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Turbidity measurements in xenon reanalyzed using the master crossover functions
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(Dated: 16 Fev 2009)

The turbidity measurements of Güttinger and Cannell [Phys. Rev. A 24, 3188 (1981)] in the
temperature range 20mK ≤ T − Tc ≤ 29.5K along the critical isochore of homogeneous xenon
are reanalyzed using the master crossover functions for the isothermal compressibility κT and the
correlation length ξ, without adjustable parameter. We show that the turbidity data are well
represented by the Ornstein-Zernike theory, within 1% precision. This excellent agreement con�rms
that the Ising-like critical behavior of xenon can be described in conformity with the universal
features estimated by the massive renormalization scheme, only knowing the four critical coordinates
of the vapor-liquid critical point in the (pressure, temperature, molecular volume) phase surface of
the monoatomic xenon particle.

PACS numbers: 81.70.Ha, 05.70.Jk, 64.60.Fr, 78.35.+c

In their experimental paper [1] devoted to a �rst un-
ambiguous evaluation of the con�uent corrections to scal-
ing for the susceptibility of xenon, Güttinger and Can-
nell conclude to the needed theoretical progress in or-
der to reduce the number of e�ectively free parameters,
which would be extremely valuable. Now it is well-
established [2], especially from the �eld theory frame-
work [3], that the asymptotic singular properties of the
one-component �uids can be described by the classical-
to-critical crossover functions of universal features pre-
dicted for the complete {d = 3, n = 1} universality class
of the three-dimensional (3D) Ising like systems. d is
the space dimension, while n is the dimension of the or-
der parameter (OP) density. Some recent theoretical im-
provements [4, 5] have extended the applicability range of
the crossover functions far from the critical point, main-
taining their fundamental interest in conformity with the
accurate Ising-like universal values of the critical (lead-
ing and lowest con�uent) exponents and (leading and �rst
con�uent) amplitude combinations and ratios [6]. Conse-
quently, only the description of the Ising-like preasymp-
totic domain can be precisely characterized by a limited
number of free (system-dependent) parameters. More-
over, this description needs to introduce the physical crit-
ical parameters such as the critical temperature Tc, the
critical pressure pc, the critical density ρc, etc., and to
de�ne a single length scale unit to make any physical
properties in a dimensionless form. In that dimensionless
scheme with length unit uniqueness [7], the singular be-
haviors of the selected one-component �uid are then char-
acterized by two leading amplitudes and one-con�uent
amplitude of the two-term Wegner like expansions valid
asymptotically close to the Ising-like critical point. Un-
fortunately, as a renormalizable theory cannot localize
the real critical point, only experiments remain able to
estimate the Ising-like nature and the limited number of
readily independent amplitudes which characterize the
critical point phenomena.

The above irreducible challenge introduces a true dif-
�culty to analyze the experimental data obtained at ��-
nite� distance to the critical point, where undetermined
number and undetermined origin of nonuniversal correc-
tions terms can contribute to a Wegner-like expansion [8].
To overcome this di�culty consists in only using the ther-
modynamic information which is contained in the related
experimental localization of the isolated liquid-vapor crit-
ical point itself on a phase surface of equation of state
p =

(
∂A
∂V

)
T,N

, as proposed in Ref. [9, 10]. A (T, V,N) is
the total Helmholtz free energy expressed in terms of its
three natural variables, i.e., the temperature T , the total
volume V , and the total number of particles N . After the
normalization of this �uid description per constitutive
particle, it is then thermodynamically equivalent to de-
�ne a limited number (four) of �nite critical coordinates
of the critical point and to introduce a limited number
(�ve) of asymptotic system-dependent parameters in a
renormalizable theory. The term to term identi�cation
of the physical and theoretical singular behaviors within
the preasymptotic domain closes the critical description
by introducing three well-de�ned master (i.e., constant)
numbers for all the one-component �uids. By applica-
tion of the master crossover functions given in Ref. [11],
we are then able to validate the real extension of the
Ising-like asymptotic behavior of all the critical �uids,
only using four well-de�ned critical coordinates. In such
a procedure, xenon acts as a standard (non-quantum)
Ising-like �uid [12, 13]. Accordingly, the analyses of the
singular behaviors of physical properties of xenon are of
basic interest. Hereafter we provide the results obtained
for the case of the light transmission measurements of
Güttinger and Cannell [1] on near-critical xenon in the
temperature range 20mK ≤ T − Tc ≤ 29.5K. In the
Güttinger and Cannell experiment, the relative determi-
nation of the critical temperature and critical density of
the �uid cell was locally controled under the �eld accel-
eration due to Earth's gravity. The related turbidity [τ ]
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data source used in the present study are given in Ta-
ble I of Ref. [1], as a function of ∆τ∗ = T−Tc

Tc
, with

Tc,GC = (289.790± 0.0005) K.
Turbidity of a transparent �uid close to its liquid-gas

critical point is most essentially due to Rayleigh light
scattering by local density �uctuations. According to
Ornstein-Zernike (OZ) [14], the scattered light intensity
can be written [15] as :

I(q) =
AκT sin2 Φ
1 + (qξ)2 (1)

where q represents the amplitude in the �uid of the trans-
fer wave vector between the incident and scattered light
wave vectors : q = 4πn

λ0
sin θ

2 . n is the refractive index
of the �uid, and θ is the scattering angle. Φ is the an-
gle between the polarization wave vector of the incident
beam and the scattering wave vector. κT is the isother-
mal compressibility and ξ is the correlation length of the
long-range �uctuating order parameter density, propor-
tional to the local density di�erence ρ−ρc. The prefactor
A is given by the following equation

A = π2

λ4
0

[
ρ

(
∂(n2)
∂ρ

)
T

]2

kB

= π2

λ4
0

[
(n2−1)(n2+2)

3

]2

kB

(2)

which accounts for geometrical factors of the scatter-
ing con�guration, laser optical wavelength in vacuum
(λ0), light-�uid scattering cross section calculated from
the Lorentz-Lorenz approximation of the e�ective local
�eld, i.e., introducing the related critical value LLc =
Mmol

ρc

n2
c−1
n2

c+2 of the density expansion of the Lorentz-Lorenz

function. Mmol is the molar mass of the �uid and kB is
the Boltzmann constant. Turbidity corresponds to the
integral of Eq. (1) over all the scattering angles and
writes [15] :

τOZ = ATcκT (1 + ∆τ∗)F (a), (3)

where the dimensionless function F (a) is given by the
following equation

F (a) =
(

2a2 + 2a+ 1
a3

)
ln (1 + 2a)− 2

(
1 + a

a2

)
(4)

with a = 2 (k0ξ)
2
and k0 = 2πn

λ0
(k0 is the amplitude of

the incident light wave vector). All the needed exper-
imental information to perform the OZ-analysis of the
turbidity data can be found in the Güttinger and Can-
nell's paper [1] and references therein. In our present
application of Eq. (3) we use the well-controled values
of the critical parameters of xenon which are de�ned in
Table I (see also Refs. [13, 16�18] given in last column of

Parameter Ref.

mp̄ 2.1805× 10−25 kg

Tc 289.733± 0.015K [13, 16]

pc 5.84007± 0.00050MPa [13]

ρc 1113± 3 kgm−3 �

γ
′
c 0.1197± 0.0006MPaK−1. �

(βc)
−1 = kBTc 4.0002× 10−21 J �

αc =
(
kBTc
pc

) 1
d

8.81501× 10−10 m �

Yc = γ
′
c
Tc
pc
− 1 4.9173 �

Zc =
pcmp̄

ρckBTc
0.286017 �

nc 1.1375 [17, 18]

LLc 10.5271 cm3 mole−1 �

A (88.4943± 0.35) J−1m−4 �

k0 1.12944× 107 m−1 [1]

Table I: Critical parameters for xenon, with Mmol =
0.131313 gmole−1 and NA = 6.0224179× 1023 (see text).

Table I). Since our present estimation of the singular be-
haviors of the isothermal compressibility [κT (∆τ∗)] and
the correlation length [ξ (∆τ∗)] only use these critical pa-
rameters (see the detail below), the only di�erences with
the Güttinger and Cannell's analysis originate from the
critical coordinates of xenon.
The four values of the critical temperature Tc, the crit-

ical pressure pc, the critical density ρc, and the com-

mon critical slope γ
′

c =
[(

∂p
∂T

)
ρ=ρc

= dpsat
dT

]
T→T±c

of the

critical isochore (T → T+
c ) and the saturation pressure

psat (T ) curve (T → T−c ) which are reported in Table I lo-
calize the vapor-liquid critical point on the p, vp̄ = mp̄

ρ , T

phase surface of xenon (vp̄ is the xenon particle volume, ρ
is the mass density and mp̄ is the xenon atom mass; sub-
script p̄ refers to a particle quantity). From the critical
coordinates we have then calculated the corresponding
values of i) the energy unit (βc)

−1 = kBTc, ii) the length

unit αc =
(
kBTc

pc

) 1
d

, iii) the non-dimensional scale factor

Yc = γ
′

c
Tc

pc
−1 of the dimensionless thermal �eld ∆τ∗, and

iv) the non-dimensional scale factor Zc = pcmp̄

ρckBTc
of the

dimensionless ordering �eld conjugated of dimensionless
order parameter density [11, 13].
We have then calculated the physical singular behavior

of ξ (∆τ∗) and κT (∆τ∗) as proposed in Ref. [11], by
using the following equations where quantum e�ects [19,
20]) are neglected(

1
αc

)
× ξcal (∆τ∗) = `∗ (T ∗) =

1

Z{1f}ξ [`th (t)]−1
(5)

(Zcpc)×κT,cal (∆τ∗) = X ∗ (T ∗) =
1

Z{1f}χ [χth (t)]−1
(6)
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Figure 1: (a) log-log plot of the turbidity τ (expressed in
m−1) of xenon as a function of ∆τ∗ along the critical isochore.
Full (black) stars: from light scattering measurements of Gut-
tinger and Cannell [1]. Continuous (black) curve: from Eq.
(3). Dotted (red) curve: from Ref. [1]. Upper horizontal axis:
ξ (expressed in nm). Lower horizontal axis: T −Tc (expressed
in K), calculated using with Tc,GC = 289.79K (16.64◦C) [1].

(b) log-lin plot of the related residuals Rτ = 100
[

τ
τOZ

− 1
]

(expressed in %) from reference to the calculated turbidity
τOZ of Eq. (3). Symbols and curve: same as in (a); full (blue)
squares: with a Tc,GC-change of 0.5mK (see text); full (red)
triangles: with a τ (Tor)-change of −0.00025 cm−1 (see text).

with t = Θ{1f}T ∗ = Θ{1f}Yc∆τ∗ = ϑ∆τ∗, i.e., T ∗ =
Yc∆τ∗ and ϑ = Θ{1f}Yc. In Eqs. (5) and (6), the mas-
ter crossover functions `∗ (T ∗) and X ∗ (T ∗) correspond
to the modi�cations of the theoretical crossover func-
tions [`th (t)]−1

and [χth (t)]−1
de�ned in Refs. [4, 5],

introducing the three scale factors Θ{1f} = 4.288 10−3,
Ψ{1f} = 1.74 10−4 and Lf = 25.6988, which character-
ize the one-component �uid subclass. Accordingly, the
master prefactor values appearing in Eqs. (5) and (6)

are Z{1f}ξ ≡ Lf = 25.6988 and Z{1f}χ = (Lf )d
(
Ψ{1f}

)2
=

1950.70. The corresponding singular behaviors of ξ (∆τ∗)
and κT (∆τ∗) for xenon are then in conformity with
the universal features of the three-dimensional Ising-
like universality class. The related values of the lead-
ing amplitudes of the Ising-like power law terms are
ξ+
0 = 0.184531 nm and Γ+ = 0.0578238, respectively (in
standard notations).

The Guttinger and Cannell data points τexpt of xenon
turbidity are plotted (full black stars) in Fig. 1(a) as
a function of ∆τ∗ in log-log scale. Our theoretical esti-
mation of τOZ using Eqs. (3) to (6) and parameters of
Table I corresponds to the continuous black curve in Fig.
1(a), which appears in agreement with the experimental
results. The Ornstein-Zernike �tting analysis of xenon
turbidity initially performed by Güttinger and Cannell
in Ref. [1] is also given as the dotted red curve in Fig.
1(a). The corresponding residuals (expressed in %) are
given in the log-lin plot of Fig. 1(b). In this Fig. 1(b),
we note that our estimation of τOZ without adjustable
parameter is in excellent agreement with the experimen-
tal measurements (full black stars), as well as the initial
Ornstein-Zernike �tting analysis (dashed red curve) of
Güttinger and Cannell. In order to illustrate the e�ect
of the uncertainty (' 0.5mK, [1]) in the experimental
determination of Tc,GC approaching the critical temper-
ature, the full blue squares in Fig. 1(b) correspond to the
related behaviors of the residuals due to a Tc,GC-change
of 0.5mK. Similarly, in this asymptotic domain where
T → Tc, the very small increase of the residuals with the
initial �tting analysis of Guttinger and Cannell, which
are illustrated by the dotted red curve in Fig. 1(b), is
mainly due to the small di�erence in the respective val-
ues of the leading critical exponents ν and γ of ξ and
κT , respectively. In the temperature range T − Tc & 5K
of Fig. 1(b), the increase of the residuals is due to the
signi�cant decrease of the xenon turbidity when T − Tc
increases, which needs to have a very precise calibration
of the turbidity measurements at these large tempera-
ture distance to Tc. To illustrate this latter remark, we
have reported the new residuals with the experimental
data points (ful red triangles) that are obtained after a
change of −0.00025 cm−1 in the initial calibration value
[τ (Tor) = 0.041 cm−1, see Ref. [1]] of the xenon turbid-
ity at the reference temperature Tor. In the temperature
range T−Tc & 5K, accurate measurements of xenon tur-
bidity then needs to use preferably a xenon sample cell of
optical path larger than a few centimeters. Nevertheless,
we believe that our above Ornstein-Zernike approach of
xenon turbidity with Eq. (3), incorporating the ξ and κT
values obtained from theoretical Eqs. (5) and (6) without
adjustable parameters, is adequate in the T − Tc range
covered by the Güttinger and Cannell measurements.

For the singular behavior of the correlation length as a
function of ∆τ∗, we have also reported in the log-lin plots
of Figs. 2(a) and (b) the residuals Rξ = 100

(
ξ
ξcal
− 1
)
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Figure 2: log-lin scale: residuals Rξ = 100
(

ξ
ξcal

− 1
)
(ex-

pressed in %) for the values of the xenon correlation length
ξ as a function of ∆τ∗, from reference to the calculated
value ξcal using Eqs. (5). (a) Full black circles: exper-
imental data of Ref [22]. Curves labeled 1 to 8: pure
power law ξ = ξ+

0 (∆τ∗)−ν with adjustable exponent and
amplitude values given in lines ]1 to ]8 of Table II, respec-
tively. (b): Curves labeled 5, 9 to 11: two-term power law

ξ = ξ+
0 (∆τ∗)−v

[
1 + aξ (∆τ∗)∆

]
(red line) and equivalent

pure power law ξ = ξ+
0 (∆τ∗)−ν with Ising-like exponent val-

ues �xed (see lines ]5 and ]9 to ]11 of Table II, respectively).

] ν ξ+
0 (nm) a1,+

ξ (∆τ∗)∆ Ref.

1 0.60 0.302 n.u. [21]

2 0.58± 0.05 0.3± 0.01 n.u. [22]

3 0.57± 0.03 0.307 n.u. [23]

4 0.64± 0.02 0.136± 0.006 n.u. [24]

5 0.63 0.2 n.u. [22, 25]

6 0.63 0.167 n.u. [25]

7 0.58 0.232 n.u. [25]

8 0.62 0.193 n.u. [26]

9 0.63 0.184± 0.009 0.55 (∆τ∗)0.5 [1]

10 0.63 0.184± 0.009 n.u. [1, 27]

11 0.63 0.1866± 0.0010 n.u. [1, 16, 28]

Table II: Literature exponent and amplitude values of the

power law ξ = ξ+
0 (∆τ∗)−ν

[
1 + a1,+

ξ (∆τ∗)∆
]
for the xenon

correlation length along the critical isochore (n.u.: not used).
The corresponding leading values used in Eq. (5) are ν =
0.6303875 and ξ+

0 = 0.184531nm

(expressed in %) of ξ-data published in the literature [21�
28], from reference to ξcal here calculated using Eq. (5).
In part (a), we have illustrated by the curves labeled 1 to
8 the dispersion (larger than 10%) of the indirect �tting
analysis with a pure power law ξ = ξ+

0 (∆τ∗)−ν of the
results provided by using (static and dynamic) Rayleigh-
Brillouin light scatering methods, as reported in lines la-
beled ]1 to ]8 of Table II. In addition the residuals with
the data measurements performed by Smith et al [22]
are represented by the full red circles. This Fig. 2(a)
gives clear evidence that the highly correlated values of
ν and ξ+

0 are not obtained with the required precision
[29] from all these optical measurements performed at
�nite distance to Tc, which include the �rst �tting anal-
ysis [26] of the correlation length measurements made
by using the precise di�erential technique and appara-
tus of Güttinger and Cannell. In part (b), the continu-
ous red line labeled 9 corresponds to the residuals (then
lowered at the 1%-scale) with the Güttinger and Can-
nell �tting analysis of their turbidity data that uses the

two-terms power law ξ = ξ+
0 (∆τ∗)−ν

[
1 + a1,+

ξ (∆τ∗)∆
]

with �xed values of the exponents (see the line labeled
]9 of Table II). In addition, we have also given the resid-
uals with two referring pure power laws (see the lines
labeled ]10 and ]11 of Table II). Such pure power laws
are used in the �tting analyses of the shear viscosity [27],
the thermoacoustic boundary layers [16], and the bulk
viscosity [28] of xenon near the critical point, i.e., a cor-
relation length �t which covers the complete tempera-
ture range 5 × 10−7 ≤ ∆τ∗ ≤ 10−1. These applications
then extend signi�cantly the Güttinger and Cannell tem-
perature range, especially approaching the critical tem-
perature by two supplementary decades. Nevertheless,
in spite of the questionable justi�cation of the univer-
sal features related to the lowest order of the Ising-like
Wegner expansions at large distance from Tc, we note a
satisfactory agreement (of the order of the experimental
uncertainty of 10%) in the reduced temperature range
7 × 10−5 ≤ ∆τ∗ ≤ 2 × 10−2 covered by the Güttinger
and Cannell experiment.

A complementary analysis of the κT (∆τ∗) measure-
ments can be found in Ref. [13]. Here, through the
amplitude-exponent values of Ref. [1, 12, 13, 30�34] re-
ported in lines labeled ]1 and ]8 of Table III, we only
underline the excellent agreement between our present
leading power law (line labeled ]6) of the isothermal com-
pressibility calculated by Eq. (6) and the related leading
power laws published in the literature (see Refs. in last
column), when the Ising value of the exponent covers the
small range 1.230 ≤ γ ≤ 1.242. It is then interesting
to note that the scaled forms of the equation of state
[35, 36] can be controled to provide asymptotic singular
behaviors of the �uid properties which follow as close as
possible the Ising-like singular behaviors calculated using
the master crossover functions of the �uid subclass [13].
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] γ Γ+ Ref.

1 1.241 0.0577± 0.001 [1]

2 1.24194 0.057± 0.001 [1, 12]

3 1.2396 0.0587± 0.0040 [1, 30]

4 1.239 n.a. [1, 31]

5 1.240 0.0594 [1, 32]

6 1.2395935 0.0578238 [1, 13]

7 1.23 0.056 [33]

8 1.24 0.058± 0.002 [34]

9 1.24 0.5779 [35, 36]

Table III: Amplitude-exponent results of the leading power
law term of the isothermal compressibility data along the
critical isochore of xenon. Lines ]1 and ]6: from turbidity
measurements of Güttinger and Cannell [1]. Lines ]7 and ]8:
from Fraunhofer optical measurements of density pro�les of
[33]. n.a.: non available. Line ]6 corresponds to the leading
values used in Eq. (6). Line ]9 corresponds to the leading val-
ues calculated using the restricted cubic model of the scaled
equation of state [35, 36].

As a conclusion, only using the four critical coordi-
nates of the xenon critical point to calculate the xenon
parameters needed by the master crossover functions for
isothermal compressibility κT and correlation length ξ,
we have estimated the singular behavior of xenon turbid-
ity in agreement with the Güttinger and Cannell data, in
the temperature range 20mK ≤ T − Tc ≤ 29.5K, along
the critical isochore.
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