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LIMIT DISTRIBUTION THEORY FOR MAXIMUM
LIKELIHOOD ESTIMATION OF A LOG-CONCAVE

DENSITY

By Fadoua Balabdaoui , Kaspar Rufibach∗ , and

Jon A. Wellner†

We find limiting distributions of the nonparametric maximum
likelihood estimator (MLE) of a log-concave density, i.e. a density
of the form f0 = exp ϕ0 where ϕ0 is a concave function on R. Ex-
istence, form, characterizations and uniform rates of convergence of
the MLE are given by Rufibach (2006) and Dümbgen and Rufibach
(2007). The characterization of the log–concave MLE in terms of dis-
tribution functions is the same (up to sign) as the characterization of
the least squares estimator of a convex density on [0,∞) as studied
by Groeneboom, Jongbloed and Wellner (2001b). We use this con-
nection to show that the limiting distributions of the MLE and its
derivative are, under comparable smoothness assumptions, the same
(up to sign) as in the convex density estimation problem. In particu-
lar, changing the smoothness assumptions of Groeneboom, Jongbloed
and Wellner (2001b) slightly by allowing some higher derivatives to
vanish at the point of interest, we find that the pointwise limiting
distributions depend on the second and third derivatives at 0 of Hk,
the “lower invelope” of an integrated Brownian motion process mi-
nus a drift term depending on the number of vanishing derivatives
of ϕ0 = log f0 at the point of interest. We also establish the limiting
distribution of the resulting estimator of the mode M(f0) and estab-
lish a new local asymptotic minimax lower bound which shows the
optimality of our mode estimator in terms of both rate of convergence
and dependence of constants on population values.

1. Introduction.

1.1. Log–concave densities. A probability density f on the real line is
called log–concave if it can be written as

f(x) = expϕ(x)
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2 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

for some concave function ϕ : R → [−∞,∞). We let LC denote the class
of all log-concave densities on R. As shown by Ibragimov (1956), a density
function f is log–concave if and only if its convolution with any unimodal
density is again unimodal. Thus the class of log–concave densities is often
referred to as the class of “strongly unimodal” densities. Furthermore, the
class LC of log-concave densities is exactly the class of Polya frequency
functions of order 2, PFF2 as noted by Pal, Woodroofe and Meyer (2007);
see also Dharmadhikari and Joag-Dev (1988), page 150, and Marshall and
Olkin (1979), page 492.

The log–concave shape constraint is appealing for many reasons:
(1) Many parametric models, for a certain range of their parameters, are in
fact log–concave, e.g. normal, uniform, gamma (r, λ) for r ≥ 1, beta(a, b) for
a ≥ 1 and b ≥ 1, generalized Pareto, Gumbel, Fréchet, logistic or Laplace, to
mention only some of these models. Therefore, assuming log–concavity of-
fers a flexible non–parametric alternative to purely parametric models. Note
that a log–concave density need not be symmetric.
(2) Every log–concave density is automatically unimodal. Furthermore, log-
concavity of a density f immediately implies specific shape constraints for
certain functions derived from f , see Barlow and Proschan (1975), Marshall
and Olkin (2007), Marshall and Olkin (1979), Dharmadhikari and Joag-Dev
(1988), An (1998), Bagnoli and Bergstrom (2005), and Section 7 in Dümbgen
et al. (2007). Thus, having an estimator (and its limiting distribution) for
f at hand provides almost automatically estimators (and limiting distribu-
tions) for those functions. Corollary 2.3 illustrates this for the hazard rate.
(3) Although the nonparametric MLE of a unimodal density does not ex-
ist (see e.g. Birgé (1997), the nonparametric MLE of a log-concave density
exists, is unique, and has desirable consistency and rates of convergence
properties. Thus the class of log-concave (or strongly unimodal) densities
may be a useful and valuable surrogate for the larger class U of unimodal
densities.
(4) Tests for multimodality and mixing can be based on a semiparametric
model with densities of the form fc,ϕ(x) = exp(ϕ(x) + cx2) where ϕ is con-
cave and c > 0 as shown by Walther (2002).
(5) Chang and Walther (2006) further show that the EM-algorithm can be
extended to work for log-concave component densities.
(6) First attempts to estimate a log-concave density in R

d were made by
Cule et al. (2007).
(7) The log-concave density estimator can be used to improve accuracy in
the estimation of the so-called “tail index” of a generalized Pareto distribu-
tion, see Müller and Rufibach (2006).
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(8) It should be noted that no arbitrary choices such as bandwidth, kernel,
or prior are involved in the estimation of a log-concave density; these are all
obviated by this shape restriction.
(9) We expect good adaptivity properties of the MLE f̂n in the class LC.

Here is some elaboration on this last point. It is fairly well-known that
nonparametric maximum likelihood estimators of monotone functions have
desirable adaptation properties with respect to the smoothness of the under-
lying true monotone function: see Birgé (1989) for a study of the Grenander
estimator of a monotone density; see Low and Kang (2002) for the construc-
tion of an adaptive estimator (at a point) in the context of the white noise
model; and see Cai and Low (2005) for an illuminating discussion of the is-
sues. Cai and Low (2007) have initiated a study of adaptive estimation in the
setting of convex function estimation, but much more remains to be done.
Dümbgen and Rufibach (2007) show that the MLE ϕ̂n of ϕ0 adapts to the lo-
cal smoothness of ϕ0 in the following sense: if ϕ0 is Hölder(β, L) on [A,B] ⊂
[x : f0(x) > 0] where 1 ≤ β ≤ 2, then ‖ϕ̂n −ϕ0‖b

a = Op((n
−1 log n)β/(2β+1))

for any A < a < b < B and ‖g‖b
a := supa≤x≤b |g(x)|. This carries over sim-

ilarly to yield local adaptivity properities of f̂n. Current evidence suggests
that the nonparametric MLE’s of convex densities as studied in Groene-
boom, Jongbloed and Wellner (2001b) and of log-concave densities as in
Dümbgen and Rufibach (2007) are also adaptive to local smoothness in
terms of their local limiting distributions. We intend to investigate this in
more detail in future work.

For properties of (random variables with) log–concave densities we refer
to Dharmadhikari and Joag-Dev (1988), Marshall and Olkin (1979), and Ru-
fibach (2006). Log–concavity of a density f implies certain shape constraints
for functions derived from f , such as the distribution function, the tail or
hazard function. See An (1998) for comparisons with the related notion of
a log–convex density.

1.2. Log–concave density estimation. Now let X(1) < X(2) < · · · < X(n)

be the order statistics of n independent random variables X1, . . . , Xn dis-
tributed according to a log–concave probability density f0 = expϕ0 on R.
The distribution function corresponding to f0 is denoted by F0.

The maximum likelihood estimator (MLE) of a log–concave density was
introduced in Rufibach (2006) and Dümbgen and Rufibach (2007). Algorith-
mic aspects were treated in Rufibach (2007) and in a more general framework
in Dümbgen, Hüsler and Rufibach (2007), while consistency with respect to
the Hellinger metric was established by Pal, Woodroofe and Meyer (2007),
and rates of convergence of f̂n and F̂n were established by Dümbgen and
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4 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

Rufibach (2007). Since the derivation of the MLE of a log–concave density
is extensively treated in these references, we only briefly recall its definition
and the properties relevant for this paper.

If C denotes the class of all concave functions ϕ : R → [−∞,∞), the
estimator ϕ̂n of ϕ0 is the maximizer of the “adjusted” criterion function

L(ϕ) =

∫

R

ϕ(x)dFn(x) −
∫

R

expϕ(x)dx

over C, where Fn is the empirical distribution function of the observations.
The log–concave density estimator is then f̂n := exp ϕ̂n, which exists and is
unique.

1.3. Some properties of ϕ̂n. For any continuous piecewise linear function
hn : [X(1), X(n)] → R such that the knots of hn coincide with (some of) the

order statistics X(1), . . . , X(n), introduce the set of knots Ŝn(hn) of hn as

Ŝn(hn) := {t ∈ (X(1), X(n)) : h′
n(t−) > h′

n(t+)} ∪ {X(1), X(n)}.

Dümbgen and Rufibach (2007) found that ϕ̂n is piecewise linear, that ϕ̂n =
−∞ on R \ [X(1), X(n)] and that the knots of ϕ̂n only occur at (some of
the) ordered observations X(1) < · · · < X(n). The latter property is entirely
different from the estimation of a k–monotone density for k > 1 (see below),
where the knots fall strictly between observations with probability equal to 1.
According to Theorem 2.4 in Dümbgen and Rufibach (2007), the estimator
ϕ̂n has the following characterization. For x ≥ X(1) (recall that ϕ̂n := 0
outside [X(1), X(n)]) define the processes

F̂n(x) :=

∫ x

X(1)

exp(ϕ̂n(t))dt, Ĥn(x) :=

∫ x

X(1)

F̂n(t)dt,

Hn(x) :=

∫ x

X(1)

Fn(t)dt =

∫ x

−∞
Fn(t)dt.

Then the concave function ϕ̂n is the MLE of the log–density ϕ0 if and only
if

Ĥn(x)

{
≤ Hn(x) for all x ≥ X(1)

= Hn(x) if x ∈ Ŝn(ϕ̂n).
(1.1)

1.4. Other shape constraints. Maximum likelihood estimation of a mono-
tone density f0 on [0,∞) was first studied by Grenander (1956) who found
that a function f̂n is the estimator of f0 if and only if it is equal to the
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left derivative of the least concave majorant of Fn. Prakasa Rao (1969) es-
tablished the asymptotic distribution theory at a point x0 > 0 such that
f ′
0(x0) < 0 and f ′

0 is continuous in a neighborhood of x0:

n1/3(f̂n(x0) − f0(x0)) →d |f ′
0(x0)f0(x0)/2|1/3

Z

where Z is the slope at zero of the (least) concave majorant of the process
W (t) − t2, t ∈ R for two–sided Brownian motion W starting at 0.

Under the assumption that the true density f0 is convex and non–increasing
on [0,∞), Groeneboom, Jongbloed and Wellner (2001b) defined and charac-
terized the MLE f̂n as well as the least squares estimator of f0. Here, at any
point x0 > 0 such that f ′′

0 (x0) > 0 and f ′′
0 is continuous in a neighborhood

of x0,

n2/5(f̂n(x0) − f0(x0)) →d

(
24−1f2

0 (x0)f
′′
0 (x0)

)1/5
H

′′(0),

where H is a random cubic spline such that H
′′ is convex and H stays above

integrated two–sided Brownian motion +t4 and touches the Gaussian pro-
cess exactly at those points where H

′′ changes its slope, see Groeneboom,
Jongbloed and Wellner (2001a).

The classes of monotone and convex decreasing densities are particular
cases of the class of k–monotone densities. A density function p on [0,∞) is
1-monotone if it is non–increasing; it is 2–monotone if it is non–increasing
and convex; and it is k–monotone for k ≥ 3 if and only if (−1)jp(j) is non–
negative, non–increasing, and convex for j = 0, . . . , k − 2. Balabdaoui and
Wellner (2007) were able to adapt the approach of Groeneboom, Jongbloed
and Wellner (2001b) to this general class of densities. However, their result
depends on the validity of a conjecture about an upper bound for the error
in a particular Hermite interpolation via odd–degree splines.

We find that log–concave estimation shares many similarities with the
aforementioned shape–constrained estimation problems. In particular the
limiting distribution of the MLE, our nonparametric estimator, involves a
stochastic process whose second derivative is concave, and which stays below
an integrated Brownian motion minus tk+2. The even integer k determines
the number of vanishing derivatives of the true concave function ϕ0 at the
estimation point x0.

1.5. Organization of the paper. In Section 2, we establish the limiting
distributions of the MLE estimators, ϕ̂n and f̂n, at a fixed point x0 ∈ R

under some specified working assumptions. The characterization of either ϕ̂n

or f̂n given in (1.1) coincides, except for the direction of the inequality, with
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6 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

that of the least squares estimator of a convex decreasing density, studied
by Groeneboom et al. (2001b); see their Lemma 2.2, p. 1657. This enables
us to adopt the general scheme of the proof in their paper.

Log–concave densities f and their logarithm ϕ can easily have vanishing
second and higher derivatives at fixed points as can be seen from the density
function

f0(x) =
√

2
Γ(3/4)

π
exp(−x4), x ∈ R.

In this case ϕ
(j)
0 (x0) = 0, j = 1, 2, 3 for x0 = 0, and ϕ

(4)
0 (x0) 6= 0. The

following “tilted” version of f0 shows that vanishing second derivatives of
ϕ0 can also occur at points other than the mode of f :

f̃0(x) = exp(a + bx)f0(x) = ã exp(bx − x4)

where ã = ã(b) := 1/
∫

R
exp(bx − x4)dx; in this case ϕ̃0 := log f̃0 satisfies

ϕ̃′′
0(0) = 0, but the mode m̃0 := M(f̃0) = (b/4)1/3 > 0 when b > 0, and

ϕ̃′′
0(m̃0) = −12(b/4)2/3 < 0. Thus the formulation of our asymptotic re-

sults allows higher derivatives of the concave function ϕ0 to vanish at the
estimation point. This is somewhat more general than the assumptions of
Groeneboom, Jongbloed and Wellner (2001b) (where a natural assumption
is that the second derivative is positive at the point of interest, but simi-
lar vanishing of second derivatives and existence of a non-zero higher order
derivative can also easily occur), but it is analogous to the results of Wright
(1981) and Leurgans (1982) for nonparametric estimation of a monotone
regression function. Similar results for the Grenander estimator of a mono-
tone density are stated by Anevski and Hössjer (2002). We find that the
respective limiting distributions of the MLE and its first derivative depend
on a stochastic process, Hk, equal almost surely to the “lower invelope” (or
just “invelope”) on R of the integrated Brownian motion minus tk+2 where
k is the order of the first non-zero derivative of ϕ0 at the point of interest.

In Section 3, the estimation point x0 is taken to be equal to the mode, m0,
defined to be the smallest point in the modal interval of the log–concave den-
sity f0. A natural estimator of m0, which we denote by M̂n, can be taken to
be the smallest number maximizing the MLE ϕ̂n, or equivalently the small-
est number maximizing the MLE f̂n. In this section, we establish our second
main result: the asymptotic distribution of M̂n. Under the assumption that
the second derivative f ′′

0 (m0) < 0, we show that this distribution depends on

the random variable defined to be the argmax or mode of H
(2)
2 on R. When

the second, third, and higher derivatives of order k − 1 or lower vanish at
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LIMIT THEORY FOR LOG-CONCAVE MLE 7

m0 but f
(k)
0 (m0) < 0, then the limit distribution depends on the mode of

H
(2)
k .
Proofs are deferred to Section 4.
To illustrate all the quantities for which we provide limiting distributions,

in Figure 1 we give plots of f̂n, ϕ̂n, F̂n, and λ̂n = f̂n/(1− F̂n), based on two
samples of sizes n = 20 and n = 200 drawn from a Gamma(2, 1) density
f0(x) = xe−x1[0,∞)(x). All these plots were generated using the R-package
logcondens, see Rufibach and Dümbgen (2007).

2. Limiting distribution theory. To state the main result, we make
the following assumptions.

2.1. Assumptions. Fix x0 ∈ R. We suppose that the true density f0 =
expϕ0 satisfies the following assumptions:

(A1) The density function f0 ∈ LC.
(A2) f0(x0) > 0.
(A3) The function ϕ0 is at least twice continuously differentiable in a neigh-

borhood of x0.
(A4) If ϕ

′′

0(x0) 6= 0, then k = 2. Otherwise, suppose that k is the smallest

integer such that ϕ
(j)
0 (x0) = 0, j = 2, . . . , k − 1, ϕ

(k)
0 (x0) 6= 0, and ϕ

(k)
0

is continuous in a neighborhood of x0.

Note that concavity of ϕ0 and A3 and A4 imply that k is necessarily even

and that ϕ
(k)
0 (x0) < 0. Indeed, suppose that k > 2. Using Taylor expansion

of ϕ′′
0 up to degree k − 2, there exists a small h > 0 for which we can write

ϕ′′
0(x) =

ϕ
(k)
0 (x0)

(k − 2)!
(x − x0)

k−2 + o((x − x0)
k−2), x ∈ [x0 − h, x0 + h].

Since ϕ′′
0(x) ≤ 0 for all x ∈ [x0 − h, x0 + h], it follows that k − 2 is even; i.e.

k even and ϕ
(k)
0 (x0) < 0.

2.2. Notation. Let W denote two-sided Brownian motion, starting at 0.
For t ∈ R, define:

Yk(t) =

{ ∫ t
0 W (s)ds − tk+2 if t ≥ 0∫ 0
t W (s)ds − tk+2 if t < 0.

(2.2)

For the uniform norm of a bounded function f we write ‖f‖∞ = supx∈R |f(x)|.
The derivative of ϕ̂n at x ∈ R is as usual denoted by ϕ̂′

n(x). However, if
x ∈ Ŝn(ϕ̂n), then we define ϕ̂′

n(x) as the left-derivative.
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8 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

Fig 1. Examples for log-concave density, log-density, CDF, and hazard rate estimation for
n = 20, 200 (−− true functions, − estimators). The dotted vertical lines indicate the setbSn(bϕn). The · − ·− vertical lines are placed at the mode of the estimated density.
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Theorem 2.1. Suppose that A1 - A4 hold. Then


 nk/(2k+1)

(
f̂n(x0) − f0(x0)

)

n(k−1)/(2k+1)
(
f̂ ′

n(x0) − f ′
0(x0)

)

 →d

(
ck(x0, ϕ0) H

(2)
k (0)

dk(x0, ϕ0) H
(3)
k (0)

)

and

 nk/(2k+1)

(
ϕ̂n(x0) − ϕ0(x0)

)

n(k−1)/(2k+1)
(
ϕ̂′

n(x0) − ϕ′
0(x0)

)

 →d

(
Ck(x0, ϕ0) H

(2)
k (0)

Dk(x0, ϕ0) H
(3)
k (0)

)
.

where Hk is the “lower invelope” of the process Yk; that is,

Hk(t) ≤ Yk(t) for all t ∈ R;

H
(2)
k is concave;

Hk(t) = Yk(t) if the slope of H
(2)
k decreases strictly at t.

The constants ck, dk, Ck, and Dk are given by

ck(x0, ϕ0) =

(
f0(x0)

k+1|ϕ(k)
0 (x0)|

(k + 2)!

)1/(2k+1)

(2.3)

dk(x0, ϕ0) =

(
f0(x0)

k+2|ϕ(k)
0 (x0)|3

[(k + 2)!]3

)1/(2k+1)

(2.4)

Ck(x0, ϕ0) =

( |ϕ(k)
0 (x0)|

f0(x0)k(k + 2)!

)1/(2k+1)

(2.5)

Dk(x0, ϕ0) =

( |ϕ(k)
0 (x0)|3

f0(x0)k−1[(k + 2)!]3

)1/(2k+1)

.(2.6)

Corollary 2.2. Suppose that A1 - A4 hold with k = 2. Then


 n2/5

(
f̂n(x0) − f0(x0)

)

n1/5
(
f̂ ′

n(x0) − f ′
0(x0)

)

 →d

(
c2(x0, ϕ0) H

(2)
2 (0)

d2(x0, ϕ0) H
(3)
2 (0)

)

and

 n2/5

(
ϕ̂n(x0) − ϕ0(x0)

)

n1/5
(
ϕ̂′

n(x0) − ϕ′
0(x0)

)

 →d

(
C2(x0, ϕ0) H

(2)
2 (0)

D2(x0, ϕ0) H
(3)
2 (0)

)
.

where H2 is the (concave) invelope of the process Y2; that is,

H2(t) ≤ Y2(t) for all t ∈ R;
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10 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

H
(2)
2 is concave;

H2(t) = Y2(t) if the slope of H
(2)
2 decreases strictly at t.

The constants c2, d2, C2 and D2 are given by (2.3) - (2.6) with k = 2.

Note that the constants C2(x0, ϕ0) and D2(x0, ϕ0), up to inversion of
f0(x0), exhibit a structure very similar to that of the constants given by
Groeneboom, Jongbloed and Wellner (2001b) in the problem of estimating
a convex density g0 on [0,∞). We recall here that in the latter problem,
those constants are found to be equal to (we use our notation to make the
comparison easy)

c2(x0, g0) =

(
g0(x0)

2g
(2)
0 (x0)

4!

)1/5

, d2(x0, g0) =

(
g0(x0)(g

(2)
0 (x0))

3

(4!)3

)1/5

.

It is clear that ϕ0 in the log–concave problem plays exactly the same role
as f0 in the problem of estimating a convex density. However, in the first
case estimation is based on observations which are distributed according to
expϕ0, whereas in the latter the data come from f0 itself. A good insight
into the difference between the expressions of the asymptotic constants can
be gained from the proof of Theorem 4.6 in Section 4. There, we show
that the leading coefficient of the drift of the limiting process Yk depends

on ϕ
(k)
0 (x0)f0(x0) = f

(k)
0 (x0) − (ϕ′

0(x0))
kf0(x0), where the second term is

“filtered out” in the Taylor expansion of the estimation error in the neigh-

borhood of x0. Hence, |ϕ(k)
0 (x0)| · f0(x0) can be viewed as the dominating

term replacing |g(k)
0 (x0)| in the convex estimation problem. For k = 2 the

constants c2(x0, ϕ0) and d2(x0, ϕ0) given in (2.3) and (2.4) with k = 2 match
closely with c2(x0, g0) and d2(x0, g0) obtained by Groeneboom, Jongbloed
and Wellner (2001b) in the convex estimation problem, with f0(x0) in the
numerator, whereas f0(x0) shows up in the denominator in the asymptotic
constants C2(x0, ϕ0) and D2(x0, ϕ0). This results from applying the delta-
method to f̂n(x0) = exp(ϕ̂n(x0)) and f̂ ′

n(x0) = ϕ̂′
n(x0)f̂n(x0) which yields

C2(x0, ϕ0) and D2(x0, ϕ0)
Finally, and in order to compare also the random parts of the limits in

the convex and log–concave estimation problems, we would like to note that
for our lower invelope process Hk, −Hk has the same distribution as the
“upper invelope” of −Yk, which was called just the “invelope” in the case
k = 2 by Groeneboom et al. (2001b): The process −Yk has a drift equal
to plus tk+2 which specializes to t4 in the convex density problem with
k = 2. This “upper invelope” stays above −Yk and admits a convex second
derivative. Since −W has the same distribution as W , it follows that the
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LIMIT THEORY FOR LOG-CONCAVE MLE 11

upper and lower invelopes Hk and Hk (associated with estimation of convex

and concave functions respectively) satisfy Hk
d
= −Hk. Since the derivatives

at zero H
(2)
k (0) and H

(3)
k (0) of Hk are distributed symmetrically about zero,

the same is true of the derivatives at zero H
(2)
k (0) and H

(3)
k (0) of Hk.

As shown by Barlow and Proschan (1975), Lemma 5.8, page 77, (see also
Marshall and Olkin (1979), p. 493; Marshall and Olkin (2007), p. 102; An
(1998); and Bagnoli and Bergstrom (2005)), if f0 is log-concave, then the
hazard function

λ0(x) =
f0(x)

1 − F0(x)
1{x<F−1

0 (1)}

is monotone non-decreasing. Defining the estimator of λ0 based on f̂n as

λ̂n(x) =
f̂n(x)

1 − F̂n(x)
1{x<X(n)},

application of the delta-method yields the following corollary.

Corollary 2.3. Suppose that A1 - A4 hold. Then


 nk/(2k+1)

(
λ̂n(x0) − λ0(x0)

)

n(k−1)/(2k+1)
(
λ̂′

n(x0) − λ′
0(x0)

)

 →d

(
gk(x0, ϕ0) H

(2)
k (0)

hk(x0, ϕ0) H
(3)
k (0)

)

where the constants gk and hk are given by

gk(x0, ϕ0) = ck(x0, ϕ0)/(1 − F0(x0))

hk(x0, ϕ0) = dk(x0, ϕ0)/(1 − F0(x0))

For a more thorough discussion of the implications for the hazard rate if
f0 is log-concave see Dümbgen and Rufibach (2007), at the end of Section 3
and Dümbgen et al. (2007), Section 7.

3. Inference about the mode of f0. Estimation of the mode of a
unimodal density has been considered by many authors; see e.g. Parzen
(1962), Chernoff (1964), Grenander (1965), Dalenius (1965), Venter (1967),
Wegman (1970a), Wegman (1970b), Wegman (1971), Eddy (1980), Eddy
(1982), Hall (1982), Müller (1989), Romano (1988), Vieu (1996), and more
recently Meyer (2001), and Herrmann and Ziegler (2004).
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12 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

Empirical studies of the performance of various estimators are given by
Dalenius (1965), Ekblom (1972), Meyer (2001), and Meyer and Woodroofe
(2004). Many of the methods considered for estimating the mode of a uni-
modal smooth density use kernel estimation, but others are based on the
principle of substitution with another choice of estimator of the population
density: for example, the estimators of Venter (1967), are related to nearest
- neighbor estimators of the density f0. All the estimators of the mode in
the class of unimodal densities known to us involve some more more or less
ad-hoc choice essentially because the maximum likelihood estimator of a
unimodal density is not well-defined as is nicely explained by Birgé (1997).
(Note that Wegman (1970b), Wegman (1971) discussed the nonparametric
MLE of a unimodal density subject to a constraint on the height of the
mode; without some constraint of this type, the MLE does not exist.)

For virtually all of the estimators of which we are aware, some choice of
a smoothing parameter or bandwidth or constraint is required. Empirical
choice of smoothing parameters has been studied by Müller (1989) who
studied local methods of choosing the smoothing parameter, Grund and Hall
(1995) who studied bootstrap methods, and Ziegler (2004) who studied plug-
in methods. Klemelä (2005) gave a construction of adaptive estimators based
on Lepski’s method (Lepskĭı (1992)). For nonparametric Bayes estimators of
unimodal densities and hence of the mode, see Brunner and Lo (1989), Ho
(2006a), and Ho (2006b); for these estimators, choice of a prior is equivalent
to a choice of smoothing parameters.

In contrast, estimation in the (large!) subclass of log-concave (or strongly
unimodal) densities is much simpler, avoiding bandwidth or smoothing pa-
rameter choices completely. Since the maximum likelihood estimator exists,
we can simply estimate the mode by the mode (or smallest point in a modal
interval) of the MLE f̂n. Using the notation introduced by Eddy (1982) (and

also used by Romano (1988)), we let M̂n := M(f̂n) where M denotes the
mode functional (or “smallest argmax” functional) given by

M(g) := min{t : g(t) = max
u∈R

g(u)}.

Because of the adaptive properties of the MLE’s f̂n of f0 and ϕ̂n of ϕ0 dis-
cussed in Section 1, we expect M̂n to adapt to different local smoothness (or
peakedness) hypotheses on f0 (much as the Grenander estimator is locally
adaptive in the case of estimating a monotone density, see e.g. Birgé (1989),

page 1535). Here we study M̂n as an estimator of the mode M(f0) := m0

under just the condition that f0 has a continuous second derivative f ′′
0 in a

neighborhood of m0 with f ′′
0 (m0) < 0. We begin in the next subsection with
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LIMIT THEORY FOR LOG-CONCAVE MLE 13

a new asymptotic minimax lower bound for estimation of m0 under this hy-
pothesis. The following subsection gives our new limiting distribution result
for the MLE M̂n of the mode m0.

3.1. New lower bounds for estimating the mode.

Has′minskĭı (1979) established a lower bound for estimation of the mode
m0 of a unimodal density f ∈ U assuming that f satisfies f ′′(m0) < 0.
He showed that the best local asymptotic minimax rate of convergence for
any estimator of m0 is n−1/5. Has’minskii based his proof on a sequence of
parametric submodels of the form

fn(x, θ) = f(x) + θn−2/5g(n1/5(x − m0))

where, for a := −f ′′(m0),

g(x) := ga(x) =

{
x, if |x| ≤ 1/a,
0, if |x| ≥ K > 1/a,

and g := ga satisfies g(−x) = −g(x) and |g′′(x)| < a/2 for all x ∈ R.
However, Has′minskĭı (1979) did not study the dependence of the local min-
imax bound on a = −f ′′(m0) and f(m0), leaving his bound in terms of
c2
0 := f(m0)/

∫
g2
a(x)dx involving the still unspecified function g = ga.

Here we consider different parametric submodels and derive the depen-
dence of the constant in local asymptotic minimax lower bound for estima-
tion of the mode m0 in the family LC of log-concave (or strongly unimodal)
densities.

We want to derive asymptotic lower bounds for the local minimax risks
for estimating the mode M(f). The L1− minimax risk for estimating a
functional ν of f0 based on a sample X1, . . . , Xn of size n from f0 which is
known to be in a subset LCn,τ of LC is defined by

MMR1(n, Tn,LCn,τ ) := inf
Tn

sup
f∈LCn,τ

Ef |Tn − ν(f)|(3.7)

where the infimum ranges over all possible measurable functions Tn =
tn(X1, . . . , Xn) mapping R

n to R. The shrinking classes LCn,τ used here
are Hellinger balls centered at f0:

LCn,τ =

{
f ∈ LC : H2(f, f0) =

1

2

∫ ∞

−∞

(√
f(z) −

√
f0(z)

)2
dz ≤ τ/n

}
.

Consider estimation of

ν(f) := M(f) = inf{t ∈ R : t = sup
u∈R

f(u)}.(3.8)
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14 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

Let f0 ∈ LC and m0 = M(f0) be fixed such that f0 is twice continuously dif-
ferentiable at m0 and f ′′

0 (m0) < 0. Consider the family {ϕǫ}ǫ>0 and resulting
family {fǫ}ǫ>0 defined as follows:

ϕǫ(x) =





ϕ0(x), x < m0 − ǫcǫ

ϕ0(x), x > m0 + ǫ,
ϕ0(m0 + ǫ)

+ ϕ′
0(m0 + ǫ)(x − m0 − ǫ), x ∈ [m0 − ǫ,m0 + ǫ]

ϕ0(m0 − ǫcǫ)
+ ϕ′

0(m0 − ǫcǫ)(x − m0 + ǫcǫ), x ∈ [m0 − ǫcǫ, m0 − ǫ)

where cǫ is chosen so that ϕǫ is continuous at m0 − ǫ. Note that if ϕ0(x) =
γ − γ0(x−m0)

2, then cǫ = 3 for all ǫ, and cǫ → 3 as ǫ ↓ 0 since f ′′
0 (m0) < 0.

Now define

hǫ(x) := exp(ϕǫ(x)), and fǫ(x) :=
hǫ(x)∫
hǫ(y)dy

.

Then fǫ is log-concave for each ǫ > 0 with mode m0 − ǫ by construction, so
with ν(fǫ) := M(fǫ) := the mode of fǫ we have

ν(fǫ) − ν(f0) = M(fǫ) − M(f0) = m0 − ǫ − m0 = −ǫ.

Furthermore, the following lemma holds.

Lemma 3.1. Under the above assumptions

H2(fǫ, f0) =
2f ′′

0 (m0)
2

5f0(m0)
ǫ5 + o(ǫ5) := ρǫ5 + o(ǫ5).

Proof. Proceeding as in Jongbloed (1995),

H2(fǫ, f0) =
1

2

∫ ∞

−∞
[
√

fǫ(x) −
√

f0(x)]2dx

=
1

2

∫ m0+ǫ

m0−ǫcǫ

[
√

fǫ(x) −
√

f0(x)]2dx

=
2

5
f0(m0)ϕ

′′
0(m0)

2ǫ5 + o(ǫ5) =
2

5

f ′′
0 (m0)

2

f0(m0)
ǫ5 + o(ǫ5)

as ǫ ↓ 0. Calculations similar to those of Jongbloed (1995) (see also Jong-
bloed (2000)) and Groeneboom et al. (2001b)) complete the proof of the
lemma. ✷
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LIMIT THEORY FOR LOG-CONCAVE MLE 15

Taking ǫ = cn−1/5 and defining fn := fcn−1/5 yields

ν(fn) − ν(f0) = M(fn) − M(f0) = −cn−1/5

and

nH2(fn, f0) =
2

5

f
′′

0 (m0)
2

f0(m0)
c5 + o(1) := ρc5 + o(1).

Plugging these into the lower bound Lemma 4.1 of Groeneboom (1996) with
ℓ(x) := |x| yields

lim inf
n

inf
Tn

n1/5 max {En,Pn |Tn − M(fn)|, En,P |Tn − M(f0)|}

≥ 1

4
c exp(−2ρc5) =

e−1/5

4 · 101/5
ρ−1/5 = (.15512)

(
f0(m0)

f ′′
0 (m0)2

)1/5

by choosing c = (10ρ)−1/5. This yields the following proposition.

Proposition 3.2. (Minimax risk lower bound). Suppose that ν(f) =
M(f) as defined in (3.8), and that LCn,τ is as defined above where f ′′

0 is
continuous in a neighborhood of m0 = M(f0) with f ′′

0 (m0) < 0. Then

sup
τ>0

lim sup
n→∞

n1/5 inf
Tn

sup
f∈LCn,τ

Ef |Tn − M(f)|

≥
(

5/2

45 · e · 10

)1/5 (
f0(m0)

f ′′
0 (m0)2

)1/5

=̇ (.15512)

(
f0(m0)

f ′′
0 (m0)2

)1/5

.

Remark 3.3. Note that the constant b(f0,m0) := (f0(m0)/f ′′
0 (m0)

2)1/5

appearing on the right side of this lower bound is scale equivariant in exactly
the right way: if fc(x) := f0(m0 + (x−m0)/c)/c for c > 0, then b(fc,m0) =
cb(f0,m0) for all c > 0. The constant b(f0, m0) will appear in the limit
distribution appearing in the next subsection.

Remark 3.4. If LC is replaced by the class U of unimodal densities on R

and LCn,τ is replaced by Un,τ defined analogously where f0 satisfies f ′′
0 (m0) <

0 and f ′′
0 continuous in a neighborhood of m0, then a minimax lower bound

of the same form as Proposition 3.2 holds with exactly the same dependence
on b(f0,m0) = (f0(m0)/f ′′

0 (m0)
2)1/5, but with the absolute constant .15512...

replaced by .19784.... This can be seen by taking the perturbations {fǫ}ǫ>0

defined by

fǫ(x) =





f0(x), x ≤ x0 − ǫ,
f0(x), x > x0 + ǫ,
f0(x0) + bǫ(x − x0 + ǫ), x0 − ǫ ≤ x ≤ x0 + ǫ
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16 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

where bǫ is chosen so that fǫ(x0 + ǫ) > f0(x0 + ǫ) and
∫ x0+ǫ
x0−ǫ fǫ(x)dx =∫ x0+ǫ

x0−ǫ f0(x)dx.

Remark 3.5. If ϕ0 is continuously k−times differentiable in a neighbor-

hood of the mode m0, ϕ
(j)
0 (m0) = 0 for j = 2, . . . , k − 1, and ϕ

(k)
0 (m0) 6= 0

(Assumption A4), then it can be shown that the minimax rate of convergence
is n1/(2k+1) and that the minimax lower bound is proportional to

(
1

f0(m0)ϕ
(k)
0 (m0)2

)1/(2k+1)

=

(
f0(m0)

f
(k)
0 (m0)2

)1/(2k+1)

.

where the proportionality constant depends on the largest root of the polyno-
mial xk − (k/(k − 1))xk−1 − (2k − 1)/(k − 1) (which equals 3 when k = 2).

3.2. Limiting distribution for the MLE M̂n in LC .

Now let f̂n be the MLE of f in the class LC of log-concave densities, and
let M̂n = M(f̂n), m0 = M(f0). Here is our result concerning the limiting

distribution of M̂n under the same assumptions on f0 as in the previous
section on lower bounds.

Theorem 3.6. Suppose that f ′′
0 is continuous in a neighborhood of m0 =

M(f0) and that f ′′
0 (m0) < 0. Then

n1/5(M̂n − m0) →d

(
(4!)2f0(m0)

f ′′
0 (m0)2

)1/5

M(H
(2)
2 ).

Note that the limiting distribution depends on a multiple of the same
constant b(f0,m0) which appears in the asymptotic minimax lower bound

of Proposition 3.2, times a universal term M(H
(2)
2 ), the mode of the “esti-

mator” H
(2)
2 (t) of the canonical concave function −12t2 in the limit Gaus-

sian problem: estimate the mode of f0(t) = −12t2 based on observation of
Y (t) =

∫ t
0 X(s)ds when

dX(t) = f0(t)dt + dW (t).

We expect that this distribution, namely the distribution of

M(H
(2)
2 ) = argmaxt∈RH

(2)
2 (t)

will occur in several other problems involving nonparametric estimation of
the mode or antimode of convex or concave functions under similar second

imsart-aos ver. 2007/09/18 file: ModeLogconc-v11.tex date: January 3, 2008



LIMIT THEORY FOR LOG-CONCAVE MLE 17

derivative hypotheses: for example it seems clear that it will occur as the
limiting distribution of the nonparametric estimator of the antimode of a
convex bathtub shaped hazard (in the setting of Jankowski and Wellner
(2007)); as the limiting distribution of the nonparametric estimator of the
antimode of of a convex regression function in the setting of Groeneboom,
Jongbloed and Wellner (2001b); and as the limiting distribution of the non-
parametric estimator of the mode of a concave regression function.

When ϕ
(j)
0 (m0) = 0 for j = 2, . . . , k− 1, ϕ

(k)
0 (m0) 6= 0, and ϕ

(k)
0 is contin-

uous in a neighborhood of m0, then an analogous result (with a completely
similar proof) holds:

n1/(2k+1)(M̂n − m0) →d

(
(k + 2)!2

f0(m0)|ϕ(k)
0 (m0)|2

)1/(2k+1)

M(H
(2)
k ).

In particular, when k = 4, the rate of convergence is n1/9 and the limit
distribution becomes that of

(
6!2f0(m0)

f
(4)
0 (m0)2

)1/9

M(H
(2)
4 ).

Apparently estimation of m0 becomes considerably more difficult when the
second and possibly higher order derivatives of ϕ0 vanish.

On the other hand, if ϕ0 (or equivalently f0) is cusp-shaped at m0, then

the rate of convergence of M̂n is n1/3 and the local asymptotic minimax rate
of convergence is also n1/3; we will pursue these issues elsewhere.

4. Proofs for Sections 2 and 3.

Throughout this section we fix k and let

rn := n(k+2)/(2k+1), sn := n−1/(2k+1),

xn(t) := xn,k(t) := x0 + snt := x0 + n−1/(2k+1)t,

I := I(x0, n, k, t) :=

{
[x0, xn(t)], t ≥ 0,
[xn(t), x0] , t < 0.

4.1. Preparation: Technical Lemmas and Tightness Results.

First, some notation.
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18 FADOUA BALABDAOUI, KASPAR RUFIBACH, AND J. A. WELLNER

Local processes: The local processes Y
loc
n and Ĥ loc

n are defined for t ∈ R by

Y
loc
n (t) := rn

∫ xn(t)

x0

(
Fn(v) − Fn(x0)

−
∫ v

x0

( k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j

)
du

)
dv

and

Ĥ loc
n (t) := rn

∫ xn(t)

x0

∫ v

x0

(
f̂n(u) −

k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j

)
dudv

+ Ânt + B̂n

where

Ân = rnsn

(
F̂n(x0) − Fn(x0)

)
(4.9)

B̂n = rn

(
Ĥn(x0) − Hn(x0)

)
.(4.10)

We also define the “modified” local processes

Y
locmod
n (t) :=

rn

f0(x0)

∫ xn(t)

x0

(
Fn(v) − Fn(x0)(4.11)

−
∫ v

x0

( k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j

)
du

)
dv

− rn

∫ xn(t)

x0

∫ v

x0

Ψ̂k,n,2(u)dudv,

and

H
locmod
n (t) := rn

∫ xn(t)

x0

∫ v

x0

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
dudv

+
Ânt + B̂n

f0(x0)
(4.12)

where Ψ̂k,n,2 is defined below in (4.34).

Lemma 4.1. Let F be a collection of functions defined on [x0−δ, x0 +δ],
with δ > 0 small and let s > 0. Suppose that for a fixed x ∈ [x0 − δ, x0 + δ]
and R > 0 such that [x, x + R] ⊆ [x0 − δ, x0 + δ], the collection

Fx,R =
{
fx,y := f1[x,y], f ∈ F , x ≤ y ≤ x + R

}
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LIMIT THEORY FOR LOG-CONCAVE MLE 19

admits an envelope Fx,R such that

EF 2
x,R(X1) ≤ KR2d−1, R ≤ R0,

for some d ≥ 1/2 and K > 0 depending only on x0 and δ Moreover, suppose
that

sup
Q

∫ 1

0

√
log N(η‖Fx,R‖Q,2,Fx,R, L2(Q))dη < ∞.(4.13)

Then, for each ǫ > 0 there exist random variables Mn of order Op(1) (not
depending on x or y and R0 > 0 such that

∣∣∣∣
∫

fx,yd(Fn − F0)

∣∣∣∣ ≤ ǫ|y − x|s+d + n− s+d
2s+1 Mn for |y − x| ≤ R0.

Proof. See Kim and Pollard (1990) and Balabdaoui and Wellner (2007),
Lemmas 4.4 and 6.1. The special case s = 1 = d is Lemma 4.1 of Kim and
Pollard (1990). ✷

Lemma 4.2. If A3 and A4 hold, then

f
(j)
0 (x0) = [ϕ′

0(x0)]
j f0(x0) for j = 1, . . . , k − 1,(4.14)

and for j = k,

f
(k)
0 (x0) = (ϕ

(k)
0 (x0) + [ϕ′

0(x0)]
k) f0(x0).

Proof. The expressions for f
(j)
0 (x0) follow immediately from a recursive

argument using the identity f0 = expϕ0 and the assumption ϕ
(j)
0 (x0) = 0

for j = 2, . . . , k − 1 if k > 2. ✷

Now let τ+
n := inf{t ∈ Ŝ(ϕ̂n) : t > x0}, and τ−

n := sup{t ∈ Ŝ(ϕ̂n) : t <
x0}.

Theorem 4.3. If A1 - A4 hold, then

τ+
n − τ−

n = Op(n
−1/(2k+1)).(4.15)

Theorem 4.3 should be compared to Theorem 3.3 of Dümbgen and Ru-
fibach (2007). When their Theorem 3.3 is specialized to the case β = 2 so
that that ϕ′′

0(x) ≤ C < 0 for all x ∈ T := [A, B], then it yields the following:
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If mn denotes the number of elements in Sn(ϕ̂n)∩T , then for any successive
knot points ti−1 and ti in Sn(ϕ̂n) ∩ T ,

sup
i=2,...,mn

(ti − ti−1) = Op(ρ
1/5
n )(4.16)

where ρn = log(n)/n. This is “weaker” in the sense that only the supremum
over all knots on a compact interval was considered; but Theorem 3.3 of
Dümbgen and Rufibach (2007) is more general in the sense that it provides
the correct rate over a whole range of Hölder classes, not only for twice
differentiable ϕ0. Bounds generalizing (4.16) to 1 ≤ β ≤ 2 are then used
to get upper bounds on the uniform rate of convergence for F̂n − Fn on
T . However, for the estimation problem treated in this paper the localized
version of the gap problem given in Theorem 4.3 provides the results of
interest here concerning local limiting distribution theory.

Proof of Theorem 4.3. From the first characterization of the estimator
f̂n in Dümbgen and Rufibach (2007), for every function ∆ such that ϕ̂n +t∆
is concave for a t > 0 small enough, we know that

∫

R

∆(x)dFn(x) ≤
∫

R

∆(x)dF̂n(x).(4.17)

This is equivalent to

∫

R

∆(x)d(Fn(x) − F0(x)) ≤
∫

R

∆(x)(f̂n(x) − f0(x))dx.(4.18)

Using specific indicator functions for ∆, one can furthermore show that

F̂n(τ) ∈ [Fn(τ) − 1/n, Fn(τ)](4.19)

for every τ ∈ Ŝn(ϕ̂n), see Rufibach (2006) and Corollary 2.5 of Dümbgen
and Rufibach (2007).

Now, the idea is to choose a particular permissible perturbation function
∆ that satisfies the following two conditions:

1. ∆ is “local”, i.e. compactly supported on [τ−
n , τ+

n ].
2. ∆ should “filter” out the unknown error f̂n − f0.

The second requirement means that ∆ should be chosen so that

∫ τ+
n

τ−
n

∆(x)dx = 0

∫ τ+
n

τ−
n

∆(x)(x − τ)dx = 0,(4.20)
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where τ := (τ−
n + τ+

n )/2 is the mid-point of [τ−
n , τ+

n ]. If this is guaranteed,
then the right side of (4.18) in the end will only depend on the distance
τ+
n − τ−

n and f0(x0).
Define ∆0 by

∆0(x) = (x − τ−
n )1[τ−

n ,τ ](x) + (τ+
n − x)1[τ,τ+

n ](x).

Since ϕ̂n + t∆0 is concave for small t > 0, ∆0 is permissible. It is also
compactly supported. However, since ∆0 is nonnegative, there is no hope
that it fulfills the second of the requirements above. We therefore introduce
a modified perturbation function

∆1(x) = ∆0(x) − 1

4
(τ+

n − τ−
n )1[τ−

n ,τ+
n ](x), x ∈ R.

Clearly, existence of a t > 0 such that ϕ̂n + t∆1 is concave is no longer
guaranteed. However, using (4.19),

∫
∆1(x)d(Fn − F0)(x)

=

∫
∆1(x)d(Fn − F̂n)(x) +

∫
∆1(x)d(F̂n − F0)(x)

≤ τ+
n − τ−

n

4

∣∣∣∣
∫ τ+

n

τ−
n

d(Fn − F̂n)(x)

∣∣∣∣ +

∫
∆1(x)d(F̂n − F0)(x)(4.21)

≤ τ+
n − τ−

n

2n
+

∫
∆1(x)(f̂n − f0)(x)dx.(4.22)

To get the inequality in (4.21), we used (4.17) with ∆ = ∆0 and (4.19). The
next step is to get bounds for the integrals in the crucial inequality (4.22).
Define

R1n :=

∫
∆1(x)(f̂n − f0)(x)dx and

R2n :=

∫
∆1(x)d(Fn − F0)(x).

Rearranging the inequality in (4.22) and use these definitions yields

−R1n ≤ τ+
n − τ−

n

2n
− R2n.

Consistency of ϕ̂n together with ϕ
(k)
0 (x0) < 0 implies τ+

n −τ−
n = op(1). Thus

it follows from Lemma 4.4 that

Mk

(
−ϕ

(k)
0 (x0)

)
(τ+

n − τ−
n )k+2(1 + op(1))

≤ op(1)n−1 + Op(r
−1
n ) = Op(r

−1
n ).
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This yields the claimed rate, Op(n
−1/(2k+1)), for the distance between τ+

n

and τ−
n . ✷

Lemma 4.4. Suppose A1-A4 hold. Then

R2n = Op(r
−1
n )

and

R1n = Mkf0(x0)ϕ
(k)
0 (x0)(τ

+
n − τ−

n )k+2 + op((τ
+
n − τ−

n )k+2)

where Mk > 0 depends only on k and ϕ
(k)
0 (x0) < 0.

Proof. Define the function pn(t) = ϕ̂n(t) − ϕ0(t) for any t ∈ [τ−
n , τ+

n ].
Then, using Taylor expansion of h 7→ exp(h) up to order k, we can find
θt,n ∈ [τ−

n , τ+
n ] such that

R1n =

∫ τ+
n

τ−
n

∆1(t)f0(t)
( k−1∑

j=1

pn(t)j

j!
+

1

k!
exp(θt,n)pn(t)k

)
dt :=

k∑

j=1

Snj

j!

where

Snj :=

∫ τ+
n

τ−
n

∆1(t)f0(t)pn(t)jdt for 1 ≤ j ≤ k − 1 and

Snk :=

∫ τ+
n

τ−
n

∆1(t)f0(t) exp(θt,n)pn(t)kdt.

If we expand f0(t) around the mid–point τ of [τ−
n , τ+

n ] we get for 1 ≤ j ≤ k−1
and a ηn,t,j ∈ [τ−

n , τ+
n ],

Snj =
k−1∑

l=0

f
(l)
0 (τ)

l!

∫ τ+
n

τ−
n

∆1(t)(t − τ̄)lpn(t)jdt

+

∫ τ+
n

τ−
n

f
(k)
0 (ηn,t,j)

k!
∆1(t)(t − τ)kpn(t)jdt

and for j = k,

Snk =
k−1∑

l=0

f
(l)
0 (τ)

l!

∫ τ+
n

τ−
n

∆1(t) exp(θt,n)(t − τ)lpn(t)kdt

+

∫ τ+
n

τ−
n

f
(k)
0 (ηn,t,k)

k!
∆1(t) exp(θt,n)(t − τ)kpn(t)kdt.
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It turns out that the dominating term in R1n is the first term in the Taylor
expansion of Sn1. All the other terms are of smaller order since both pn and
(t− τ̄)l, l > 0 are op(1) uniformly in t ∈ [τ−

n , τ+
n ]. We denote this dominating

term by Qn1. Since ϕ̂n is linear on [τ−
n , τ+

n ] write ϕ̂n(t) = ϕ̂n(τ̄)+(t−τ̄)ϕ̂′
n(τ̄).

By Taylor expansion of pn around τ̄ we get

Q1n

f0(τ̄)
=

∫ τ+
n

τ−
n

∆1(t)pn(t)dt

= pn(τ̄)

∫ τ+
n

τ−
n

∆1(t)dt + p′n(τ̄)

∫ τ+
n

τ−
n

∆1(t)(t − τ̄)dt

−
k∑

j=2

ϕ
(j)
0 (τ̄)

j!

∫ τ+
n

τ−
n

∆1(t)(t − τ̄)jdt −
∫ τ+

n

τ−
n

ǫn(t)∆1(t)(t − τ̄)kdt

where the first two terms are zero since (4.20) holds when ∆ = ∆1 and
‖ǫn‖∞ →p 0 as τ+

n − τ−
n →p 0. Using the fact that

∫ τ+
n

τ−
n

∆1(t)(t − τ̄)jdt

=





0, for j = 0 and j odd,

(τ+
n − τ−

n )j+2

(
−j

2(j+2)(j+1)(j+2)

)
, for j even,

(4.23)

we conclude that

Q1n =
k

2(k+2)k!(k + 1)(k + 2)
f0(τ̄)ϕ

(k)
0 (τ̄)

(
(τ+

n − τ−
n )k+2 + op(1)

)

and the claimed form of R1n in the lemma follows.
For R2n, we proceed along the lines of the proof of Lemma 4.1 in Groene-

boom, Jongbloed and Wellner (2001b). This means, we have to line up with
the assumption of Theorem 2.14.1 in van der Vaart and Wellner (1996).
Therefore, define a generalized version of R2n:

Rx,y
2n =

∫ y

x
∆1(z)d(Fn − F0)(z)
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for −∞ < x ≤ y. With this function we have for some R > 0 specified later,

sup
y : 0≤y−x≤R

|Rx,y
2n |

= 2 sup
y : 0≤y−x≤R

∣∣∣∣
∫ (x+y)/2

x

(
z − x − 1

4
(y − x)

)
d(Fn − F0)(z)

∣∣∣∣

= 2 sup
y : 0≤y−x≤R

∣∣∣∣
∫

hx,y(z)d(Fn − F0)(z)

∣∣∣∣

where

hx,y(z) =

(
z − x − 1

4
(y − x)

)
1[x,(x+y)/2](z) = h(z)1[x,(x+y)/2](z).

Then the collection of functions

Fx,R = {h1[x,(x+y)/2] : x ≤ y ≤ x + R}

is a Vapnik-Chervonenkis subgraph class with envelope function

Fx,R(z) =

(
(z − x) + R/4

)
1[x,x+R](z).

Finally, Theorem 2.6.7 in van der Vaart and Wellner (1996) yields the en-
tropy condition (4.13).

A log–concave density is always unimodal and the value at the mode is
finite, and hence K := ‖f0‖∞ is finite. Therefore

EF 2
x,R(X1)

=

∫ x+R

x
(z − x)2f0(z)dz +

R

2

∫ x+R

x
(z − x)f0(z)dz +

R2

16

∫ x+R

x
f0(z)dz

≤
(

K

3
(z − x)3 +

RK

4
(z − x)2 +

R2K

16
z

)∣∣∣∣
x+R

z=x

=
31

48
KR3.

It follows from Lemma 4.1 with d = 2 and s = k that R2n = Op(r
−1
n ). ✷

4.2. Proofs for Section 2.
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Lemma 4.5. For any M > 0, we have

sup
|t|≤M

|ϕ̂′
n(x0 + snt) − ϕ′

0(x0)| = Op(s
k−1
n ),(4.24)

sup
|t|≤M

∣∣∣∣ϕ̂n(x0 + snt) − ϕ0(x0) − sntϕ′
0(x0)

∣∣∣∣ = Op(s
k
n).(4.25)

Furthermore, if we define for any u ∈ R

ên(u) = f̂n(u) −
k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j − f0(x0)
[ϕ′

0(x0)]
k

k!
(u − x0)

k,

then

sup
|t|≤M

∣∣∣∣ên(x0 + snt) − f0(x0)

(
ϕ̂n(x0 + snt) − ϕ0(x0) − sntϕ′

0(x0)

)∣∣∣∣

= op(s
k
n).(4.26)

Proof. The proof of (4.24) and (4.25) is identical to that of Lemma 4.4 in
Groeneboom, Jongbloed and Wellner (2001b) since the characterization of
f̂n given in (1.1) is (up to the direction of the inequality) equivalent to that
of the least squares estimator of a convex density.

Now, we prove (4.26). Using Taylor expansion of h 7→ exp(h) up to order
k around zero, we can write

f̂n(u) − f0(x0) = f0(x0)[exp(ϕ̂n(u) − ϕ0(x0)) − 1]

= f0(x0)
k∑

j=1

1

j!
(ϕ̂n(u) − ϕ0(x0))

j + f0(x0)Ψ̂k,n,1(u)(4.27)

where

Ψ̂k,n,1(u) =
∞∑

j=k+1

1

j!
(ϕ̂n(u) − ϕ0(x0))

j .

But for any j ≥ 1,

(ϕ̂n(u) − ϕ0(x0))
j

= [ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ
′
0(x0) + (u − x0)ϕ

′
0(x0)]

j

=

j∑

r=1

(
j

r

)
[ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′(x0)]
r[ϕ′

0(x0)]
j−r(u − x0)

j−r

+ [ϕ′
0(x0)]

j(u − x0)
j .(4.28)
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Hence, using (4.25) and (A3), we get on the set {u : |u−x0| ≤ Mn−1/(2k+1)}

(ϕ̂n(u) − ϕ0(x0))
j = op(n

−k/(2k+1))

for all j ≥ k + 1.
In particular, this implies that

Ψ̂k,n,1(u) = op(n
−k/(2k+1))(4.29)

uniformly in u ∈ [x0 − tn−1/(2k+1), x0 + tn−1/(2k+1)] where |t| ≤ M , and

f̂n(u) − f0(x0) − f0(x0)

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)

−f0(x0)
k∑

j=1

ϕ
(j)
0 (x0)

j!
(u − x0)

j = op(n
−k/(2k+1)).

Using Lemma 4.2, the latter can be rewritten as

f̂n(u) − f0(x0) − f0(x0)

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)

−
k−1∑

j=1

f
(j)
0 (x0)

j!
(u − x0)

j − f0(x0)
ϕ

(k)
0 (x0)

k!
(u − x0)

k = op(n
−k/(2k+1)),

or equivalently

∣∣∣ên(x0 + tn−1/(2k+1)) − f0(x0)

(
ϕ̂n(x0 + tn−1/(2k+1)) − ϕ0(x0)

−n−1/(2k+1)tϕ′
0(x0)

)∣∣∣ = op(n
−k/(2k+1))

uniformly in |t| ≤ M . ✷
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Theorem 4.6. Let K > 0.

(i) If {Yk(t), t ∈ R} is the canonical process defined in (2.2), then the
localized process γ1Y

locmod
n (γ2·) converges weakly in C[−K, K] to Yk

where

γ1 =

(
f0(x0)

k−1|ϕ(k)
0 (x0)|3

[(k + 2)!]3

)1/(2k+1)

(4.30)

γ2 =

(
f0(x0)|ϕ(k)

0 (x0)|2
[(k + 2)!]2

)1/(2k+1)

.(4.31)

Equivalently, Y
locmod
n converges weakly in C[−K, K] to the “driving

process” Ya,k,σ where

Yk,a,σ(t) := a

∫ t

0
W (s)ds − σtk+2(4.32)

and where a = 1/
√

f0(x0), σ = |ϕ(k)
0 (x0)|/(k + 2)!.

(ii) The localized processes satisfy Y
locmod
n (t)− Ĥ locmod

n (t) ≥ 0 for all t ∈ R,
with equality for all t such that xn(t) = x0 + tn−1/(2k+1) ∈ Ŝn(ϕ̂n).

(iii) Both Ân and B̂n defined above in (4.9) and (4.10) are tight.
(iv) The vector of processes

(
Ĥ locmod

n , (Ĥ locmod
n )(1), (Ĥ locmod

n )(2), Ylocmod
n , (Ĥ locmod

n )(3), (Ylocmod
n )(1)

)

converges weakly in (C[−K, K])4 × (D[−K,K])2 endowed with the
product topology induced by the uniform topology on the spaces C[−K, K]
and the Skorohod topology on the spaces D[−K,K] to the process

(
Hk,a,σ, H

(1)
k,a,σ,H

(2)
k,a,σ, Yk,a,σ,H

(3)
k,a,σ, Y

(1)
k,a,σ

)

where Hk,a,σ is the unique process on R satisfying





Hk,a,σ(t) ≤ Yk,a,σ(t) for all t ∈ R,∫
(Hk,a,σ(t) − Yk,a,σ(t))dH

(3)
k,a,σ(t) = 0,

H
(2)
k,a,σ is concave.

(4.33)

Proof. (i) The first step will be to modify the local processes, i.e. going
from the “density” to the “log–density” level, in order to be able to exploit
concavity of ϕ0 and ϕ̂n and to connect the local process to the limiting
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distribution obtained by Groeneboom, Jongbloed and Wellner (2001b) for
estimating a convex density.

First, by Lemma 4.2, (4.27) and (A3), we can write

f0(x0)
−1

(
f̂n(u) −

k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j

)

= f0(x0)
−1

(
f̂n(u) − f0(x0) − f0(x0)

k−1∑

j=1

[ϕ′
0(x0)]

j

j!
(u − x0)

j

)

= Ψ̂k,n,1(u) +
k∑

j=1

1

j!
[ϕ̂n(u) − ϕ0(x0)]

j −
k−1∑

j=1

[ϕ′
0(x0)]

j

j!
(u − x0)

j

= Ψ̂k,n,1(u) +

(
ϕ̂n(u) − ϕ0(x0) − ϕ′

0(x0)(u − x0)

)
+

+
k∑

j=2

1

j!
[ϕ̂n(u) − ϕ0(x0)]

j −
k−1∑

j=2

[ϕ′
0(x0)]

j

j!
(u − x0)

j

=:

(
ϕ̂n(u) − ϕ0(x0) − ϕ′

0(x0)(u − x0)

)
+ Ψ̂k,n,2(u)

introducing the new remainder term

Ψ̂k,n,2(u) = Ψ̂k,n,1(u) +
k∑

j=2

1

j!
[ϕ̂n(u) − ϕ0(x0)]

j

−
k−1∑

j=2

[ϕ′
0(x0)]

j

j!
(u − x0)

j .(4.34)

Using (4.28) and (4.29) yields

∫

I

∫ v

x0

Ψ̂k,n,2(u)dudv

= t2n−2/(2k+1) sup
u∈[x0,v],v∈I

|Ψ̂k,n,1(u)| +
k∑

j=2

1

j!

∫

I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)]
jdudv

−
k−1∑

j=2

1

j!

∫

I

∫ v

x0

[ϕ′
0(x0)]

j(u − x0)
jdudv
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= op(r
−1
n )

+

k∑

j=2

1

j!

j∑

l=1

(
j

l

) ∫

I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)

−(u − x0)ϕ
′
0(x0)]

l(u − x0)
j−l[ϕ′

0(x0)]
j−ldudv

+
k∑

j=2

1

j!

∫

I

∫ v

x0

[ϕ′
0(x0)]

j(u − x0)
jdudv

−
k−1∑

j=2

1

j!

∫

I

∫ v

x0

[ϕ′
0(x0)]

j(u − x0)
jdudv

= op(r
−1
n )

+

k∑

j=2

1

j!

j∑

l=1

(
j

l

) ∫

I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0)

−(u − x0)ϕ
′
0(x0)]

l(u − x0)
j−l[ϕ′

0(x0)]
j−ldudv

+
1

k!

∫

I

∫ v

x0

(u − x0)
k[ϕ′

0(x0)]
kdudv.

But by Lemma 4.5 one can easily show that for j = 2, . . . , k and l = 1, . . . , j

rn

∫

I

∫ v

x0

[ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ
′
0(x0)]

l(u − x0)
j−l[ϕ′

0(x0)]
j−ldudv

= Op(n
−[k(l−1)+(j−l)]/(2k+1)) = op(1)

uniformly in |t| ≤ M . Similarly,

rn

∫

I

∫ v

x0

(u − x0)
k[ϕ′

0(x0)]
kdudv =

[ϕ′
0(x0)]

k

(k + 1)(k + 2)
tk+2.

Hence, it follows that

rn

∫

I

∫ v

x0

Ψ̂k,n,2(u)dudv =
[ϕ′

0(x0)]
k

(k + 2)!
tk+2 + op(1)

as n → ∞ and uniformly in |t| ≤ M .
We turn now to the modified local processes, Y

locmod
n and Ĥ locmod

n defined
in (4.11) and (4.12). It is not difficult to show that

Y
locmod
n (t) =

Y
loc
n (t)

f0(x0)
− rn

∫

I

∫ v

x0

Ψ̂k,n,2(u)dudv(4.35)
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and

Ĥ locmod
n (t) =

Ĥ loc
n (t)

f0(x0)
− rn

∫

I

∫ v

x0

Ψ̂k,n,2(u)dudv.(4.36)

Note that the process Ĥ locmod
n is in fact similar to Ĥ loc

n , except that it is
defined in terms of the log–density ϕ0 instead of the density f0. This can be
more easily seen from its original expression given in (4.12). The second ex-
pression of Ĥ locmod

n given above is only useful for showing that it stays below
Y

locmod
n while touching it at points t such that xn(t) = x0 + tn−1/(2k+1) ∈

Ŝn(ϕ̂n). The biggest advantage of considering this modified version is to be
able to use concavity of ϕ0 the same way Groeneboom, Jongbloed and Well-
ner (2001b) used convexity of the true estimated density g0. Their process
H̃ loc

n resembles Ĥ locmod
n to a large extent (see p. 1688), and by combining

arguments similar to theirs with Lemma 4.2 and the results obtained above,
it follows that

Y
locmod
n (t)

⇒ [f0(x0)]
−1/2

∫ t

0
W (s)ds +

f
(k)
0 (x0)

(k + 2)!f0(x0)
tk+2 − [ϕ′

0(x0)]
k

(k + 2)!
tk+2

= [f0(x0)]
−1/2

∫ t

0
W (s)ds +

ϕ
(k)
0 (x0)

(k + 2)!
tk+2

= Yk,a,σ(t) in C[−K, K]

where a := [f0(x0)]
−1/2, σ := |ϕ(k)

0 (x0)|/(k + 2)!, as in (4.32).
Now let γ1 and γ2 be chosen so that

γ1Yk,a,σ(γ2t)
d
= Yk(t)

as processes where Yk is the integrated Gaussian process defined in (2.2).
Using the scaling property of Brownian motion; that is, α−1/2W (αt) =d

W (t) for any α > 0, we get

γ1γ
3/2
2 = a−1 and γ1γ

k+2
2 = σ−1.

This yields γ1 and γ2 as given in (4.30) and (4.31), and hence

 nk/(2k+1)

(
ϕ̂n(x0) − ϕ0(x0)

)

n(k−1)/(2k+1)
(
ϕ̂′

n(x0) − ϕ′
0(x0)

)



→d f0(x0)
−1

(
ck(x0, ϕ0) H

(2)
k (0)

dk(x0, ϕ0) H
(3)
k (0)

)
.
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We get the explicit expression of the asymptotic constants ck(x0, ϕ0) and
dk(x0, ϕ0) using the following relations:

f0(x0)
−1ck(x0, ϕ0) = (γ1γ

2
2)−1 and(4.37)

f0(x0)
−1dk(x0, ϕ0) = (γ1γ

3
2)−1.(4.38)

This is completely analogous to the derivations on p. 1689 in Groeneboom,
Jongbloed and Wellner (2001b), precisely

(γ1Ĥ
locmod
n (γ2t))

(2)(0) = γ1γ
2
2(Ĥ locmod

n )(2)(0)

= nk/(2k+1)f0(x0)ck(x0, ϕ0)
−1

(
ϕ̂n(x0) − ϕ0(x0)

)
(4.39)

and

(γ1Ĥ
locmod
n (γ2t))

(3)(0) = γ1γ
3
2(Ĥ locmod

n )(3)(0)

= n(k−1)/(2k+1)f0(x0)dk(x0, ϕ0)
−1

(
ϕ̂′

n(x0) − ϕ′
0(x0)

)
.(4.40)

From (4.37) and (4.38) we get ck(x0, ϕ0) and dk(x0, ϕ0) as given in (2.3) and
(2.4), and Ck(x0, ϕ0) and Dk(x0, ϕ0) as in (2.5) and (2.6).

(ii) Note that we can write

Y
loc
n (t) − Ĥ loc

n (t) = rn

(
Hn(xn(t)) − Ĥn(xn(t))

)
≥ 0

by making use of (1.1) and the specific choice of Ân and B̂n. But since we
connect Ĥ locmod

n and Y
locmod
n to the “invelope” the latter property needs

primarily to hold for the modified processes. This can easily be established
by considering (4.35) and (4.36), and hence it follows that

Y
locmod
n (t) − Ĥ locmod

n (t) ≥ 0

for all t ∈ R, with equality if xn(t) = x0 + tn−1/(2k+1) ∈ Ŝn(ϕ̂n).
(iii) To show that Ân and B̂n are tight. By Theorem 4.3, we know that

there exists M > 0 and τ ∈ Ŝ(ϕ̂n) such that 0 ≤ x0− τ ≤ Mn−1/(2k+1) with
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large probability. Now using (4.19) we can write

|Ân| ≤ rnsn

∣∣∣∣(F̂n(x0) − F̂n(τ)) − (Fn(x0) − Fn(τ))

∣∣∣∣ + rn/n

≤ rnsn

∣∣∣∣
∫ x0

τ

(
f̂n(u) −

k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j

)
du

∣∣∣∣

+ rnsn

∣∣∣∣
∫ x0

τ

( k−1∑

j=0

f
(j)
0 (x0)

j!
(u − x0)

j − f0(u)du

∣∣∣∣

+ rnsn

∣∣∣∣
∫ x0

τ
d(Fn − F0)

∣∣∣∣ + n−k/(2k+1)

:= Ân1 + Ân2 + Ân3 + n−k/(2k+1).

Now,

|Ân1|

≤ rnsn

∣∣∣∣
∫ x0

τ
ên(u)du − f0(x0)

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
du

∣∣∣∣

+ rnsnf0(x0)

∣∣∣∣
∫ x0

τ

[ϕ′
0(x0)]

k

k!
(u − x0)

k

)
du

∣∣∣∣ +

+ rnsnf0(x0)

∣∣∣∣
∫ x0

τ

(
ϕ̂n(u) − ϕ0(x0) − (u − x0)ϕ

′
0(x0)

)
du

∣∣∣∣

≤ op(1) + Op(rnsn(τ − x0)
k+1) + Op(rnsn(τ − x0)n

−k/(2k+1))

= Op(1),

where we used (4.26) and (4.25) to bound the first and last terms. To bound
Ân2 we use Taylor approximation of f0(u) around x0 to get

Ân2 ≤ rn

∣∣∣∣
∫ x0

τ

f
(k)
0 (x0)

k!
(u − x0)

kdu

∣∣∣∣ + rn

∣∣∣∣
∫ x0

τ
(u − x0)

kǫn(u)du

∣∣∣∣
= Op(1),

where ǫn is a function such that ‖ǫn‖ →p 0 as x0 − τ →p 0. To bound
Ân3, similar derivations as the ones used for bounding R2n (see the proof of
Lemma 4.4) can be employed where the perturbation function ∆1 needs to
be replaced by ∆2(x) = 1[τ, x0](x).

At “one higher integration level”, similar computations can be used to
show tightness of B̂n.

(iv) The proof of this last part of the theorem is basically identical to
that of Theorem 6.2 for the LSE in Groeneboom, Jongbloed and Wellner
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(2001b), and arguments similar to those of Groeneboom, Jongbloed and
Wellner (2001a) or, alternatively, tightness plus uniqueness arguments along
the lines of Groeneboom, Maathuis, and Wellner (2007). ✷

Proof of Theorem 2.1. The claimed joint convergence involving ϕ̂n and
ϕ̂′

n follows from part (iv) of Theorem 4.6 and the relations (4.39) and (4.40).
The joint limiting distribution of f̂n(x0)−f0(x0) and f̂ ′

n(x0)−f ′
0(x0) follows

immediately by applying the delta-method. ✷

4.3. Proofs for Section 3.

Proof of Theorem 3.6. We first use the simple fact that M̂n is the only
point x ∈ R which satisfies

ϕ̂′
n(t)

{
> 0, if t < x,
≤ 0, if t ≥ x.

(4.41)

This follows immediately from concavity of ϕ̂n and the definition of M̂n.
Note that ϕ̂n may have a flat region or “modal interval”; in this case, there
exists an entire interval of points where the maximum is attained, and M̂n

is the left endpoint of this interval.

A tightness property of the process H
(3)
2 , which follows from Lemma 2.7 of

Groeneboom, Jongbloed and Wellner (2001b), is also needed to establish the

limiting distribution of M̂n: for any ǫ > 0 and t ∈ R, there exists C = C(ǫ)
such that

P
(∣∣H(3)

2 (t) + 24t
∣∣ > C

)
≤ ǫ.

In other words, one can view H
(3)
2 (t) as an “estimator” of the odd function

−24t. Since C is independent of t, it follows that for a fixed ǫ, H
(3)
2 (t) < 0

(resp. H
(3)
2 (t) > 0) for t > 0 (resp. −t < 0) big enough, with probability

greater than 1 − ǫ.

The sign of H
(3)
2 and uniqueness of M̂n turn out to be crucial in deter-

mining the limiting distribution of the latter. From Theorem 4.6 and the
two derivative relations (4.39) and (4.40) it follows that

(
nk/(2k+1)

(
ϕ̂n(x0 + tn−1/(2k+1)) − ϕ0(x0) − tn−1/(2k+1)ϕ′

0(x0)
)

n(k−1)/(2k+1)
(
ϕ̂′

n(x0 + tn−1/(2k+1)) − ϕ′
0(x0)

)
)

⇒
(

H
(2)
k,a,σ(t)

H
(3)
k,a,σ(t)

)
in C[−K, K] × D[−K, K](4.42)

for each K > 0 with the product topology induced by the uniform topology
on C[−K,K] and the Skorohod topology on D[−K,K]. Here Hk,a,σ is is the
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unique process on R satisfying (4.33). A similar result holds for the MLE
of the log-concave density f0. When x0 is replaced by the population mode
m0 = M(f0) and k = 2 the second weak convergence implies that

n1/5
(
ϕ̂′

n(m0 − Tn−1/5) − ϕ′
0(m0)

)
→d H

(3)
2,a,σ(−T ),

and

n1/5
(
ϕ̂′

n(m0 + Tn−1/5) − ϕ′
0(m0)

)
→d H

(3)
2,a,σ(T ).

For T > 0 large enough, this in turn implies that for ǫ > 0, we can find
N ∈ N \ {0} such that for all n > N we have that

P
(
ϕ̂′

n(m0 − Tn−1/5) > 0 and ϕ̂′
n(m0 + Tn−1/5) < 0

)
> 1 − ǫ

using the property of M̂n in (4.41), it follows that

P
(
M̂n ∈

[
m0 − Tn−1/5, m0 + Tn−1/5

])
> 1 − ǫ

for all n > N .
We first conclude that M̂n − m0 = Op(n

−1/5). Then we note that

n1/5(M̂n − m0) = M(Zn)

where

Zn(t) = n2/5(ϕ̂n(m0 + tn−1/5) − ϕ0(m0))

⇒ Z(t) := H
(2)
2,a,σ(t) in C([−K, K])

for each K > 0 by (4.42) with k = 2. Thus by the argmax continuous
mapping theorem (see e.g. van der Vaart and Wellner (1996), page 286) it
follows that

M(Zn) →d M(Z) = M(H
(2)
2,a,σ)

where Z = H
(2)
2,a,σ, a = 1/

√
f0(m0), and σ = |ϕ(2)

0 (m0)|/4!.
Note that H2,a,σ is related to the “driving process” Y2,a,σ with a =

1/
√

f0(m0), σ = |ϕ(2)
0 (m0)|/4! as in (4.32) with k = 2. Now γ1Y2,a,σ(γ2t)

d
=

Y2(t) as processes where Y2 := Y2,1,1. Thus it also holds that

γ1H2,a,σ(γ2t)
d
= H2(t) and γ1γ

2
2H

(2)
2,a,σ(γ2t)

d
= H

(2)
2 (t),

or, equivalently, H
(2)
2,a,σ(v)

d
= H

(2)
2 (v/γ2)/(γ1γ

2
2). Since M(dg(c·)) = c−1M(g)

for c, d > 0, it follows that

M(H
(2)
2,a,σ)

d
= M

(
1

γ1γ2
2

H
(2)
2 (·/γ2)

)
d
= γ2M(H

(2)
2 )
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where

γ2 =

(
f0(m0)

|ϕ(2)
0 (m0)|2
(4!)2

)−1/5

=

(
(4!)2f0(m0)

f
′′

0 (m0)2

)1/5

by direct computation using f ′
0(m0) = 0 = ϕ′

0(m0) and Lemma 4.2. ✷
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