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The turbidity measurements of Güttinger and Cannell [Phys. Rev. A 24, 3188 (1981)] in the temperature range 20 mK ≤ T -Tc ≤ 29.5 K along the critical isochore of homogeneous xenon are reanalyzed using the master crossover functions for the isothermal compressibility κT and the correlation length ξ, without adjustable parameter. We show that the turbidity data are well represented by the Ornstein-Zernike theory, within 1% precision. This excellent agreement conrms that the Ising-like critical behavior of xenon can be described in conformity with the universal features estimated by the massive renormalization scheme, only knowing the four critical coordinates of the vapor-liquid critical point in the (pressure, temperature, molecular volume) phase surface of the monoatomic xenon particle.

to-critical crossover functions of universal features predicted for the complete {d = 3, n = 1} universality class of the three-dimensional (3D) Ising like systems. d is the space dimension, while n is the dimension of the order parameter (OP) density. Some recent theoretical improvements [START_REF] Bagnuls | [END_REF]5] have extended the applicability range of the crossover functions far from the critical point, maintaining their fundamental interest in conformity with the accurate Ising-like universal values of the critical (leading and lowest conuent) exponents and (leading and rst conuent) amplitude combinations and ratios [START_REF] Guida | Universal values of critical exponents for ξ and κT are ν = 0[END_REF]. Consequently, only the description of the Ising-like preasymptotic domain can be precisely characterized by a limited number of free (system-dependent) parameters. Moreover, this description needs to introduce the physical critical parameters such as the critical temperature T c , the critical pressure p c , the critical density ρ c , etc., and to dene a single length scale unit to make any physical properties in a dimensionless form. In that dimensionless scheme with length unit uniqueness [START_REF] Privman | Phase Transitions and Critical Phenomena[END_REF], the singular behaviors of the selected one-component uid are then characterized by two leading amplitudes and one-conuent amplitude of the two-term Wegner like expansions valid asymptotically close to the Ising-like critical point. Unfortunately, as a renormalizable theory cannot localize the real critical point, only experiments remain able to estimate the Ising-like nature and the limited number of readily independent amplitudes which characterize the critical point phenomena.

The above irreducible challenge introduces a true difculty to analyze the experimental data obtained atnite distance to the critical point, where undetermined number and undetermined origin of nonuniversal corrections terms can contribute to a Wegner-like expansion [START_REF] Wegner | [END_REF].

To overcome this diculty consists in only using the thermodynamic information which is contained in the related experimental localization of the isolated liquid-vapor critical point itself on a phase surface of equation of state p = ∂A ∂V T,N , as proposed in Ref. [9,10]. A (T, V, N ) is the total Helmholtz free energy expressed in terms of its three natural variables, i.e., the temperature T , the total volume V , and the total number of particles N . After the normalization of this uid description per constitutive particle, it is then thermodynamically equivalent to dene a limited number (four) of nite critical coordinates of the critical point and to introduce a limited number (ve) of asymptotic system-dependent parameters in a renormalizable theory. The term to term identication of the physical and theoretical singular behaviors within the preasymptotic domain closes the critical description by introducing three well-dened master (i.e., constant) numbers for all the one-component uids. By application of the master crossover functions given in Ref. [11],

we are then able to validate the real extension of the Ising-like asymptotic behavior of all the critical uids, only using four well-dened critical coordinates. In such a procedure, xenon acts as a standard (non-quantum) Ising-like uid [12,13]. Accordingly, the analyses of the singular behaviors of physical properties of xenon are of basic interest. Hereafter we provide the results obtained for the case of the light transmission measurements of Güttinger and Cannell [1] on near-critical xenon in the temperature range 20 mK ≤ T -T c ≤ 29.5 K. In the Güttinger and Cannell experiment, the relative determination of the critical temperature and critical density of the uid cell was locally controled under the eld acceleration due to Earth's gravity. The related turbidity [τ ] data source used in the present study are given in Table I of Ref. [1], as a function of ∆τ * = T -Tc Tc , with T c,GC = (289.790 ± 0.0005) K.

Turbidity of a transparent uid close to its liquid-gas critical point is most essentially due to Rayleigh light scattering by local density uctuations. According to Ornstein-Zernike (OZ) [START_REF] Ornstein | Proc. Acad. Sci. Amsterdam[END_REF], the scattered light intensity can be written [15] as :

I(q) = Aκ T sin 2 Φ 1 + (qξ) 2 (1) 
where q represents the amplitude in the uid of the transfer wave vector between the incident and scattered light wave vectors : q = 4πn λ0 sin θ 2 . n is the refractive index of the uid, and θ is the scattering angle. Φ is the angle between the polarization wave vector of the incident beam and the scattering wave vector. κ T is the isothermal compressibility and ξ is the correlation length of the long-range uctuating order parameter density, proportional to the local density dierence ρ-ρ c . The prefactor A is given by the following equation

A = π 2 λ 4 0 ρ ∂(n 2 ) ∂ρ T 2 k B = π 2 λ 4 0 (n 2 -1)(n 2 +2) 3 2 k B (2) 
which accounts for geometrical factors of the scattering conguration, laser optical wavelength in vacuum (λ 0 ), light-uid scattering cross section calculated from the Lorentz-Lorenz approximation of the eective local eld, i.e., introducing the related critical value LL c =

M mol ρc n 2 c -1 n 2 c +2
of the density expansion of the Lorentz-Lorenz function. M mol is the molar mass of the uid and k B is the Boltzmann constant. Turbidity corresponds to the integral of Eq. ( 1) over all the scattering angles and writes [15] :

τ OZ = AT c κ T (1 + ∆τ * ) F (a), (3) 
where the dimensionless function F (a) is given by the following equation

F (a) = 2a 2 + 2a + 1 a 3 ln (1 + 2a) -2 1 + a a 2 (4) 
with a = 2 (k 0 ξ) We have then calculated the physical singular behavior of ξ (∆τ * ) and κ T (∆τ * ) as proposed in Ref. [11], by using the following equations where quantum eects [19,20]) are neglected Full (black) stars: from light scattering measurements of Guttinger and Cannell [1]. Continuous (black) curve: from Eq.

1 α c × ξ cal (∆τ * ) = * (T * ) = 1 Z {1f } ξ [ th (t)] -1 (5) (Z c p c ) × κ T,cal (∆τ * ) = X * (T * ) = 1 Z {1f } χ [χ th (t)] -1 (6) 
(3). Dotted (red) curve: from Ref. [1]. Upper horizontal axis:

ξ (expressed in nm). Lower horizontal axis: T -Tc (expressed in K), calculated using with Tc,GC = 289.79 K (16.64 • C) [1].

(b) log-lin plot of the related residuals Rτ = 100 τ τ OZ -1

(expressed in %) from reference to the calculated turbidity τOZ of Eq. ( 3). Symbols and curve: same as in (a); full (blue) squares: with a Tc,GC-change of 0.5 mK (see text); full (red) triangles: with a τ (Tor)-change of -0.00025 cm -1 (see text). 5) and ( 6), the master crossover functions * (T * ) and X * (T * ) correspond to the modications of the theoretical crossover functions [ th (t)] For the singular behavior of the correlation length as a function of ∆τ * , we have also reported in the log-lin plots of Figs. 2(a ξ as a function of ∆τ * , from reference to the calculated value ξ cal using Eqs. ( 5). (a) Full black circles: exper- imental data of Ref [22].

with t = Θ {1f } T * = Θ {1f } Y c ∆τ * = ϑ∆τ * , i.e., T * = Y c ∆τ * and ϑ = Θ {1f } Y c . In Eqs. (
Curves labeled 1 to 8: pure power law ξ = ξ + 0 (∆τ * ) -ν with adjustable exponent and amplitude values given in lines 1 to 8 of Table II, respectively. (b): Curves labeled 5, 9 to 11: two-term power law ξ = ξ + 0 (∆τ * ) -v 1 + a ξ (∆τ * ) ∆ (red line) and equivalent pure power law ξ = ξ + 0 (∆τ * ) -ν with Ising-like exponent values xed (see lines 5 and 9 to 11 of Table II The corresponding leading values used in Eq. ( 5) are ν = 0.6303875 and ξ + 0 = 0.184531 nm (expressed in %) of ξ-data published in the literature [21 28], from reference to ξ cal here calculated using Eq. ( 5).

In part (a), we have illustrated by the curves labeled 1 to 8 the dispersion (larger than 10%) of the indirect tting analysis with a pure power law ξ = ξ + 0 (∆τ * ) -ν of the results provided by using (static and dynamic) Rayleigh-Brillouin light scatering methods, as reported in lines labeled 1 to 8 of Table II. In addition the residuals with the data measurements performed by Smith et al [22] are represented by the full red circles. This Fig. 2(a)

gives clear evidence that the highly correlated values of ν and ξ + 0 are not obtained with the required precision II). In addition, we have also given the residuals with two referring pure power laws (see the lines labeled 10 and 11 of Table II). Such pure power laws are used in the tting analyses of the shear viscosity [27],

the thermoacoustic boundary layers [16], and the bulk viscosity [28] A complementary analysis of the κ T (∆τ * ) measurements can be found in Ref. [13]. Here, through the amplitude-exponent values of Ref. [1,12,13,3034] reported in lines labeled 1 and 8 of Table III, we only underline the excellent agreement between our present leading power law (line labeled 6) of the isothermal compressibility calculated by Eq. ( 6) and the related leading power laws published in the literature (see Refs. in last column), when the Ising value of the exponent covers the small range 1.230 ≤ γ ≤ 1.242. It is then interesting to note that the scaled forms of the equation of state [35,36] can be controled to provide asymptotic singular behaviors of the uid properties which follow as close as possible the Ising-like singular behaviors calculated using the master crossover functions of the uid subclass [13].

γ Γ +

Ref. 1.24 0.5779 [35,36] Table III: Amplitude-exponent results of the leading power law term of the isothermal compressibility data along the critical isochore of xenon. Lines 1 and 6: from turbidity measurements of Güttinger and Cannell [1]. Lines 7 and 8:

from Fraunhofer optical measurements of density proles of [33]. n.a.: non available. Line 6 corresponds to the leading values used in Eq. ( 6). Line 9 corresponds to the leading values calculated using the restricted cubic model of the scaled equation of state [35,36].

As a conclusion, only using the four critical coordi- 

2 and k 0

 20 = 2πn λ0 (k 0 is the amplitude of the incident light wave vector). All the needed experimental information to perform the OZ-analysis of the turbidity data can be found in the Güttinger and Cannell's paper[1] and references therein. In our present application of Eq. (3) we use the well-controled values of the critical parameters of xenon which are dened in

  The four values of the critical temperature T c , the critical pressure p c , the critical density ρ c , and the common critical slope γ c = ∂p ∂T ρ=ρc = dpsat dT T →T ± c of the critical isochore (T → T + c ) and the saturation pressure p sat (T ) curve (T → T - c ) which are reported in Table I lo- calize the vapor-liquid critical point on the p, v p = mp ρ , T phase surface of xenon (v p is the xenon particle volume, ρ is the mass density and m p is the xenon atom mass; subscript p refers to a particle quantity). From the critical coordinates we have then calculated the corresponding values of i) the energy unit (β c ) -1 = k B T c , ii) the length unit α c = k B Tc pc 1 d , iii) the non-dimensional scale factor Y c = γ c Tc pc -1 of the dimensionless thermal eld ∆τ * , and iv) the non-dimensional scale factor Z c = pcmp ρck B Tc of the dimensionless ordering eld conjugated of dimensionless order parameter density [11, 13].
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 11 Figure 1: (a) log-log plot of the turbidity τ (expressed in m -1 ) of xenon as a function of ∆τ * along the critical isochore.

  scale factors Θ {1f } = 4.288 10 -3 , Ψ {1f } = 1.74 10 -4 and L f = 25.6988, which characterize the one-component uid subclass. Accordingly, the master prefactor values appearing in Eqs. (5) and (6) are Z {1f } ξ ≡ L f = 25.6988 and Z {1f } χ = (L f ) d Ψ {1f } 2 = 1950.70. The corresponding singular behaviors of ξ (∆τ * ) and κ T (∆τ * ) for xenon are then in conformity with the universal features of the three-dimensional Isinglike universality class. The related values of the leading amplitudes of the Ising-like power law terms are ξ + 0 = 0.184531 nm and Γ + = 0.0578238, respectively (in standard notations). The Guttinger and Cannell data points τ expt of xenon turbidity are plotted (full black stars) in Fig. 1(a) as a function of ∆τ * in log-log scale. Our theoretical estimation of τ OZ using Eqs. (3) to (6) and parameters of Table I corresponds to the continuous black curve in Fig. 1(a), which appears in agreement with the experimental results. The Ornstein-Zernike tting analysis of xenon turbidity initially performed by Güttinger and Cannell in Ref. [1] is also given as the dotted red curve in Fig. 1(a). The corresponding residuals (expressed in %) are given in the log-lin plot of Fig. 1(b). In this Fig. 1(b), we note that our estimation of τ OZ without adjustable parameter is in excellent agreement with the experimental measurements (full black stars), as well as the initial Ornstein-Zernike tting analysis (dashed red curve) of Güttinger and Cannell. In order to illustrate the eect of the uncertainty ( 0.5 mK, [1]) in the experimental determination of T c,GC approaching the critical temperature, the full blue squares in Fig. 1(b) correspond to the related behaviors of the residuals due to a T c,GC -change of 0.5 mK. Similarly, in this asymptotic domain where T → T c , the very small increase of the residuals with the initial tting analysis of Guttinger and Cannell, which are illustrated by the dotted red curve in Fig. 1(b), is mainly due to the small dierence in the respective values of the leading critical exponents ν and γ of ξ and κ T , respectively. In the temperature range T -T c 5 K of Fig. 1(b), the increase of the residuals is due to the signicant decrease of the xenon turbidity when T -T c increases, which needs to have a very precise calibration of the turbidity measurements at these large temperature distance to T c . To illustrate this latter remark, we have reported the new residuals with the experimental data points (ful red triangles) that are obtained after a change of -0.00025 cm -1 in the initial calibration value [τ (T or ) = 0.041 cm -1 , see Ref. [1]] of the xenon turbidity at the reference temperature T or . In the temperature range T -T c 5 K, accurate measurements of xenon turbidity then needs to use preferably a xenon sample cell of optical path larger than a few centimeters. Nevertheless, we believe that our above Ornstein-Zernike approach of xenon turbidity with Eq. (3), incorporating the ξ and κ T values obtained from theoretical Eqs. (5) and (6) without adjustable parameters, is adequate in the T -T c range covered by the Güttinger and Cannell measurements.

  ) and (b) the residuals Rξ = 100 ξ ξ cal -1
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 2 Figure 2: log-lin scale: residuals Rξ = 100 ξ ξ cal -1 (ex- pressed in %) for the values of the xenon correlation length

  power law ξ = ξ + 0 (∆τ * ) -ν 1 + a 1,+ ξ (∆τ * ) ∆ for the xenon correlation length along the critical isochore (n.u.: not used).

[ 29 ]

 29 from all these optical measurements performed at nite distance to T c , which include the rst tting analysis[26] of the correlation length measurements made by using the precise dierential technique and apparatus of Güttinger and Cannell. In part (b), the continuous red line labeled 9 corresponds to the residuals (then lowered at the 1%-scale) with the Güttinger and Cannell tting analysis of their turbidity data that uses the two-terms power law ξ = ξ + 0 (∆τ * ) -ν 1 + a 1,+ ξ (∆τ * ) ∆ with xed values of the exponents (see the line labeled 9 of Table

  of xenon near the critical point, i.e., a correlation length t which covers the complete temperature range 5 × 10 -7 ≤ ∆τ * ≤ 10 -1 . These applications then extend signicantly the Güttinger and Cannell temperature range, especially approaching the critical temperature by two supplementary decades. Nevertheless, in spite of the questionable justication of the universal features related to the lowest order of the Ising-like Wegner expansions at large distance from T c , we note a satisfactory agreement (of the order of the experimental uncertainty of 10%) in the reduced temperature range 7 × 10 -5 ≤ ∆τ * ≤ 2 × 10 -2 covered by the Güttinger and Cannell experiment.

9

 9 

  nates of the xenon critical point to calculate the xenon parameters needed by the master crossover functions for isothermal compressibility κ T and correlation length ξ, we have estimated the singular behavior of xenon turbidity in agreement with the Güttinger and Cannell data, in the temperature range 20 mK ≤ T -T c ≤ 29.5 K, along the critical isochore.

Table I

 I 

	Parameter	Ref.
	mp	2.1805 × 10 -25 kg
		Tc	289.733 ± 0.015 K	[13, 16]
		pc	5.84007 ± 0.00050 MPa	[13]
		ρc	1113 ± 3 kg m -3
		γ c	0.1197 ± 0.0006 MPa K -1 .
	(βc) -1 = kBTc	4.0002 × 10 -21 J
				1
	αc = k B Tc pc	d	8.81501 × 10 -10 m
	Yc = γ c	Tc pc -1	4.9173
	Zc =	pcm p ρck B Tc	0.286017
		nc	1.1375	[17, 18]
	LLc	10.5271 cm 3 mole -1
		A	(88.4943 ± 0.35) J -1 m -4
		k0	1.12944 × 10 7 m -1	[1]

(see also Refs.

[13, 1618] 

given in last column of

Table I :

 I Critical parameters for xenon, with M mol = 0.131313 g mole -1 and NA = 6.0224179 × 10 23 (see text).

Table

I

). Since our present estimation of the singular behaviors of the isothermal compressibility [κ T (∆τ * )] and the correlation length [ξ (∆τ * )] only use these critical parameters (see the detail below), the only dierences with the Güttinger and Cannell's analysis originate from the critical coordinates of xenon.

Table II :

 II , respectively). Literature exponent and amplitude values of the

		ν	ξ + 0 (nm)	a 1,+ ξ	(∆τ * ) ∆	Ref.
	1	0.60	0.302		n.u.	[21]
	2 0.58 ± 0.05	0.3 ± 0.01		n.u.	[22]
	3 0.57 ± 0.03	0.307		n.u.	[23]
	4 0.64 ± 0.02 0.136 ± 0.006		n.u.	[24]
	5	0.63	0.2		n.u.	[22, 25]
	6	0.63	0.167		n.u.	[25]
	7	0.58	0.232		n.u.	[25]
	8	0.62	0.193		n.u.	[26]
	9	0.63	0.184 ± 0.009 0.55 (∆τ * ) 0.5	[1]
	10	0.63	0.184 ± 0.009		n.u.	[1, 27]
	11	0.63	0.1866 ± 0.0010		n.u.	[1, 16, 28]