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CONSISTENT ESTIMATION OF A CONVEX

DENSITY AT THE ORIGIN 1

Fadoua Balabdaoui2

,

Centre de Recherche en Mathématiques de la Décision
Université Paris-Dauphine, Paris, France

Abstract: Motivated by Hampel’s birds migration problem, Groeneboom, Jong-

bloed, and Wellner (2001b) established the asymptotic distribution theory

for the nonparametric Least Squares and Maximum Likelihood estimators of a con-

vex and decreasing density, g0, at a fixed point t0 > 0. However, estimation of the

distribution function of the birds’ resting times involves estimation of g′

0 at 0, a

boundary point at which the estimators are not consistent.

In this paper, we focus on the Least Squares estimator, g̃n. Our goal is to

show that consistent estimators of both g0(0) and g′

0(0) can be based solely on g̃n.

Following the idea of Kulikov and Lopuhaä (2006) in monotone estimation,

we show that it suffices to take g̃n(n−α) and g̃′

n
(n−α), with α ∈ (0, 1/3). We

establish their joint asymptotic distributions and show that α = 1/5 should be

taken as it yields the fastest rates of convergence.

Key words and phrases: Asymptotic distribution, Brownian motion, Convex den-

sity, Hampel’s birds problem, Inconsistency at the boundaries, Least Squares es-

timation.

1 Introduction

Suppose that we are interested in estimating the distribution function of resting

periods of migrating birds in a certain habitat area. We denote the true distri-

bution by F0. The birds are marked individually so that they can be identified,

and some of them are captured in mist nets with a certain probability.

Hampel (1987) assumed that the birds are caught according to a Poisson

process with a rate λ small enough that the probability of catching the same

bird three times or more is negligible, and that F0 has a density, f0, such that

1This work was completed while the author was a postdoctoral fellow at the Institute of

Mathematical Stochastics, Göttingen, Germany.
2E-mail address: fadoua@ceremade.dauphine.fr
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limt→∞ f0(t) = 0. Those birds that are caught exactly twice yield a distribution

of observed (minimum) resting periods.

The question is: What is the relationship between the observed resting period

distribution to the true one? Assuming that f0 admits a finite second moment,

and if g0 is the density of the observed spans between two capture dates, Hampel

(1987) showed that this relationship is given by

g0(s) =
2

µ2

∫

∞

0
(t − s)+f0(t)dt, s > 0 (1.1)

where µ2 =
∫

∞

0 t2f0(t)dt. Inverting (1.1) yields at any continuity point t > 0 of

F0

F0(t) = 1 −
g′0(t)

g′0(0)
,

where g′0(0) denotes here the right derivative of g0 at 0. See also Anevski (2003)

for an explicit derivation.

Groeneboom, Jongbloed, and Wellner (2001b) considered two nonpara-

metric estimators of g0: The Least Squares and Maximum Likelihood estimators,

denoted thereafter by LSE and MLE. Under the assumption that g′′0 is continuous

in the neighborhood of a fixed point t0 with g′′0(t0) 6= 0, they showed that these

estimators are piecewise linear, and




n
2

5

(

ḡn(t0) − g0(t0)
)

n
1

5

(

ḡ′n(t0) − g′0(t0)
)



→d

(

c0(t0) H(2)(0)

c1(t0) H(3)(0)

)

(1.2)

where ḡn denotes either one of the estimators, H is the “invelope” of the process

Y (t) =

{

∫ t
0 W (s)ds + t4, t ≥ 0
∫ 0
t W (s)ds + t4 t < 0

(1.3)

in the following sense: H is an almost surely unique random process satisfying:

(i) H(2) is convex (H is 4-convex) on R

(ii) H(t) ≥ Y (t), t ∈ R

(iii) H(t) = Y (t), if H(2) changes slope at t. In view of (ii), the condition (iii)

can be also rewritten as
∫

∞

−∞

(H(t) − Y (t))dH(3)(t) = 0
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(see Groeneboom, Jongbloed, and Wellner (2001a)). Here, W is a standard

two-sided Brownian motion starting at 0. The constants c0(t0) and c1(t0) are

given by

c0(t0) =

(

1

24
(g0(t0))

2g′′0(t0)

) 1

5

, c1(t0) =

(

1

243
g0(t0)(g

′′
0(t0))

3

) 1

5

. (1.4)

The asymptotic result in (1.2) does not apply anymore when t0 is replaced

by 0. To study the behavior of the estimators near this boundary point, we focus

in this paper on the LSE. The MLE can be handled very similarly, but it involves

much more cumbersome calculations, due mainly to the nonlinear nature of the

characterization of this estimator.

The LSE enjoys the property of preserving the shape restrictions of the es-

timated density g0, and any consistent estimator of g′0(0) will yield an estimator

of F0, that is a genuine distribution function (−g̃′n is nondecreasing) and point-

wise consistent if g0 is differentiable on (0,∞). This follows from Lemma 3.1 of

Groeneboom, Jongbloed, and Wellner (2001b).

To achieve consistency at 0, methods based on boundary corrections of kernel

density estimators have been suggested (see e.g. Jones (1993) and the references

therein). On the other hand, Cheng (1997) showed how local linear density esti-

mators adjust automatically for boundary effects without requiring any further

correction. Consistent estimation of higher derivatives can be achieved using lo-

cal polynomial density estimators as it was shown by Cheng, Fan and Marron

(1997). For estimating g′0(0), where g0 is a compactly supported density on [0, 1]

assumed to be twice differentiable, their Theorem 1 implies that n−1/5 is the

optimal rate of convergence, and is achieved by their local quadratic smoother

provided that the kernel function and its derivative are bounded on [0, 1].

In this paper, the goal is to answer the following question: Would it be pos-

sible, using only the already computed LSE, to construct a consistent estimator

of g′0(0)? This is possible by following the same idea of Kulikov and Lopuhaä

(2006) of “staying away of 0” which they used to achieve consistency at 0 in

monotone estimation. More precisely, we show that for α ∈ (0, 1/3), g̃n(n−α)

and g̃′n(n−α) are consistent estimators of 0, and that α = 1/5 yields the fastest

rates of convergence.

The paper will be structured as follows: We recall in the next section that
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the LSE fails to be consistent at 0, and show that its first derivative is not

even bounded in probability. In Section 3, we review the characterization of the

LSE, give preliminary results that we will use in the main proof and explain via

heuristic arguments where the main difficulty lies. In Section 4, we present the

three joint asymptotic regimes of g̃n(n−α) and g̃′n(n−α) depending on whether

α ∈ (0, 1/5), α = 1/5 or α ∈ (1/5, 1/3). The optimal rates of convergence, n−2/5

and n−1/5, are attained by our modified LSE estimator, which is obtained by

replacing the original LSE, on the shrinking neighborhood [0, n−1/5], by tangen-

tial extrapolation from the point n−1/5 to the left. To illustrate the theory, we

present in Section 5 numerical results based on simulations, and finish off with

conclusions and some open questions. The proof of our main result is given in

Section 6. As the cases α = 1/5 and α ∈ (1/5, 1/3) share many similarities in

the proof, we show the result only for α = 1/5 and indicate at the end of Section

6 how the proof can be readapted in the other case. We also give heuristic argu-

ments for α ∈ (0, 1/5), for which the limiting distribution depends on the same

process in the estimation problem considered by Groeneboom, Jongbloed, and

Wellner (2001b) at an interior point.

Throughout the paper, we assume that the true convex density g0 is twice

continuously differentiable at 0, and that g′′0(0) > 0.

2 Inconsistency of the Least Squares estimator

Given X1, · · · , Xn n i.i.d. observations from a convex and nonincreasing density

g0 and Gn their corresponding empirical distribution, the LSE g̃n is defined as

the unique minimizer of the quadratic criterion

Φn(g) =
1

2

∫

∞

0
g2(t)dt −

∫

∞

0
g(t)dGn(t) (2.5)

over the class of square integrable convex and nonincreasing functions on (0,∞).

Groeneboom, Jongbloed, and Wellner (2001b) established that the LSE

exists, is piecewise linear, and that it is a density although the minimization is

not restricted to the space of densities. Furthermore, if H̃n(t) =
∫ t
0 (t− s)g̃n(s)ds

and Yn(t) =
∫ t
0 (t−s)dGn(s), then the nonincreasing and convex piecewise linear
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function g̃n is the LSE of g0 if and only if

H̃n(t)

{

≥ Yn(t), for all t > 0

= Yn(t), if t is a jump point of g̃′n.
(2.6)

By the inequality condition in (2.6), any jump location τ is a point where H̃n−Yn

reaches its minimum. Therefore, the derivatives of H̃n and Yn at τ have to be

equal, that is

τ is a jump point ⇒ H̃n(τ) = Yn(τ) and G̃n(τ) = Gn(τ) (2.7)

where G̃n is the cumulative distribution function corresponding to g̃n.

We show now that g̃′n(0) is not a consistent estimator of g′0(0). This is a

consequence of the following proposition.

Proposition 2.1 g̃′n(0) is not bounded in probability.

To prove Proposition 2.1, we recall the following result due to Groeneboom,

Jongbloed, and Wellner (2001b) (see page 1673).

Lemma 2.1 If Y1 and Y2 are two independent standard Exponentials, then

lim inf
n→∞

P (g̃n(0) ≥ 2g0(0)) ≥ P

(

Y1

(Y1 + Y2)2
≥ 1

)

> 0

Hence, g̃n(0) is not consistent.

Proof of Proposition 2.1: By convexity of g̃n, we have g̃n(0) ≤ g̃n(t)−tg̃′n(0) =

g̃n(t) + t|g̃′n(0)| for all t > 0. Hence,

P

(

g̃n(0)

g0(0)
≥ 2

)

≤ P

(

g̃n(t)

g0(0)
≥

3

2

)

+ P

(

|g̃′n(0)|

g0(0)
≥

1

2t

)

.

By consistency of g̃n(t), the middle term converges to 0 as n → ∞. Using the

previous inequality and Lemma 2.1, we conclude that for all M > 0

lim inf
n→∞

P
(

|g̃′n(0)| ≥ M
)

> 0

and that g̃′n(0) is unbounded in probability. 2
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3 Local behavior of g̃n

3.1 Local perturbation functions

The characterization of g̃n given in (2.6) follows from taking the directional deriv-

ative of the quadratic functional Φn defined in (2.5) in the direction of the per-

turbation function s 7→ (t − s)+, where z+ is the usual notation of the positive

part of a z. To make sure that the resulting function g̃n(s) + ǫ(t − s)+ for small

ǫ belongs to class of convex functions, ǫ is only allowed to take positive values

when t is not necessarily a knot of g̃n. This leads to the inequality part of the

characterization in (2.6). When t is a knot, then small negative values of ǫ are al-

lowed and the directional derivative is equal to 0. This in turn yields the equality

condition in (2.6).

The knots of g̃n, or equivalently the jump points of g̃′n, are defined only

implicitly in the sense that there exists no explicit formula which pins down

their locations exactly. However, these knots can be obtained numerically as

limits of an iterative algorithmic procedure (see Groeneboom, Jongbloed, and

Wellner (2003) and also Mammen and van de Geer (1997) in the context

of nonparametric regression). To establish the limiting theory, it is necessary to

exploit the characterization of the LSE and make use of appropriate perturbation

functions to be able to track down the asymptotic behavior of these knots and

hence that of the estimator.

Consider τ1 < τ2 to be two jump points of g̃′n. Here we omit the subscript

n baring in mind dependence of these points on the sample size. We can always

write

H̃n(τ2) = H̃n(τ1) + (τ2 − τ1)H̃
′
n(τ1) +

∫ τ2

τ1

(τ2 − t)g̃n(t)dt.

Using (2.7), this yields

∫ τ2

τ1

(τ2 − t)g̃n(t)dt = Yn(τ2) − Yn(τ1) − (τ2 − τ1)Gn(τ1) =

∫ τ2

τ1

(τ2 − t)dGn(t),

or equivalently

∫

τ2

τ1

(τ2 − t)(g̃n(t) − g0(t))dt =

∫

τ2

τ1

(τ2 − t)d(Gn(t) − G0(t)). (3.8)
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On the other hand, since our estimation problem is local, most interesting pertur-

bation functions are those that vanish except on an interval of the form [τ1, τ2].

Such a function, p say, must satisfy that g̃n + ǫp is convex and nonincreasing for

ǫ > 0 small enough. As ǫ ց 0, nonnegativity of the corresponding directional

derivative implies that
∫ τ2

τ1

p(t)(g̃n(t) − g0(t))dt ≥

∫ τ2

τ1

p(t)d(Gn(t) − G0(t)) (3.9)

and this inequality remains valid if we add an arbitrary constant to p, using again

the fact that G̃n(τj) = Gn(τj), j = 1, 2.

The choice of perturbation functions in this problem is actually limited, and

the simplest ones to take are of the form of a “reversed hat”; i.e., a convex

triangular function on a compact set. Let s ∈ (τ1, τ2) and τ̄ be the mid-point of

[τ1, τ2]. Consider the following choices of local perturbation functions

p1,s(t) =
τ1 − t

s − τ1
1[τ1,s](t) +

t − τ2

τ2 − s
1(s,τ2](t) +

1

2
1[τ1,τ2](t)

p2,s(t) =
τ1 − t

s − τ1
1[τ1,s](t) +

t − τ2

τ2 − s
1(s,τ2](t) +

1

3
1[τ1,τ2](t)

and

p0(t) = p1,τ̄ (t) =
τ1 − t

τ̄ − τ1
1[τ1,τ̄ ](t) +

t − τ2

τ2 − τ̄
1(τ̄ ,τ2](t) +

1

2
1[τ1,τ2](t).

It can be easily checked that these functions satisfy
∫ τ2

τ1

p1,s(t)dt = 0,

∫ τ2

τ1

p1,s(t)(t − s)dt =
(τ2 − s)2 − (s − τ1)

2

12
= I1(s)(3.10)

∫ τ2

τ1

p1,s(t)(t − s)2dt =
(s − τ1)

3 + (τ2 − s)3

12

∫ τ2

τ1

p2,s(t)dt = −
1

6
(τ2 − τ1),

∫ τ2

τ1

p2,s(t)(t − s)dt = 0,

∫ τ2

τ1

p2,s(t)(t − s)2dt =
(s − τ1)

3 + (τ2 − s)3

36

and
∫ τ2

τ1

p0(t)dt = 0,

∫ τ2

τ1

p0(t)(t − τ̄)dt = 0,

∫ τ2

τ1

p0(t)(t − τ̄)2dt =
(τ2 − τ1)

3

48
.
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If τ1 and τ2 are successive jump points, then g̃′n is constant on (τ1, τ2), and

g̃n is linear on [τ1, τ2]. On the other hand, using Taylor expansion and the

assumption that g0 is twice continuously differentiable to the right of 0, the true

density g0 can be decomposed into a quadratic polynomial plus a lower order

remainder. Thus combining this with the inequality in (3.9) and the properties

of p0, p1,s and p2,s (in this order) yields

g′′

0
(τ̄)

96
(τ2 − τ1)

3 ≤

∣

∣

∣

∣

∫

τ2

τ1

p0(t)d(Gn(t) − G0(t))

∣

∣

∣

∣

+ op((τ2 − τ1)
3)

(3.11)

I1(s)
(

g̃′

n
(s) − g′

0
(s)
)

≥ −

∣

∣

∣

∣

∫

τ2

τ1

p1,s(t)d(Gn(t) − G0(t))

∣

∣

∣

∣

+ Op((τ2 − τ1)
3)

(3.12)

g̃n(s) − g0(s) ≤
6

τ2 − τ1

∣

∣

∣

∣

∫

τ2

τ1

p2,s(t)d(Gn(t) − G0(t))

∣

∣

∣

∣

+ Op((τ2 − τ1)
2).

(3.13)

The above identity in (3.8) and the inequalities in (3.11), (3.12) and (3.13)

will prove to be very useful for deriving the main result. They will be exploited

for different purposes, but note that they share the common feature of linking the

LSE to some empirical process term. Lemma 6.1 will give us a way to bound the

corresponding rates of convergence of these empirical processes, which is essential

for establishing the uniform tightness result of Proposition 6.1. This is explained

in more detail in the next subsection, where we also point to the main difficulty

encountered in establishing the main result.

3.2 The crucial role of the distance between jump points

To give some insight into the proof of Theorem 4.1 and to describe the main

difficulty of the problem, we focus here on α = 1/5 for which our proof is given

in detail. The key argument in proving the weak convergence is to show the

following uniform tightness result:

sup
t∈[M1n−1/5,M2n−1/5]

n2/5|g̃n(t) − g0(t)| = Op(1)

8



and

sup
t∈[M1n−1/5,M2n−1/5]

n1/5|g̃′n(t) − g′0(t)| = Op(1)

for all 0 < M1 < M2. Actually, we prove a stronger result where the supremum

is taken over the bigger interval [τ−, M2n
−1/5] and τ− is the last jump point of g̃′n

located before M1n
−1/5 (see Proposition 6.1). In estimating the convex density

at an interior point t0 > 0, Groeneboom, Jongbloed, and Wellner (2001b)

did not need to consider this stronger version; it is anyway implied by the n1/5−

order of the distance between two jump points τ− and τ+ in the neighborhood

of t0 > 0 as n → ∞; i.e.,

τ+ − τ− = Op(n
−1/5) (3.14)

(see their Lemma 4.2). Uniform tightness is the key argument in showing con-

vergence of the second and third derivatives of the “empirical invelope” to the

corresponding derivative of the limit invelope, denoted in this manuscript by H+.

The “empirical invelope” is the scaled version of the local process H̃ loc
n which we

define in Section 6.

The difficulty in establishing the uniform tightness result in our boundary

problem is that it is not known how the jump points cluster to the right of

the origin. For example, for a fixed K2 > 0, we do not know whether the

probability that a jump point is found in a neighborhood [K1n
−1/5, K2n

−1/5] for

some 0 < K1 < K2 increases to 1 as n → ∞. In the interior point problem

considered by Groeneboom, Jongbloed, and Wellner (2001b), the event that

g̃′n will have a jump between t0 +Mn−1/5 and t0−Mn−1/5 for some M > 0 large

enough occurs with an increasing probability as n → ∞. This fact follows again

from (3.14) and was used by Groeneboom, Jongbloed, and Wellner (2001b)

as a very useful “trick”. Indeed, this offered some flexibility in choosing jump

points, τ− and τ+ that are far enough to show that

inf
t∈[τ−,τ+]

n2/5|g̃n(t) − g0(t)| = Op(1). (3.15)

By far enough, we mean that the distance τ+ − τ− > rn1/5, where r > 0 does

not depend on n. Of course, this distance stays bounded with large probability

9



by Mn1/5 for some M > 0. The result in (3.15) states that with increasing

probability, we can find at least a point in [τ−, τ+] such that the estimation error

is of the order n2/5. This turned out to be enough to show the uniform n2/5−

and n1/5− tightness of the LSE and its derivative on an arbitrary neighborhood

[t0−Mn−1/5, t0+Mn−1/5]. This might seem surprising but it was indeed possible

using convexity of the estimator and the true density.

Unfortunately, the “trick” cannot be directly used here, and some new idea

was needed. Our approach to go around the problem is to consider both the

situations: (1) a jump point can be found in a given interval, [K1n
−1/5, K2n

−1/5]

say, and (2) no jump point can be found. In our proof of uniform tightness, A.

Case 2 and C. Case 2 describe exactly the second situation. There, we make use

of the inequalities in (3.12) and (3.13) and the empirical process argument of

Lemma 6.1.

Localizing and scaling appropriately the processes H̃n(t) =
∫ t
0 (t − s)g̃n(s)ds

and Yn(t) =
∫ t
0 Gn(s)ds, as it is done in Subsection 6.2, yield H̃ l

n and Y
l
n. Uniform

tightness is then used to show convergence of H̃ l
n to a limiting process, which

has to be necessarily equal almost surely to the invelope of the limit of Y
l
n as

n → ∞.

In the next section, we give the three regimes of the joint asymptotic dis-

tributions of the consistent estimators g̃n(n−α) and g̃′n(n−α) depending on the

value of α. This result can be compared directly with Theorem 4.1 of Kulikov

and Lopuhaä (2006) in the case where the first derivative of the true monotone

density does not vanish (k = 1 in their notation). A corollary follows, where we

give the asymptotic distribution of our modified LSE.

4 Consistency at 0 and limiting distributions

Let W be a standard two-sided Brownian motion on R starting from 0, and Y

the Gaussian drifting process defined on R in (1.3). For all t > 0, let

Y0(t) =

∫ t

0
W (s)ds and Y+(t) = Y (t).

We consider H+ and H0 the invelopes of Y+ and Y0, defined in the same sense as

the invelope H (see Section 1). Finally, let c0(0) and c1(0) the resulting constants

10



when we replace t0 by 0 in (1.4), c3(0) =
√

g0(0) and

k2 =
c0(0)

c1(0)
=

(

242g0(0)(g′′0(0))−2

) 1

5

. (4.16)

Our main result is stated in the following theorem:

Theorem 4.1 Let α ∈ (0, 1/3).

1. If α ∈ (1/5, 1/3) and t > 0, then




n
1−α

2

(

g̃n(n−α t) − g0(n
−α t)

)

n
1−3α

2

(

g̃′n(n−α t) − g′0(n
−α t)

)



→d

(

c3(0) H
(2)
0 (t)

c3(0) H
(3)
0 (t)

)

.

2. If α = 1/5 and t > 0, then




n
2

5

(

g̃n(n−
1

5 k2t) − g0(n
−

1

5 k2t)
)

+ 1
2k2

2t
2g′′0(0)

n
1

5

(

g̃′n(n−
1

5 k2t) − g′0(n
−

1

5 k2t)
)

+ k2tg
′′
0(0)



→d

(

c0(0) H
(2)
+ (t)

c1(0) H
(3)
+ (t)

)

.

3. If α ∈ (0, 1/5), then




n
2

5

(

g̃n(n−α) − g0(n
−α)
)

n
1

5

(

g̃′n(n−α) − g′0(n
−α)
)



→d

(

c0(0) H(2)(0)

c1(0) H(3)(0)

)

.

To keep the manuscript to a reasonable length, we do not present the details of

the proof of existence and almost surely uniqueness of the processes H+ and H0

. However, we would like to mention that the proof can be constructed along the

lines of Groeneboom, Jongbloed, and Wellner (2001a) by defining a stochastic

Least Squares problem in the class of convex functions on finite intervals [0, c]

and let the intervals grow as c → ∞. For example, the invelope H+ can be shown

to be the limit, in an appropriate sense, of the processes H+,c as c → ∞. Here,

H+,c is equal to the second integral of the unique minimizer of

1

2

∫ c

0
g2(t)dt −

∫ c

0
g(t)d[W (t) + 4t3]

over the class of convex functions g on [0, c] such that g(0) = 0 and g(c) = 12c2,

and H+,c satisfies the four boundary conditions H+,c(0) = Y+(0) = 0, H+,c(c) =

Y+(c), H ′
+,c(0) = Y ′

+(0) = 0 and H ′
+,c(c) = Y ′

+(c) = W (c)+ 4c3. It can be shown

that

11



(i) H
(2)
+,c is convex on [0, c]

(ii) H+,c(t) ≥ Y+(t), ∀ t ∈ [0, c]

(iii)
∫ c
0 (H+,c(t) − Y+(t))dH

(3)
+,c(t) = 0,

and that these conditions are necessary and sufficient for H
(2)
+,c to be the solution

of the above LS problem. The conditions constitute in essence a finite version of

the characterization of the limiting process H+ defined on [0,∞). For large c > 0,

H+,c is an approximation of H+ and we can compute it using the Haar construc-

tion (see Rogers and Williams (1994)) and the iterative cubic spline algorithm

as described in Groeneboom, Jongbloed, and Wellner (2003). In Figure 1, we

present an example where the plots in dotted lines show the restriction on the

interval [0, 1] of H
(j)
+,8 (computed on [0, 8]) for j = 0, 1, 2, 3 .
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Figure 1: The solid curves in the top left and top right show plots of an approx-

imation of Y+ and Y ′
+ while the dotted lines represent H+,8 and H ′

+,8 on [0, 1].

The solid curves in the bottom left and bottom right show plots of 12t2 and 24t

while the dotted lines represent H ′′
+,8 and H

(3)
+,8 on [0, 1].

In the top left and top right panels, one can see how the invelope H+,8 and
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its first derivative H ′
+,8 try to follow closely the processes

∫ t
0 W (s)ds + t4 and

W (t) + 4t3 on [0, 1]. On the other hand, we see in the bottom left and bottom

right panels how the convex parabola, 12t2, and the increasing straight line, 24t,

are approximated by the piecewise convex function H ′′
+,8 and the nondecreasing

stepwise function H
(3)
+,8 respectively.

Corollary 4.1 The fastest rates of convergence of g̃n(n−α) and g̃′n(n−α) to the

true values g0(0) and g′0(0) are attained for α = 1/5 . Furthermore, if we define

the estimator

g̃m
n (t) =

{

g̃n(n−
1

5 ) + (t − n−
1

5 )g̃′n(n−
1

5 ) if t ∈ [0, n−
1

5 )

g̃n(t) if t ∈ ]n−
1

5 ,∞)

then




n
2

5

(

g̃m
n (0) − g0(0)

)

n
1

5

(

(g̃m
n )′(0) − g′0(0)

)



→d





c0(0) H
(2)
+

(

1
k2

)

− c1(0) H
(3)
+

(

1
k2

)

c1(0) H
(3)
+

(

1
k2

)



 .

We will refer to this estimator as the modified LSE estimator.

Proof. If α ∈ (1/5, 1/3), the rates n(1−α)/2 and n(1−3α)/2 are clearly slower than

n2/5 and n1/5 respectively. If α < 1/5, the rates n2/5 and n1/5 are optimal for

estimating g0(n
−α) and g′0(n

−α), but not for estimating g0(0) and g′0(0): n−α >>

n−1/5 is too far from 0. The joint limiting distribution of (g̃m
n (0), (g̃m

n )′(0)) follows

immediately from Theorem 4.1. 2

5 Illustrations, conclusions and some open questions

5.1 Simulation results

We simulated n = 500 independent random variables from the standard expo-

nential distribution Exp(1) and computed g̃n using the support reduction al-

gorithm, as described by Groeneboom, Jongbloed, and Wellner (2003) for

Least Squares problems. Inconsistency of the estimator and its first deriva-

tive at 0 can be clearly seen on the left panels of Figure 2, whereas the right

panels illustrate consistency of the modified estimator and its first derivative.

For these simulations we obtained g̃n(0) = 1.757, g̃m
n (0) = 0.966, and −g̃′n(0) =

13
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Figure 2: The solid curves in the top left and top right plots depict g̃n and g̃m
n

while the dashed curves represent g0(x) = exp(−x), x > 0. The solid curves in

the bottom left and bottom right plots depict −g̃′n and −(g̃m
n )′ while the dashed

curves represent −g′0(x) = exp(−x), x > 0.

74.073,−(g̃m
n )′(0) = 0.655. The fact that the modified estimators converge to the

truth with a negative bias is not due to chance. To investigate this more precisely,

we generated 100 independent invelopes H+ on [0, 8], and the results indicate

that the random variables c0H
(2)
+ (1/k2) − c1H

(3)
+ (1/k2) and −c1H

(3)
+ (1/k2) are

both negative with large probability: The empirical estimates of this probability

based on the random sample were found to be 0.94 and 0.97 respectively (here,

1/k2 = (1/24)2/5 ≈ 0.280, c0 = (1/24)1/5 ≈ 0.041, c1 = (1/24)3/5 ≈ 0.148). The

kernel density estimators shown in Figure 3 indicate clearly that both variables

are mainly concentrated on the negative half-line.

5.2 Conclusions and some open questions

Based solely on the LSE g̃n of a convex density g0 on (0,∞) with g′′0 continuous

to the right of 0 and g′′0(0) 6= 0, we found that consistent estimation of g′0(0) is

achieved by taking g̃′n(n−α) with α ∈ (0, 1/3), and that α = 1/5 should be chosen

14
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Figure 3: Plots of kernel density estimators of c0H
(3)
+ (1/k2)− c1H

(3)
+ (1/k2) (left)

and −c1H
(3)
+ (1/k2) (right). The estimation is based on 100 independent replica-

tions of H+ on [0, 8]. Here, c0 ≈ 0.041, c1 ≈ 0.148 and 1/k2 ≈ 0.280.

as it yields the fastest rate n−1/5. The limiting distribution involves a process

H+, which is the invelope of the Gaussian process Y+(t) =
∫ t
0 W (s)ds+ t4, t ≥ 0.

Our idea was inspired by the work of Kulikov and Lopuhaä (2006) who

found that taking the Grenander estimator at n−α with α ∈ (0, 1) ensures con-

sistency in the monotone estimation problem, and that α = 1/3 yields the op-

timal rate n−1/3. It is interesting to note that the penalization approach of

Woodroofe and Sun (1993) forces rather the data to stay away from 0 with

a distance >> n−1: Their estimator can be viewed as the Grenander estimator

for the transformed data λn + γ̂nXj , with γ̂n →p 1 and λn is the penalization

parameter which must satisfy λn n → ∞, and hence λn >> n−1. For the harder

problem of estimating the slope g′0(0), an alternative approach based on shifting

the data (suggested to us by Jongbloed (2006)) would probably require to have

even bigger shift to the right of 0. A second approach is to penalize the derivative

of the LSE; i.e., to minimize

1

2

∫

∞

0
g2(t)dt −

∫

∞

0
g(t)dGn(t) − λng′(0)

where g is convex and λn is the penalizing parameter. This gives rise to the

following open questions: How big λn should be chosen to achieve consistency

of the first derivative of the estimator? Would λn have the same order as the
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shift in the approach suggested by Jongbloed (2006)? Could we choose λn such

that the estimator is a density? How do the rates of convergence and limiting

distributions depend on λn?

In the monotone problem, the proofs of Kulikov and Lopuhaä (2006) make

use of the so-called switching relationship introduced the first time by Groene-

boom (1985) as a nice geometric interpretation of the Grenander estimator: If

f̂n(x) is the value of this estimator at a point x, and Un(a) is the location of the

maximum of Gn(t) − at over [0,∞), then

f̂n(x) ≤ a ⇋ Un(a) ≤ x.

A similar relationship is still lacking in the convex problem. In the latter, the

characterization of the estimator is at the level of its second integral. This makes

the geometric interpretation of the LSE less obvious. However, this does not

imply that one should not explore different ways of viewing this characterization

which might enable to simplify many of the arguments used in general in the

problem of adaptive estimation of a convex density.

Finally, we would like to note that our modified LSE estimator can be com-

pared to the simple estimator of Kulikov and Lopuhaä (2006). Their adaptive

estimator is more efficient as it minimizes the mean square error. In our convex

problem, it follows from Theorem 4.1 that

n
1

5

(

g̃′n(n−
1

5 k2t) − g′0(0)
)

→d c1(0)H
(3)
+ (t)

and an adaptive estimator of g′0(0) can be given by g̃n(n−1/5k̂2t
∗), where t∗ is the

minimizer of E[H
(3)
+ (t∗)]2, and k̂2 is a consistent estimator of k2. We would like

to investigate this in a future work as finding an approximate value for t∗ would

require a more efficient way to generate a sufficient number of invelopes H+ on

a fine grid on (0,∞).

6 Proof of Theorem 4.1

We prove Theorem 4.1 for α = 1/5, which yields the fastest rates of convergence.

For α ∈ (1/5, 1/3), the core of the proof remains exactly the same, except for

minor changes that will be indicated at the end of this section. We will also give

heuristic arguments for the claimed weak convergence for α ∈ (0, 1/5).
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6.1 Proof of uniform tightness

Proposition 6.1 For 0 < M1 < M2, let τ− be the last jump point of g̃′n occurring

before M1n
−1/5. Then,

sup
s∈[τ−,n−1/5M2]

|g̃′n(s) − g′0(s)| = Op(n
−1/5) (6.17)

and

sup
s∈[τ−,n−1/5M2]

|g̃n(s) − g0(s)| = Op(n
−2/5) (6.18)

The following lemmas will provide the necessary pieces that will go into the proof

of Proposition 6.1.

Lemma 6.1 Let G0 denote the true cumulative distribution function, and fix

x > 0, r > 0. Consider a VC-subgraph class of functions fx,y defined on [x, y],

x ≤ y ≤ x + r:

Fx,r = {fx,y, x ≤ y ≤ x + r}

admitting an envelope Fx,r satisfying

EF 2
x,r(X1) ≤ Cr2k+1,

for some real constant C > 0 and an integer k that are independent of x. Then,

for each ǫ′ > 0, we have

sup
fx,y∈Fx,r

∣

∣

∣

∫

fx,yd (Gn − G0)
∣

∣

∣ ≤ ǫ′(y − x)3+k + Op

(

n−
3+k

5

)

.

Proof. The argument is very similar to that of Kim and Pollard (1990) for prov-

ing their Lemma 4.1 (page 201) except that their grid mesh [(j−1)n−1/3, jn−1/3),

1 ≤ j ≤ ⌊R0n
1/3⌋, is replaced here by [(j − 1)n−1/5, jn−1/5), 1 ≤ j ≤ ⌊rn1/5⌋. To

see intuitively why we have the power (3 + k)/5 instead of their power 2/3, note

that their Maximal inequality 3.1 (i) (see also Theorem 2.14.2 of van der Vaart

and Wellner (1996)) implies that for a fixed ǫ > 0 there exists some M > 0

independent of j and n such that

sup
fx,y∈Fx,jn−1/5

∣

∣

∣

∣

∫

fx,yd (Gn − G0)

∣

∣

∣

∣

≤ Mn−
1

2

√

[

Cjn−
1

5

]2k+1
= M(Cj)k+ 1

2 n−
2k+6

10

= M(Cj)k+ 1

2 n−
3+k

5
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with probability greater than 1 − ǫ. Summation over 1 ≤ j ≤ ⌊rn1/5⌋ yields the

result. See also Groeneboom, Jongbloed, and Wellner (2001b), page 1677. 2

Lemma 6.2 For arbitrary 0 ≤ K1 ≤ K2 < K3 ≤ K4, consider the event

TK1,K2,K3,K4
=
{

∃ τ−, τ+ : K1n
−1/5 ≤ τ− ≤ K2n

−1/5, K3n
−1/5 ≤ τ+ ≤ K4n

−1/5
}

,

where τ− and τ+ are jump points of g̃′n. Then, for all ǫ > 0, there exists c > 0

such that

P
(

inf
t∈[τ−,τ+]

|g̃n(t) − g0(t)| ≤ cn−2/5, TK1,K2,K3,K4

)

≥ P (TK1,K2,K3,K4
) − ǫ

for n large enough.

Proof. Suppose that both the events TK1,K2,K3,K4
and inft∈[τ−,τ+] |g̃n(t)−g0(t)| >

cn−2/5 occur. Then, we can write

∣

∣

∣

∣

∫ τ+

τ−

(τ+ − t)(g̃n(t) − g0(t))dt

∣

∣

∣

∣

>
c

2
n−2/5(τ+ − τ−)2 >

c (K3 − K2)
2

2
n−4/5.

Using now the identity (3.8) of Section 3 and Lemma 6.1 with Fx,r = {fx,y(t) =

y − t, x < y < x + r} (VC-class with index ≤ 3 by Lemma 2.6.15 of van der

Vaart and Wellner (1996)) and k = 1, we can write

∣

∣

∣

∣

∫ τ+

τ−

(τ+ − t)(g̃n(t) − g0(t))dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ τ+

τ−

(τ+ − t)d(Gn(t) − G0(t))dt

∣

∣

∣

∣

= op((K4 − K1)
4n−4/5) + Op(n

−4/5),

and hence Op(n
−4/5). Thus, we can find c > 0 large enough such that

P
(

inf
t∈[τ−,τ+]

|g̃n(t) − g0(t)| > cn−2/5, TK1,K2,K3,K4

)

< ǫ

which implies the claimed result. 2

Lemma 6.3 Let ǫ > 0. For any K1 ≥ 0, there exist K2 ≥ K1 such that, for n

large enough, the event

TK1,K2
=

{

∃ a jump point τ : K1n
−1/5 ≤ τ ≤ K2n

−1/5

}
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occurs with probability greater than 1 − ǫ. In particular, this implies that for a

given K1 ≥ 0, there exist K2 and K4 such that K4 ≥ K3 > K2 ≥ K1 and

P (TK1,K2,K3,K4
) > 1 − ǫ.

Proof. Given K1 ≥ 0, let τ1 and τ2 be the last and first jump points occurring

before and after K1n
−1/5 respectively (τ1 can be equal to 0). Note that for

r0 > 0 small enough such that g′′0 > 0 on (0, r0], the event τ2 < r0 occurs with

probability → 1 since we know that there exists a jump point τ < r0/2 such

that r0/2−τ = Op(n
−1/5) with probability → 1 (by Lemma 4.2 of Groeneboom,

Jongbloed, and Wellner (2001b)). Using now the inequality (3.11) in Section

3 and Lemma 6.1 (with k = 0), we have

(τ2 − τ1)
3 ≤

96

inft∈(0,r0] g
′′
0(t)

[

op((τ2 − τ1)
3) + Op(n

−3/5)

]

which implies that

τ2 − τ1 = Op(n
−1/5). (6.19)

Note that this is the same upper bound obtained by Groeneboom, Jongbloed,

and Wellner (2001b) for the distance between jump points in the neighborhood

of an interior point t0 > 0, as we have already mentioned in Subsection 3.2. Thus,

there exists M > 0 such that τ2 < τ1 + Mn−1/5 ≤ (K1 + M)n−1/5 with large

probability, and hence we can take K2 = K1 + M . To show the second assertion

of the lemma it suffices, for any K3 > K2, to consider τ ′ to be the first jump

point after K3n
−1/5. Then there exists K4 ≥ K3 such that the probability of the

event n−1/5K3 ≤ τ ′ ≤ n−1/5K4 is greater than 1 − ǫ. 2

Proof of Proposition 6.1. In all what follows we denote Bu = supt∈(0,r0] g
′′
0 ,

where (0, r0] is the biggest neighborhood of 0 on which g′′0 > 0 and continuous.

For convenience, we are going to assume without loss of generality that M1 = 6/7

and M2 = 1. Of course, the same arguments can be used for any other values

0 < M1 < M2 as long as they do not depend on n. Let τ− be the last jump point

occurring before 6/7n−1/5 and fix ǫ > 0.
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A. Uniform tightness of n1/5(g̃′n−g′0) from below: We show in the following

that there exists c > 0 such that

P
(

∀t ∈ [τ−, n−1/5] g̃′n(t) − g′0(t) ≥ −c n−1/5
)

> 1 − ǫ (6.20)

for n large enough. If we divide [0, n−1/5] into seven equally sized subintervals,

then there are only two cases.

Case 1. We can find a jump point in each of the subintervals [n−1/5/7, 2n−1/5/7],

[3n−1/5/7, 4n−1/5/7] and [5n−1/5/7, 6n−1/5/7]. Let τ1, τ2 and τ3 denote these

points, and τ0 = 0. Using the notation of Lemma 6.2, our assumption implies

that the event

T = T0,0,1/7,2/7 ∩ T3/7,4/7,5/7,6/7

occurs. We consider the points ξ−2 and ξ−1 such that

|g̃n(ξ−2) − g0(ξ−2)| = inf
t∈[τ0,τ1]

|g̃n(t) − g0(t)|

and |g̃n(ξ−1) − g0(ξ−1)| = inf
t∈[τ2,τ3]

|g̃n(t) − g0(t)|.

By convexity of g̃n, we can write for all t ∈ [τ−, n−1/5] (note that t > ξ−1 > ξ−2)

g̃′n(t) ≥
g̃n(ξ−1) − g̃n(ξ−2)

ξ−1 − ξ−2

=
g̃n(ξ−1) − g0(ξ−1) − (g̃n(ξ−2) − g0(ξ−2))

ξ−1 − ξ−2
+

g0(ξ−1) − g0(ξ−2)

ξ−1 − ξ−2

≥ −
inft∈[τ0,τ1] |g̃n(t) − g0(t)| + inft∈[τ1,τ2] |g̃n(t) − g0(t)|

n−1/5/7
+ g′0(ξ−2)

using convexity of g0. This implies that

g̃′n(t) − g′0(t) ≥ −
inft∈[τ0,τ1] |g̃n(t) − g0(t)| + inft∈[τ1,τ2] |g̃n(t) − g0(t)|

n−1/5/7
− Bun−1/5.

Hence, for c > 0 large enough, we have

P
(

∀t ∈ [τ−, n−1/5] g̃′n(t) − g′0(t) ≥ −c n−1/5, T
)

≥ P
(

inf
t∈[τ0,τ1]

|g̃n(t) − g0(t)| + inf
t∈[τ2,τ3]

|g̃n(t) − g0(t)| ≤
c − Bu

7
n−2/5, T

)

≥ P (T ) − ǫ, (6.21)

20



by arguments that are very similar to those used in proving Lemma 6.2.

Case 2. One of the subintervals contains no jump point. If only one interval

contains no jump points, for example the subinterval [5n−1/5/7, 6n−1/5/7], then

we denote by τ1 and τ2 the last jump point before 5n−1/5/7 and the first jump

point after 6n−1/5/7 respectively. Otherwise, if two or more intervals contain

no jump points, then τ1 and τ2 will be the last and first jump points occurring

before and after the end points of the smallest interval (e.g. τ1 and τ2 will be

taken as the last and first jump points located before n−1/5/7 and after 2n−1/5/7

if there is no jump point in [n−1/5/7, 2n−1/5/7] nor in [5n−1/5/7, 6n−1/5/7]).

Let ¯̄τ = 3τ1/4 + τ2/4. Then, for all s ∈ (τ1, ¯̄τ ], I1(s) > (τ2 − τ1)
2/24 (see the

expression of I1(s) given in (3.10)). Thus, the inequality in (3.12) implies that

for all s ∈ (τ1, ¯̄τ ] we can write

g̃′n(s) − g′0(s) ≥ −
24

(τ2 − τ1)2

∣

∣

∣

∣

∫ τ2

τ1

p1,s(t)d(Gn(t) − G0(t))

∣

∣

∣

∣

+ Op(τ2 − τ1). (6.22)

On the other hand, applying Lemma 6.1, with

Fx,r =
{

fx,y(t) =
x − t

s − x
1[x,s](t) +

t − x

y − s
1(s,y](t) +

1

2
1[x,y](t), x ≤ y ≤ x + r

}

and k = 0, implies that we can find c > 0 such that

P

(

∀s ∈ [τ1, ¯̄τ ]

∣

∣

∣

∣

∫ τ2

τ1

p1,s(t)d(Gn(t) − G0(t))

∣

∣

∣

∣

≤ op((τ2 − τ1)
3) + c n−3/5, T c

)

≥ P (T c) − ǫ

for n large enough. Using now the stochastic upper bound τ2 − τ1 = Op(n
−1/5)

in (6.19), and noting that τ2 − τ1 ≥ n−1/5/7, it follows from the inequality in

(6.22) that we can find c′ > 0 such that

P
(

∀s ∈ [τ1, ¯̄τ ] g̃′n(s) − g′0(s) ≥ −c′ n−1/5, T c
)

≥ P (T c) − ǫ (6.23)

for n > 0 large enough.

To finish off, we only need to show that (6.23) is true for ∀ s ∈ [τ−, n−1/5].

We recall again that τ− is the last jump point occurring before 5n−1/5/7.

If τ− ≥ ¯̄τ , then by monotonicity of g̃′n, we have g̃′n(s) ≥ g̃′n(¯̄τ) for all s ∈

[τ−, n−1/5], and this implies that

g̃′n(s) − g′0(s) ≥ g̃′n(¯̄τ) − g′0(¯̄τ) − Bu n−1/5, ∀ s ∈ [τ−, n−1/5]

≥ −c′ n−1/5 − Bu n−1/5.
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If τ− < ¯̄τ , then

{

g̃′n(s) − g′0(s) ≥ −c′ n−1/5, ∀ s ∈ [τ−, min(¯̄τ , n−1/5)] ⊂ [τ1, ¯̄τ ]

g̃′n(s) − g′0(s) ≥ −c′ n−1/5 − Bu n−1/5, ∀ s ∈ (min(¯̄τ , n−1/5), n−1/5].

Thus, we conclude that there exists c > 0

P
(

∀ t ∈ [τ−, n−1/5] g̃′n(t) − g′0(t) ≥ −c n−1/5, T c
)

≥ P (T c) − ǫ. (6.24)

Now, combining (6.21) and (6.24) yields (at the cost maybe of increasing c > 0)

P
(

∀ t ∈ [τ−, n−1/5] g̃′n(t) − g′0(t) ≥ −c n−1/5
)

> 1 − 2ǫ

for n sufficiently large.

Remark. The class

Fx,r =
{

fx,y(t) =
x − t

s − x
1[x,s](t) +

t − x

y − s
1(s,y](t) +

1

2
1[x,y](t), x ≤ y ≤ x + r

}

is a VC-class because the class of sets of between graphs

D =

{

(t, c) : 0 ≤ c ≤ fx,y(t) or fx,y(t) ≤ c ≤ 0

}

is a VC-class (van der Vaart and Wellner (1996), Section 2.6, problem 11).

The latter is true since D = D1 ∩ D2, where

D1 =

{

(t, c) : 0 ≤ c ≤ fx,y(t)1[x,s](t) or fx,y(t)1[x,s](t) ≤ c ≤ 0

}

and

D2 =

{

(t, c) : 0 ≤ c ≤ fx,y(t)1(s,y](t) or fx,y(t)1(s,y](t) ≤ c ≤ 0

}

,

which are VC-classes. This follows from the fact that t 7→ fx,y(t)1[x,s](t) and

t 7→ fx,y(t)1(s,y](t) are polynomials of degree at most 1. Hence, D is a VC-class

by van der Vaart and Wellner (1996), Lemma 2.6.17 (iii).

B. Uniform tightness of n1/5(g̃′n − g′0) from above: We show now that there

exists c > 0 such that

P
(

∀t ∈ [τ−, n−1/5] g̃′n(t) − g′0(t) ≤ c n−1/5
)

> 1 − ǫ (6.25)
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for n large enough.

The proof relies mainly on the result of Lemma 6.3. Indeed, we can find

K > 0 such that the jump points τ+
1 occurring after n−1/5, τ+

2 after τ+
1 + n−1/5,

τ+
3 after τ+

2 + n−1/5 and τ+
4 after τ+

3 + n−1/5 are all bounded by Kn−1/5 with

probability greater than 1 − ǫ. Using Lemma 6.2, we can find c′ > 0 such that

P
(

|g̃n(ξ1) − g0(ξ1)| ≤ c′n−2/5, |g̃n(ξ2) − g0(ξ2)| ≤ c′n−2/5
)

> 1 − ǫ

where |g̃n(ξ1) − g0(ξ1)| = inft∈[τ+

1 ,τ+

2 ] |g̃n(t) − g0(t)| and |g̃n(ξ2) − g0(ξ2)| =

inft∈[τ+

3 ,τ+

4 ] |g̃n(t) − g0(t)|. Now, by convexity, we can write for all t ∈ [τ−, n−1/5]

g̃′n(t) ≤
g̃n(ξ2) − g̃n(ξ1)

ξ2 − ξ1

=
g̃n(ξ2) − g0(ξ2) − (g̃n(ξ1) − g0(ξ1))

ξ2 − ξ1
+

g0(ξ2) − g0(ξ1)

ξ2 − ξ1

≤
g̃n(ξ2) − g0(ξ2) − (g̃n(ξ1) − g0(ξ1))

n−1/5
+ g′0(ξ2),

= g′0(t) +
g̃n(ξ2) − g0(ξ2) − (g̃n(ξ1) − g0(ξ1))

n−1/5
+
[

g′0(ξ2) − g′0(t)
]

and therefore with probability greater than 1 − ǫ

g̃′n(t) − g′0(t) ≤ 2c′n−1/5 + BuKn−1/5 = cn−1/5, ∀ t ∈ [τ−, n−1/5]

with c = 2c′ + BuK.

C. Uniform tightness of n2/5(g̃n − g0) from above: We show now that there

exists c > 0 such that

P
(

∀t ∈ [τ−, n−1/5] g̃n(t) − g0(t) ≤ cn−2/5
)

> 1 − ǫ (6.26)

for n large enough.

Case 1. By convexity, we can write for all t ∈ [τ−, n−1/5]

g̃n(t) ≤ g̃n(ξ−1) +
g̃n(ξ1) − g̃n(ξ−1)

ξ1 − ξ−1
(t − ξ−1)

Above, we used the same notation as before in A. Case 1 and in B: |g̃n(ξ−1) −

g0(ξ−1)| = inft∈[τ1,τ2] |g̃n(t)−g0(t)|, where τ1 and τ2 are jump points in [n−1/5/7, 2n−1/5/7]
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and [3n−1/5/7, 4n−1/5/7] respectively, and |g̃n(ξ1)− g0(ξ1)| = inft∈[τ+

1 ,τ+

2 ] |g̃n(t)−

g0(t)| where τ+
1 is the first jump point after n−1/5, and τ+

2 is the first jump point

after τ+
1 + n−1/5. Hence, for all t ∈ [τ−, n−1/5], we have

g̃n(t) − g0(t)

≤ [g̃n(ξ−1) − g0(ξ−1)] +
[g̃n(ξ1) − g0(ξ1)] − [g̃n(ξ−1) − g0(ξ−1)]

ξ1 − ξ−1
(t − ξ−1)

+ g0(ξ−1) − g0(t) +
g0(ξ1) − g0(ξ−1)

ξ1 − ξ−1
(t − ξ−1).

But note that

g0(ξ1) − g0(ξ−1)

ξ1 − ξ−1
≤ g′0(ξ1), and g0(ξ−1) + g′0(ξ−1)(t − ξ−1) ≤ g0(t),

and hence

g̃n(t) − g0(t)

≤ [g̃n(ξ−1) − g0(ξ−1)] +
[g̃n(ξ1) − g0(ξ1)] − [g̃n(ξ−1) − g0(ξ−1)]

ξ1 − ξ−1
(t − ξ−1)

+
[

g′0(ξ1) − g′0(ξ−1)
]

(t − ξ−1)

≤ inf
[τ1,τ2]

|g̃n(t) − g0(t)| +
inf [τ1,τ2] |g̃n(t) − g0(t)| + inf [τ+

1 ,τ+

2 ] |g̃n(t) − g0(t)|

n−1/5
n−1/5

+KBu n−2/5

since ∃ θ ∈ [ξ−1, ξ1] such that g′0(ξ1) − g′0(ξ−1) = (ξ1 − ξ−1)g
′′
0(θ). Now, by using

Lemma 6.2, we can find c > 0 such that

P (∀ t ∈ [τ−, n−1/5] g̃n(t) − g0(t) < cn−2/5, T ) ≥ P (T ) − ǫ (6.27)

for n sufficiently large.

Case 2. As before, consider the case where one of the subintervals does not

contain any jump point, and let τ1 and τ2 be the last and first jump points

occurring before and after the end points of the smallest subinterval. Using

the inequality in (3.13), Lemma 6.1 and Lemma 6.3 combined with fact that

τ2 − τ1 > n−1/5/7 (exactly as in A. Case 2), we can find c > 0 such that

P (∀t ∈ [τ−, n−1/5] g̃n(t) − g0(t) ≤ cn−2/5, T c) ≥ P (T c) − ǫ. (6.28)
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Now, combining (6.27) and (6.28) gives the result.

D. Uniform tightness of n2/5(g̃n − g0) from below: We show finally that

there exists c > 0 such that

P
(

∀t ∈ [τ−, n−1/5] g̃n(t) − g0(t) ≥ −cn−2/5
)

> 1 − ǫ (6.29)

for n large enough. With ξ1 as above in C. Case 1; i.e., ξ1 is the minimizer of

|g̃n − g0| in [τ+
1 , τ+

2 ], where τ+
1 is the first jump after n−1/5 and τ+

2 is the first

jump after τ+
1 + n−1/5. we have by convexity

g̃n(t) ≥ g̃n(ξ1) + g̃′n(ξ1)(t − ξ1)

= g0(ξ1) + g′0(ξ1)(t − ξ1) + [g̃n(ξ1) − g0(ξ1)] +
[

g̃′n(ξ1) − g′0(ξ1)
]

(t − ξ1)

≥ g0(t) −
1

2
(t − ξ1)

2g′′0(θt) − c′n−2/5 − c′n−1/5n−1/5, θt ∈ [t, ξ1] (6.30)

≥ g0(t) −
1

2
BuK2n−2/5 − 2c′n−2/5 = g0(t) −

(

1

2
BuK2 + 2c′

)

n−2/5

with probability greater than 1−ǫ. It suffices to take c = 1
2BuK2+2c′. In (6.30),

we used the fact that ξ1 is bounded with increasing probability by Mn−1/5 for

some M > 0 large enough (this follows from Lemma 6.3), and the uniform n1/5−

tightness of g̃′n established above. 2

6.2 Proof of Theorem 4.1

For t > 0, we define the local processes Y
loc
n and H̃ loc

n as

Y
loc
n (t) = n4/5

∫ tn−1/5

0

(

Gn(u) −

∫ u

0

[

g0(0) + g′0(0)s
]

ds

)

du

= n4/5

∫ tn−1/5

0

(

[

Gn(u) − G0(u)
]

+

∫ u

0

[

g0(s) − g0(0) − g′0(0)s
]

ds

)

du,

H̃ loc
n (t) = n4/5

∫ tn−1/5

0

∫ u

0

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu,

and their rescaled counterparts

Y
l
n(t) = k1Y

loc
n (k2t), H̃ l

n(t) = k1H̃
loc
n (k2t)
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where k2 is defined in (4.16) and

k1 =
1

k2
2c0(0)

=
1

k3
2c1(0)

=
(

24−3g−4
0 (0)(g′′0(0))3

) 1

5

.

The scaling considered above is necessary to obtain limiting distributions that

are independent of the unknown values g0(0) and g′0(0), and is obtained by using

the well-known scaling property of Brownian motion W .

Now, from the definition of Y
l
n(t) and H̃ l

n it follows that

(i) (H̃ l
n)(2) is convex on (0,∞)

(ii) H̃ l
n(t) ≥ Y

l
n(t), t ≥ 0

(iii) H̃ l
n(t) = Y

l
n(t) if (H̃ l

n)(2) changes slope at the point t, or in view of (ii)

∫

∞

0
(H̃ l

n(t) − Ỹ l
n(t))d(H̃ l

n)(3)(t)) = 0.

Indeed, we have

(H̃ l
n)(2)(t) = k1k

2
2n

2/5
(

g̃n(k2tn
−1/5) − g0(0) − g′0(0)k2tn

−1/5
)

which is convex since it is proportional to the sum of the convex function,

g̃n(k2tn
−1/5), and a straight line. On the other hand, we can write

H̃ l
n(t) − Y

l
n(t) = k1n

4/5
(

H̃n(k2tn
−1/5) − Yn(k2tn

−1/5)
)

which, combined with the characterization in (2.6), implies (ii) and (iii).

If we can manage to show that Y
l
n and H̃ l

n converge weakly to Y+ and

Hlim, then the continuous mapping argument of Groeneboom, Jongbloed, and

Wellner (2001b) and almost surely uniqueness of the invelope H+ can be used

to conclude that Hlim has to be necessarily equal a.s. to H+. The continuous

mapping is a formal a way to show that the conditions (i), (ii) and (iii) satisfied

by H̃ l
n and Y

l
n carry over to the limit. Fix two constants 0 < M1 < M2. Then

the vector
(

Y
l
n, (Yl

n)(1), H̃ l
n, (H̃ l

n)(1), (H̃ l
n)(2), (H̃ l

n)(3)
)

is tight in S[M1, M2] =

C[M1, M2]×D[M1, M2]×C3[M1, M2]×D[M1, M2], where C[a, b] and D[a, b] de-

note the space of continuous functions on [a, b] and that of right-continuous func-

tions on [a, b] with left limits, equipped with the uniform and Skorohod topologies
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respectively. Indeed, tightness of (Yl
n, (Yl

n)(1)) follows from weak convergence of

(Yloc
n , (Yloc

n )(1)), in the space C[0, M2] × D[0, M2], to
(

√

g0(0)

∫ t

0
W (s)dt + g′′0(0)

t4

24
,
√

g0(0)W (t) + g′′0(0)
t3

6

)

.

The Brownian motion part follows from very standard arguments, e.g. using

the Hungarian Embedding of Komlós, Major and Tusnády (1975) and the well

known representation of a Brownian Bridge U(t) = W (t) − tW (1), whereas the

drift comes from writing

n4/5

∫ tn−1/5

0

∫ u

0
(g0(s) − g0(0) − sg′0(0))dsdu

= n4/5

∫ tn−1/5

0

( 1

3!
g′′0(0)u3 + o(u3)

)

du → g′′0(0)
t4

4!
(6.31)

as n → ∞. To show tightness of (H̃ l
n)(j) or equivalently tightness of (H̃ loc

n )(j) for

j = 0, 1, 2, 3, consider again τ− to be the last jump point of g̃′n before M1n
−1/5.

We can write

H̃ loc
n (t) = n4/5

∫ tn−1/5

0

∫ u

0

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu

= n4/5

∫ τ−

0

∫ u

0

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu

+ n4/5

∫ tn−1/5

τ−

∫ u

0

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu

= H̃ loc
n (n1/5τ−) + n1/5(tn−1/5 − τ−)(H̃ loc

n )′(n1/5τ−)

+ n4/5

∫ tn−1/5

τ−

∫ u

τ−

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu

= Y
loc
n (n1/5τ−) + n1/5(tn−1/5 − τ−)(Yloc

n )′(n1/5τ−)

+ n4/5

∫ tn−1/5

τ−

∫ u

τ−

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu.

Above, we used the fact that (H̃ loc
n )′(n1/5τ−) = (Yloc

n )′(n1/5τ−). This equality,

which is equivalent to G̃n(τ−) = Gn(τ−) where G̃n = H̃ ′
n and Gn = Y

′
n, follows

from (2.7) since τ− is a jump point of g̃′n.

Now, by Proposition 6.1, we can find c > 0 such that for all t ∈ [M1, M2],

the event
∣

∣

∣

∣

∫ tn−1/5

τ−

∫ u

τ−

[

g̃n(s) − g0(0) − g′0(0)s
]

dsdu

∣

∣

∣

∣

≤ c (M2 − M1)
2 n−

2

5 n−
2

5 = c′n−
4

5
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occurs with probability greater than 1 − ǫ. By tightness of Y
loc
n (n1/5τ−) and

(Yloc
n )′(n1/5τ−) and the fact that 0 < n1/5(tn−1/5 − τ−) < M2, we conclude that

H̃ loc
n and hence H̃ l

n is tight in C[M1, M2]. Also, we have

(H̃ loc
n )′(t) = (Yloc

n )′(n1/5τ−) + n3/5

∫ tn−1/5

τ−

[

g̃n(u) − g0(0) − g′0(0)u
]

du

which can be shown to be tight using similar arguments. Finally, tightness of

(H̃ l
n)′′ and (H̃ l

n)(3) in C[M1, M2] and D[M1, M2] respectively follows directly

from the same proposition, and using for (H̃ l
n)(3) the fact that the subset of

D[M1, M2] consisting of nondecreasing functions absolutely bounded by some

M < ∞ is compact in the Skorohod topology. We can then extracted subse-

quence
(

Y
l
n′ , (Yl

n′)(1), H̃ l
n′ , (H̃ l

n′)(1), (H̃ l
n′)(2), (H̃ l

n′)(3)
)

which converges weakly to
(

Y+, Y
(1)
+ , Hlim, H

(1)
lim, H

(2)
lim, H

(3)
lim

)

in S[M1, M2], and this is for all 0 < M1 < M2.

Hence, Hlim =a.s. H+, which is also the common limit of any extracted sub-

sequence of
(

Y
l
n, (Yl

n)(1), H̃ l
n, (H̃ l

n)(1), (H̃ l
n)(2), (H̃ l

n)(3)
)

. Then, it follows that

(H̃ l
n)(j) converges weakly to H

(j)
+ , and we have

(H̃ l
n)(2)(t) = k1k

2
2 n

2

5

(

g̃n(n−
1

5 k2t) − g0(0) − n−
1

5 k2tg
′
0(0)

)

=
1

c0(0)
n

2

5

(

g̃n(n−
1

5 k2t) − g0(n
−

1

5 k2t) +
1

2
n−

2

5 k2
2t

2g′′0(0) + op(n
−

2

5 )
)

→d H
(2)
+ (t),

(H̃ l
n)(3)(t) = k1k

3
2 n

1

5

(

g̃′n(n−
1

5 k2t) − g′0(0)
)

=
1

c1(0)
n

1

5

(

g̃′n(n−
1

5 k2t) − g′0(n
−

1

5 k2t) + n−
1

5 k2tg
′′
0(0) + op(n

−
1

5 )
)

→d H
(3)
+ (t).

For α ∈ (1/5, 1/3), the arguments can be constructed very similarly. A detailed

proof can be found in Balabdaoui (2007). In Proposition 6.1, τ− should be

taken now as the last jump point before M1n
−α, M2n

−1/5 should be replaced

by M2n
−α. In Lemma 6.1, if the same conditions hold true, then the power of

(y−x) should be replaced by (1+(2k+1)α)/2α and n−(3+k)/5 by n−(1+(2k+1)α)/2.

Also, n(1+3α)/2 and n−α are respectively the right rate and size of the shrinking

neighborhood around 0 to be considered in the definition of the localized processes
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Y
loc
n and H̃ loc

n . The scaled localized processes are given by k3Y
loc
n and k3H̃

loc
n ,

with k3 = g
−1/2
0 (0). Finally, we would like to note that the absence of the drift

in the limiting process Y0 follows from a similar calculation as in (6.31), where

in this case we have n(1+3α)/2 · n−4α → 0 as n → ∞.

For 0 < α < 1/5, we are in the situation where the jump points are clustering

around n−α. Indeed, for any jump points τ− and τ+ in the neighborhood of 0, we

know that τ+−τ− = Op(n
−1/5) (6.19), and we have in this case n−1/5 = o(n−α).

Hence, n−α is playing a very similar role to that of t0 > 0 in the problem of

estimating a convex density at an interior point. Thus, the asymptotics in this

case can heuristically deduced by replacing t0 in (1.2) by n−α, and the constants

c0(t0) and c1(t0) by c0(0) = limn→∞ c0(n
−α) and c1(0) = limn→∞ c1(n

−α). 2
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Place du Maréchal de Lattre de Tassigny

75775 Paris cedex 16

France

31


