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Wellner (2006), and is very similar to the original Marshall inequality in monotone estimation.

Key words and phrases: Convex density, Cubic polynomial, Kiefer–Wolfowitz theorem, Least

Squares estimation, Marshall’s lemma.

1 Introduction and main result

1.1 Marshall’s lemma in monotone estimation

In monotone density estimation, the famous inequality of Marshall (1970) or better known

as Marshall’s lemma can be stated as follows: If Gn is the empirical distribution function of

X1, . . . , Xn from a common nonincreasing density g0 on [0,∞) and Ĝn is the least concave

majorant of Gn, then for any concave function G on [0,∞) the following inequality holds

‖Ĝn − G‖∞ ≤ ‖Gn − G‖∞ (1.1)

for n ∈ N \ {0}, and where ‖ · ‖∞ denotes the supremum norm. Here, we recall that the

concave majorant Ĝn is equal to the cumulative distribution function corresponding to the

Grenander estimator; that is the nonparametric Maximum Likelihood Estimator (MLE) of

g0. Note that (1.1) is specifically true for G0(x) =
∫ x
0 g0(t)dt, x ∈ [0,∞).

In isotonic regression, the inequality above remains unchanged if Gn is replaced by the

cumulative sum diagram of the data, Ĝn by its greatest convex minorant and G is now convex

rather than concave, as it is usually assumed that the regression curve is monotone increasing.

1Supported by Swiss National Science foundation.
2Corresponding author. E-mail address: kaspar.rufibach@stanford.edu (K. Rufibach).
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Note also that in this setting the compact interval [0, 1] takes the place of the positive half

line.

Marshall’s lemma is a powerful result although its proof is rather simple (see Marshall

(1970) and Robertson, Wright and Dykstra (1988), p. 329). It implies, in the sense of

the supremum norm, that the least concave majorant or greatest convex minorant is a bet-

ter estimator of the corresponding shape restricted functions than the empirical distribution

function or the cumulative sum diagram respectively. In several contexts, this statement

has been made sharper. In monotone density estimation, Kiefer and Wolfowitz (1976) used

Marshall’s lemma as a key argument to show that (log n)−1n2/3‖Ĝn − Gn‖[0,α1] converges to

zero with probability equal to 1, where α1 = inf{x : G0(x) = 1} is assumed to be finite,

β(G0) = inf0<x<α1
|g′0(x)|/g2

0(x) > 0, γ(G0) = sup0<x<α1
|g′0(x)|/ inf0<x<α1

g2
0(x) < ∞ and

generally ‖f‖I := supx∈I |f(x)| for any function f : I → R on any set I ⊂ R. Here and

throughout, G0 is the distribution function corresponding to the true density g0.

Their proof implies also that (log n)−2/3n2/3‖Ĝn − Gn‖[0,α1] is almost surely bounded,

although this was not explicitly stated by the authors. In their approach, Kiefer and Wolfowitz

(1976) introduced an interpolated version of Gn, Ln say, at deterministic points aj = aj,n

chosen such that the inter–distances tend uniformly to zero with a rate of order (logn/n)1/3

as n → ∞. The piecewise linear function Ln turned out to be concave with probability tending

to 1 (see their Lemma 4), and hence Marshall’s lemma could be applied when the concavity

event occurs yielding the inequality ‖Ĝn − Gn‖[0,α1] ≤ 2‖Gn − Ln‖[0,α1]. The problem was

then reduced to bounding the error ‖Gn − Ln‖[0,α1], and this could be achieved by bounding

‖Gn −Ln − (G0 −Ln)‖[0,α1] and ‖G0 −Ln‖[0,α1], where Ln is the true counterpart of Ln; i.e.,

the piecewise linear interpolant of G0 at the same deterministic points aj ’s.

Other authors have adapted the approach of Kiefer and Wolfowitz (1976). In doing so,

Marshall’s lemma or some similar version of it was used. In monotone estimation, see e.g.

Theorem 1 of Wang (1986) for the asymptotic equivalence of the empirical hazard rate and

its greatest convex minorant in the problem of estimating a distribution function with an

increasing hazard rate. In the context of isotonic regression, we refer to the recent work of

Pal and Woodroofe (2006) who obtained a result analogous to that of Kiefer and Wolfowitz

(1976). In their proof, they also use Marshall’s lemma and consider linear interpolation of the

cumulative sum diagram and its true counterpart (see their Proposition 2 and Lemma 2).
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1.2 Convex estimation via Least Squares and the first Marshall inequality

In the smoother problem of estimating a convex decreasing density g0 on [0,∞), the recent

result of Balabdaoui and Wellner (2006) obtained for the Least Squares estimator (LSE) is

analogous to the theorem of Kiefer–Wolfowitz in monotone density estimation. The LSE

was defined and studied by Groeneboom, Jongbloed, and Wellner (2001) and its asymptotic

distribution was derived at an interior point. Here and in the next section, we will use the

following notation: ĝn is the LSE based on a sample X1, . . . , Xn from g0, Ĝn(t) =
∫ t
0 ĝn(s)ds,

Ĥn(t) =
∫ t
0 Ĝn(s)ds, and Hn(t) =

∫ t
0 Gn(s)ds, where Gn is the empirical distribution function

of X1, . . . , Xn. By definition, ĝn is the unique minimizer of the functional

1

2

∫ ∞

0
g2(t)dt −

∫ ∞

0
g(t)dGn(t)

over the class of all convex functions on [0,∞). By Lemma 2.1 and Corollary 2.1 of Groene-

boom, Jongbloed, and Wellner (2001), we know that ĝn is piecewise linear and is a genuine

density. The knots of ĝn, which are the jump locations of ĝ′n, satisfy the following property:

a is a knot ⇒ Ĥn(a) = Hn(a) and Ĥ ′
n(a) = H

′
n(a). (1.2)

This property follows immediately from the characterization of the LSE:

Ĥn ≥ Hn and Ĥn(t) = Hn(t) if t is a knot of ĝn, (1.3)

see Lemma 2.2 of Groeneboom, Jongbloed, and Wellner (2001). Note that Ĝn(a) = Gn(a) is

an equivalent form of the second equality given in (1.2).

The work of Balabdaoui and Wellner (2006) appears to be the first attempt to deal with

global asymptotic rates in adaptive convex density estimation. Their Theorem 2.2 implies

that

‖Ĝn − Gn‖[0,α2] = O
(
(n−1 log n)3/5

)
(1.4)

almost surely under specified assumptions on the restriction of g0, g
′
0 and g′′0 on the compact

[0, α2] where α2 is any finite positive number such that the following conditions hold: β2(G0) =

inf0<t<α2
g′′0(t)/g3

0(t) > 0 and γ2(G0) = sup0<t<α2
g′′0(t)/ inf0<t<α2

g3
0(t) < ∞. The numbers

β2(G0) and γ2(G0) appear to be generalized versions of β(G0) and γ(G0) defined by Kiefer

and Wolfowitz (1976) in the monotone problem, and which we recalled in our Subsection 1.1.
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Note that, as for β(G0) and γ(G0), β2(G0) and γ2(G0) are both invariant under scale and

location changes of G0.

To show the convergence in (1.4), the following new Marshall inequality proved by

Dümbgen, Rufibach and Wellner (2006) in convex estimation was a key result:

Theorem 1.1. If G is a function on [0,∞) such that G′ is convex, then

‖Ĝn − G‖∞ ≤ 2‖Gn − G‖∞.

The factor 2 is shown to be sharp (see Dümbgen, Rufibach and Wellner (2006)). Theorem 1.1

follows easily from an intermediate inequality where the supremum is taken over [a, b], and a

and b are two consecutive knots of ĝn. Here, we also start with proving our (second) Marshall

inequality on a knot interval [a, b], and we refer to the proof of Theorem 1.2 for more details

on how the transition from knot intervals to the positive half line is achieved.

Beside the characterization (1.3), the proof of Theorem 1.1 relies substantially on con-

vexity of the function G′ by introducing a suitable auxiliary function. At the integral level,

a function G in Theorem 1.1 is replaced by any of its primitives; i.e, H =
∫

G. The problem

becomes more complicated as convexity is now a property of H ′′, and one realizes quickly that

direct use of this fact is no longer possible, requiring the development of a new approach. The

class to which the function H belongs admits some specific properties. These properties are

presented in detail and subsequentially exploited to establish important intermediate results

that will lead us to the proof of the main theorem.

1.3 Completing the proof for a Kiefer–Wolfowitz theorem in convex esti-

mation

Choosing to extend the Kiefer–Wolfowitz theorem for the LSE instead of the MLE in the

convex estimation problem was mainly due to the lack of an analogue of Theorem 1.1 for the

MLE. On the other hand, note that the MLE in monotone estimation is actually equal to

the LSE (see e.g. Robertson, Wright and Dykstra (1988)). Hence, from this point of view, it

might be actually more natural to study the LSE in the convex problem.

To be able to use the idea of Kiefer and Wolfowitz (1976) in the convex problem, linear

interpolants Ln and Ln of Gn and G0 respectively had to be replaced by Sn and Sn, the

cubic spline interpolants of Hn and H0(t) =
∫ t
0 G0(s)ds =

∫ t
0

∫ s
0 g0(u)duds. Balabdaoui and

Wellner (2006) showed that S
′′
n is convex with increasing probability. This turned out to be
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the most technical part in the proof. The knots of the cubic splines are chosen such that

their inter–distances tend uniformly to zero at a rate (log n/n)1/5. Following the same idea of

Kiefer and Wolfowitz (1976), Theorem 1.1 together with the triangle inequality were used to

reduce the problem to bounding ‖Ĝn − S
′
n − (G0 −S′

n)‖[0,α2] and ‖G0 −S′
n‖[0,α2]. Balabdaoui

and Wellner (2006) were then able to prove the (first) Kiefer–Wolfowitz theorem in convex

density estimation; i.e., the result given in (1.4).

It is natural to ask whether an “integrated” version of (1.4) exists. It turns out that a

scheme of proof very similar to the one described above for the first Kiefer–Wolfowitz result

could be followed to show that

‖Ĥn − Hn‖[0,α2] = O
(
(n−1 log n)4/5

)
(1.5)

almost surely. Hence, under the same conditions on g0 and its derivatives on [0, α2], the argu-

ment can be constructed by approximating the empirical process Hn and its true counterpart

H0 via the random and deterministic cubic splines Sn and Sn introduced above. However,

one crucial part is missing to complete the proof of this (second) Kiefer–Wolfowitz theorem:

An analogue of Theorem 1.1 at the “integrated” level. In the next subsection, we present this

analogue which is the main result of the paper. This completes the proof of (1.5) which was

conjectured by Balabdaoui and Wellner (2006).

1.4 The second Marshall inequality in convex estimation

Our main result is the following theorem. The relevant results needed in the proof are deferred

to Section 2.

Theorem 1.2. For any n ∈ N \ {0} and a function H such that H ′′ is convex on [0,∞) we

have

‖Ĥn − H‖∞ ≤ ‖Hn − H‖∞.

Proof. It follows from the inequality Ĥn ≥ Hn on [0,∞) that for any knot interval [a, b]

(see the charaterization in (1.3))

− inf
t∈[a,b]

{Ĥn(t) − H(t)} ≤ − inf
t∈[a,b]

{Hn(t) − H(t)}

≤ ‖Hn − H‖[a,b]. (1.6)
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On the other hand, we have by Proposition 2.4

sup
t∈[a,b]

{Ĥn(t) − H(t)} ≤ max{|Hn(a) − H(a)|, |Hn(b) − H(b)|}

≤ ‖Hn − H‖[a,b]. (1.7)

Combining (1.6) and (1.7) yields

‖Ĥn − H‖[a,b] ≤ ‖Hn − H‖[a,b]. (1.8)

The inequality in (1.8) can be directly compared with the one obtained in Theorem 1 of

Dümbgen, Rufibach and Wellner (2006). It is its “integrated” version.

Let 0 = a0 < . . . < am denote the sequence of jump points of ĝ′n and define am+1 = ∞.

Note that for all t ≥ am we have Ĥn(t) = Hn(t). Indeed, we know by Corollary 2.1 (ii) and

(iii) in Groeneboom, Jongbloed, and Wellner (2001) that am > X(n) and Ĝn(t) = 1 for all

t ≥ am, where X(n) denotes the n-th order statistic. On the other hand, we have for t ≥ am

Ĥn(t) = Ĥn(am) +

∫ t

am

Ĝn(u)du = Hn(am) +

∫ t

am

du

= Hn(am) +

∫ t

am

Gn(u)du = Hn(t),

since Gn(u) = 1 for u ≥ am. Hence, we can write

‖Ĥn − H‖∞ = max
0≤j≤m

‖Ĥn − H‖[aj ,aj+1] ≤ max
0≤j≤m

‖Hn − H‖[aj ,aj+1]

= ‖Hn − H‖∞. ✷

In a sense, this integrated version corresponds naturally to the original Marshall’s lemma

in monotone estimation. An analogy between the monotone and convex problems is drawn in

Table 1. From the characterization of the LSE ĝn given in (1.3), it follows that Ĥn is an outer

envelope for the integrated process Hn, as the least concave majorant is for the empirical

distribution function: They both share the property of staying above the empirical function

Gn or Hn and touching it at the points where the adaptive estimator jumps or changes slope.

However, it is important to note that a completely analogue geometric interpretation for Ĥn is

not available. Unlike for the class of concave functions, it is not possible to define a pointwise

ordering on the set of functions whose second derivative is convex. Actually, the infimum of

two such functions does not even have to be continuously differentiable.
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On the other hand, we would like to note that the functions G in the original Marshall’s

lemma are assumed to be concave and hence it is clear that they belong to the same class

as the true distribution function G0. In convex estimation, the functions G considered in

the (first) Marshall inequality of Dümbgen, Rufibach and Wellner (2006) satisfy G′ is convex,

but G′ is not assumed to be necessarily monotone nonincreasing (like the true density g0).

This also applies in our second inequality where we consider functions H such that H ′′ is

convex without any further monotonicity constraints on H ′′ (see also Table 1). This might

suggest that the Marshall inequalities in the convex problem hold for a wider class of functions.

However, this is not exactly the case. In general, nonincreasing densities, and nonincreasing

and convex densities are special cases of k-monotone densities g; i.e., g is nonincreasing if

k = 1, and (−1)kg(k−2) is convex if k ≥ 2 (see e.g. Balabdaoui (2004), Gneiting (1999) and

the references therein). Hence, it is not surprising that the “monotonicity part” was not

needed in the convex problem; i.e., k = 2. This also suggests that if a generalized Marshall’s

Lemma could be proved for the LSE estimator in the case k > 2 (see Balabdaoui (2004)),

such a lemma will probably involve functions H such that H(2k−2) is convex if k is even and

concave if k is odd.

Connections to m–convexity. In the literature on generalized convexity and shape con-

strained approximation, a function f defined on some real interval I and admitting a convex

(m − 2)–th derivative on I is called m–convex. See e.g. Bullen (1971), Roberts and Varberg

(1973) and Zwick (1986). Using this terminology, the functions G and H considered in the

first and second Marshall inequalities in the convex problem are 3– and 4–convex on [0,∞),

respectively.

Marshall inequality in monotone estimation revisited. Our approach can be applied

in monotone estimation, offering a third way of proving the original Marshall’s lemma (see

Marshall (1970) and Robertson, Wright and Dykstra (1988), p. 329 for the two already

available proofs). In fact, the least concave majorant Ĝn is the linear interpolant of Gn on

[a, b] where a and b are successive jump points of the Grenander estimator (see also Table 1).

A property similar to the one shown in Proposition 2.3 could be easily proved for an arbitrary

concave function G. The Hermite operator Q should then be replaced by the linear operator

L; i.e., L(f, t) = f(a) + (t − a)(f(b) − f(a))/(b − a). This yields supt∈[a,b][Ĝn(t) − G(t)] ≤

max{Gn(a)−G(a), Gn(b)−G(b)}. Marshall’s lemma follows using Ĝn ≥ Gn and the fact that
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Table 1: Analogy between monotone and convex density estimation.

Monotone Convex

‖Ĝn − G‖∞ ≤ ‖Gn − G‖∞ ‖Ĥn − H‖ ≤ ‖Hn − H‖∞

True density g0 is monotone ց True density g0 is convex ց

G′ is monotone ց H ′′ is convex

(G is concave) (H is 4–convex)

Gn: Empirical distribution function Hn: Integral of the empirical

distribution function

Ĝn: Least concave majorant of Gn Ĥn: Outer envelope of Hn

Ĝn : Concave spline of degree 1 Ĥn : Spline of degree 3 with

(piecewise linear and concave) convex second derivative

(Ĥn is 4–convex)

Ĝn touches Gn at the jump points Ĥn touches Hn at the break points

of the Grenander estimator of the LSE

Ĝn: The linear interpolant Ĥn: The cubic Hermite polynomial

of Gn on a knot interval interpolant of Hn on a knot interval

Ĝn(t) = Gn(t) for t ≥ X(n).

Convex regression. In convex regression where the true regression curve r0 is compactly

supported, e.g. on [0, 1], Theorem 1.2 has a natural analogue if the estimator, r̂n say, is the

minimizer of the functional

1

2

∫ 1

0
r2(t)dt −

1

n

n∑

i=1

r(xn,i)Yn,i

over the class of convex functions r on [0, 1]. Above, 0 < xn,1 < . . . < xn,n < 1 are the design

points and Yn,i = r0(xn,i) + ǫn,i are the observations where {ǫn,i, i = 1, . . . , n} is a triangular

array of i.i.d. random variables.

If Rn(t) = n−1
∑n

i=1 Yn,i(t−xn,i)+; that is, Rn is the integrated cumulative sum diagram,

and R̂n(t) =
∫ t
0

∫ s
0 r̂n(u)duds, then for any 4–convex function R

‖R̂n − R‖∞ ≤ ‖Rn − R‖∞. (1.9)
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The functions Rn and R̂n play the same roles as Hn and Ĥn in convex density estimation,

and the proof of the Marshall inequality in (1.9) is exactly similar to that of Theorem 1.2.

However, we should note that this result does not hold a priori for the “classical” regression

estimator, r̃n say, defined as the minimizer of

1

2

n∑

i=1

(Yn,i − r(xn,i))
2

over the class of convex functions r which are piecewise linear and change slopes only at the

design points xn,i (see Groeneboom, Jongbloed, and Wellner (2001), pages 1666–1667). The

characterization is different and involves a function that is less smooth than a second integral

of r̃n. This is mainly due to the completely discrete nature of the criterion function to be

minimized. Hence, unlike in monotone regression, where it is easy to check that both the

minimization problems yield the same solution (the slopes of the Greatest Convex Minorant

of the cumulative sum diagram), the estimators r̃n and r̂n are in principal different in convex

estimation.

2 Intermediate results and proofs

In the following, we present some preparatory results and sketch the line of arguments used

to show Theorem 1.2.

2.1 The results

We start with the following definition.

Definition 2.1. For a function f defined on a real interval I, the m−th divided difference

of the function f at (m + 1) distinct points x0 < · · · < xm ∈ I, denoted by [x0, . . . , xm]f , is

defined as

[x0]f = f(x0), [x0, · · · , xm]f =
[x1, · · · , xm]f − [x0, · · · , xm−1]f

xm − x0
for m ≥ 1.

See e.g. Roberts and Varberg (1973), p. 237.

The definition of divided differences is recursive. When m = 0, the 0–th divided difference

is simply the value of the function at a point. When m = 1, it reduces to the slope of f between

two points x0 and x1. For m ≥ 2, it takes the form of differences of slopes. Now, note that
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monotonicity of the function f on I is equivalent to having the divided difference [x0, x1]f

nonnegative for all possible choices of x0 6= x1 ∈ I. Also, it is easy to check that f is convex on

I if and only if [x0, x1, x2]f ≥ 0 for all distinct points x0, x1, x2 ∈ I. The following proposition,

due to Bullen (1971) (see Corollary 8), gives a natural extension to this equivalence in the case

of functions whose second derivative is convex. See also Lemma 3.1 in Kopotun and Shadrin

(2003).

Proposition 2.1. Let f be a twice differentiable function on a real interval I. Then, the

second derivative f ′′ is convex if and only if the 4–th divided difference [x0, x1, x2, x3, x4]f is

nonnegative for all choices of five distinct points x0, . . . , x4 in I.

We need the above proposition to prove a general property of functions with convex second

derivative (see Proposition 2.3). This property will turn out to be very useful for bounding

supt∈[a,b][Ĥn(t) − H(t)], where a and b are any consecutive knots of the LSE ĝn and H ′′ is

convex on [a, b]. Now, for such knots a and b it follows from the characterization of ĝn, that

Ĥn is the cubic Hermite polynomial interpolant of the empirical function Hn on [a, b]; that

is, the unique cubic polynomial matching Hn (the interpolated function here) and its first

derivative at the end points a and b. In the following, we give the known formula for the

cubic Hermite polynomial interpolating some function f at two distinct points a and b (see

e.g. DeVore and Lorentz (1993)).

Proposition 2.2. Let f be a function defined on a real interval [a, b] such that f ′(a) and

f ′(b) exist. For all t ∈ [a, b], the cubic Hermite polynomial Q(f, t) is given by the formula

Q(f, t) = f(a)φ

(
t − a

b − a

)
+ f ′(a)(b − a)ψ

(
t − a

b − a

)

+ f(b)φ

(
b − t

b − a

)
− f ′(b)(b − a)ψ

(
b − t

b − a

)
, (2.10)

where φ(x) = 1 + x2(2x − 3) and ψ(x) = x(1 − x)2, for all x ∈ [0, 1].

The above formula gives a convenient representation of Ĥn as a function of Hn on any

interval [a, b] such that a and b are successive knots of the LSE ĝn: Ĥn is the cubic Hermite

polynomial interpolant of Hn on [a, b]; that is

Ĥn(t) = Q(Hn, t) for t ∈ [a, b].

This follows easily from the properties of the LSE ĝn given in (1.2).

10



Now we are ready to state a general property satisfied by any function with convex second

derivative on some finite real interval.

Proposition 2.3. For any function f on [a, b] such that f ′′ is convex and f is differentiable

at a and b, we have for any t ∈ [a, b]

Q(f, t) − f(t) ≤ 0

where Q(f, t) is the cubic Hermite polynomial interpolant defined in (2.10).

Proposition 2.4. Let a and b be two consecutive jump points of ĝ′n. Then for any function

H on [a, b] such that H ′′ is convex we have

sup
t∈[a,b]

[Ĥn(t) − H(t)] ≤ max
{
Hn(a) − H(a), Hn(b) − H(b)

}
.

2.2 Proofs

Proof of Proposition 2.3. For an arbitrary function g on [a, b] such that g′′ is convex, the

maximal number of zeros of g in [a, b] is four (counting multiplicities). Indeed, g′′ is convex on

[a, b], and hence it admits at most 2 zeros in that interval. By application of Rolle’s theorem

to g′ and g, the claim follows.

Now, let g = f − Q(f, ·), where f ′′ is convex on [a, b] and f is differentiable at a and b.

Since Q(f, ·) is a polynomial of degree 3, g′′ is convex. On the other hand, by definition of

Q(f, ·) we have g(a) = g(b) = g′(a) = g′(b) = 0. The function g has then 2 zeros, at a and b.

Therefore, we must have either g ≥ 0 or g ≤ 0 on [a, b]. To find out the sign, we calculate g at

the midpoint (a + b)/2. Without loss of generality, we take a = 0 and b = 1. By Proposition

2.1, we have [0, δ, 1/2, 1 − δ, 1]f ≥ 0 for any δ ∈ (0, 1/2). Since f is differentiable at 0 and 1,

we obtain by letting δ tend to 0

0 ≤ [0, 0, 1/2, 1, 1]f = 2(8f(1/2) − 4(f(0) + f(1)) + f ′(1) − f ′(0)).

Hence,

f(1/2) ≥
1

2
(f(0) + f(1)) +

1

8
(f ′(0) − f ′(1)).

Now, note that the right side of the previous inequality is exactly equal to Q(f, 1/2), since

φ(1/2) = 1/2 and ψ(1/2) = 1/8 (φ and ψ are cubic polynomials defined in Proposition 2.2).

We conclude that g(1/2) ≥ 0. Hence, g(t) ≥ 0 on [a, b] or equivalently Q(f, t) ≤ f(t), t ∈ [a, b].

✷
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Proof of Proposition 2.4. We assume first that H ′(a) = H
′
n(a) and H ′(b) = H

′
n(b). From

the characterization of the LSE ĝn, it follows that Ĥn is the cubic Hermite polynomial of Hn

on [a, b]. By Proposition 2.2, we can write

Ĥn(t) − H(t) = Q(Hn, t) − Q(H, t) + Q(H, t) − H(t)

≤ Q(Hn, t) − Q(H, t), by Proposition 2.3

= (Hn − H)(a)φ

(
t − a

b − a

)
+ (b − a)(H′

n − H ′)(a)ψ

(
t − a

b − a

)

+(Hn − H)(b)φ

(
b − t

b − a

)
− (b − a)(H′

n − H ′)(b)ψ

(
b − t

b − a

)

= (Hn − H)(a)φ

(
t − a

b − a

)
+ (Hn − H)(b)φ

(
b − t

b − a

)

≤ max
{
(Hn − H)(a), (Hn − H)(b)}. (2.11)

The last inequality follows easily from the fact that φ(1− u) = 1− φ(u) and 0 ≤ φ(u) ≤ 1 for

all u ∈ [0, 1].

Now, we consider the general case where H ′ does not necessarily match H
′
n at a and b.

Let r = argmaxt∈[a,b]{Ĥn(t)−H(t)}, and consider the polynomial P (t) = α3(t− a)3 + α2(t−

a)2 + α1(t − a) satisfying the conditions

P ′(a) = H ′(a) − Ĥ ′
n(a) (2.12)

P ′(b) = H ′(b) − Ĥ ′
n(b). (2.13)

The function H−P admits a second derivative that is convex on [a, b] since P is a polynomial

of degree 3. Furthermore, by (2.12) and (2.13) together with the fact that Ĥ ′
n(a) = H

′
n(a)

and Ĥ ′
n(b) = H

′
n(b), we have (H − P )′(a) = H

′
n(a) and (H − P )′(b) = H

′
n(b). Hence,we are

now in a position to use the result obtained in (2.11) to conclude that

Ĥn(t) − (H(t) − P (t)) ≤

max
{
Hn(a) − (H(a) − P (a)), Hn(b) − (H(b) − P (b))

}
(2.14)

for all t ∈ [a, b]. Suppose without loss of generality that max{Hn(a) − H(a) + P (a), Hn(b) −

H(b) + P (b)} = Hn(a) − H(a) + P (a). We impose now our third condition on P ; i.e.,

P (r) = P (a). When r 6= a, such a polynomial is unique and it can be easily checked that

α1 = H ′(a) − Ĥ ′
n(a), α2 = −

3α1(b − a)2 + ∆(r − a)2

D
, and

α3 =
∆(r − a) + 2α1(b − a)

D

12



where

∆ = H ′(b) − Ĥ ′
n(b) − (H ′(a) − Ĥ ′

n(a)), and

D = (b − a)(r − a)(3(b − a) − 2(r − a)) 6= 0, since 3(b − a) > 2(r − a).

Now, for t = r the inequality in (2.14) yields

Ĥn(r) − H(r) + P (r) ≤ Hn(a) − H(a) + P (a)

or equivalently Ĥn(r) − H(r) ≤ Hn(a) − H(a). Note that when r = a, the third condition

is not at all needed, and one could take any of the solutions P satisfying the derivative

conditions in (2.12) and (2.13). The case max{Hn(a)−H(a) + P (a), Hn(b)−H(b) + P (b)} =

Hn(b) − H(b) + P (b) can be handled similarly, where the third condition should be changed

into P (r) = P (b). ✷
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