem transformation is the first part of a combination scheme. A final decision must be taken
from all binary decision functions. Many combination strategies can be used to obtain the final decision.23 The

majority vote criterion is the usual way to do this. Let Vj (x) =
nb
∑

i=1

LO1 (hi(x), ti,j) be the number of votes for



class t5,4 t5,3 t5,2 t5,1 t4,3 t4,2 t4,1 t3,2 t3,1 t2,1

5 +1 +1 +1 +1 – – – – – –
4 -1 – – – +1 +1 +1 – – –
3 – -1 – – -1 – – +1 +1 –
2 – – -1 – – -1 – -1 – +1
1 – – – -1 – – -1 – -1 -1

Table 1. Binary problems transformation used in a One-Versus-One combination scheme.

the class j, where nb is the number of binary decision function in a specific combination scheme, and LO1 is a
loss function defined as follows:

LO1 (y1, y2) =

{

0 if y1 = y2

1 else
(10)

where my2
corresponds to the number of images labelled to as class y2 in the reference dataset. The multiclass

decision function D using majority vote is:

D(x) = arg max
1≤j≤nc

(Vj (x)) (11)

(when conflicts exist, the SVM output is used to break it).

5. EXPERIMENTAL SETUP AND RESULTS

SVM classification results are obtained with JPEG2000 compressed versions of 12 images of the LIVE image
database, for which 1) all the visual features have been computed and 2) the class selection of each human
observer is available. The JPEG2000 compressed versions of the 13 remaining images constitute the test set, for
which the same kind of information are available.

Figure 1 presents the 2D projection of the obtained results using the trial methods to reduce the initial
dimension of the data. As we can observe, hCor

PCA seems to perform best than the two others tested dimension
reduction techniques. Actually, the separation of the five quality classes is linearly separable in the first case,
while using the two other projections classes are not linearly separable.

Considering this point of vue, the results obtained from hCor
PCA is the best candidate to be computed with the

SVMs; it seems to be the best representation to be linearly separable. In order to confirm or not this assumption,
the SVMs will be applied with the obtained results from the three dimension reduction methods: hCov

PCA, hCor
PCA

and hLE .

Figure 2 presents the Mean Opinion Score (MOS) obtained from a set of human observers for each tested image
versus its associated compression rate (bpp)– The MOS is not taken into account in the dimension reduction
process. On the upper left corner, one notes a vertical set of points. Those points correpond to all the original
images (with a compression ratio equal to 0) of the trial test for which the quality is judged as very good or as
excellent. When observing the subfigure 1(a), the same remarks can be formulated. Thanks to the reduction of
the dimension of the original features vector, one is able to reach a linear separation between classes, except for
two classes : “Excellent” and “very good”. This is probably due to the original images than can be interprated
as noise.

Table 5 presents the recognition rate errors with respect to number of used features issued from the dimension
reduction step. From this table one can observe that the recognition error rate is quite always minimized when
the hCor

PCA is used to reduce the dimension of the data prior to apply SVMs, whatever the number of new vectors
used. On note that the best error rate is given when one only uses one feature that yields to reach an error rate
of 14.1% pm 7.8%. This means that the initial data are highly correlated. When other features are added to
perform the SVM, the recognition rate error increases. This can be interpreted as the following: when one adds
new features, in fact one adds noise, and thus the whole performance decreases.



(a) h
Cov

PCA (b) h
Cor

PCA (c) hLE

Figure 1. Obtained results from the three dimension reduction methods applied to the initial data. The colors are
associated to the quality classes as follows: purple–5 (excellent), blue–4 (very good), green–3 (quite good), yellow–2 (bad)
and red–1 ( very bad)

Figure 2. MOS vs. bpp. The colors are associated to the quality classes as follows: purple–5 (excellent), blue–4 (very
good), green–3 (quite good), yellow–2 (bad) and red–1 ( very bad)

Recognition rate error with respect to the number of used features

1 2 3 4 5
hCor

PCA 0.141 ± 0.078 0.185 ± 0.064 0.181 ± 0.0984 0.207 ± 0.0691 0.191 ± 0.102
hCov

PCA 0.295 ± 0.0895 0.299 ± 0.113 0.308 ± 0.1020 0.291 ± 0.094 0.283 ± 0.166
hLE 0.298 ± 0.111 0.317 ±0.114 – – –

6 7 8 9 10
hCor

PCA 0.229 ± 0.062 0.229 ± 0.106 0.251 ± 0.076 0.219 ± 0.111 0.264 ± 0.133
hCov

PCA 0.317 ± 0.0831 0.321 ± 0.087 0.211 ± 0.09 0.238 ± 0.056 0.277 ± 0.040
hLE – – – – –

Table 2. Recognition rate errors with respect to number of used features issued from the dimension reduction step.

Nevertheless, when one compares the obtained results with the one obtained when the training phase is
performed on the initial data (i.e., without applying the dimensionality reduction process as a prior step), the
recognition rate is equal to 14.2% ± 7.1%. This means that, for the original attributes used to create the features
vector characterizing a compressed image, the reduction of the dimension of this vector is not a significant step
to improve the quality of the classification process. Nevertheless, using only one attribute, the data, and thus the
results obtained at the end of the classification process become more easily understandable by a human being.

More generally, when a dimensionnality reduction process is expected as a prior step to a classification
approach, one has to think about an existing correlation between the features of the initial vector.



6. CONCLUSION

In this paper a new approach to design a quality metric is proposed. This approach is based on a classification
process such as the human being is supposed to proceed to judge the quality of an object. To apply the
classification process, a vector of features has been generated. The selected features are chosen from full-
reference image SVH-based features and full-reference image features, both for them a reference image is needed.
In addition, no-reference images SVH-based features and no-reference images features (both for them no reference
image is needed) are included in the initial features vector.

In order to reduce the number of features within the initial vector, a manifold learning process is applied
to reduce the dimension of the vector that will be used during the classification process. Three techniques are
tested: principal component analysis performed 1) on the symmetric covariance matrix and 2) on the symmetric
correlation matrix, and 3) Laplacian Eigenmaps.

The obtained results shown that the PCA on the correlation matrix gives better results and yields to reach
a recognition rate error close to 14%. Analysis tends to prove that the original attributes of the features vectors
are highly correlated. In future works, new attributes will be designed, and original images will be removed from
the trial images set.
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