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Abstract

We consider the problem of formalizing in higher-order logic the fa-
miliar notion of widening from abstract interpretation. It turns out that
many axioms of widening (e.g. widening sequences are ascending) are not
useful for proving correctness. After keeping only useful axioms, we give
an equivalent characterization of widening as a lazily constructed well-
founded tree. In type systems supporting dependent products and sums,
this tree can be made to reflect the condition of correct termination of the
widening sequence.

1 The usual framework

We shall first recall the usual definitions of abstract interpretation and widening
operators.

1.1 Abstraction and concretization maps

Abstract interpretation is a framework for formalizing approximation relation-
ships arising in program semantics and static analysis [8, 9]. Soundness of the
abstraction is expressed by the fact that the approximation takes place in a
controlled direction. In order to prove that a given set of undesirable states
is unreachable, we can compute a superset of the set of reachable states (an
over-approximation thereof), in the hope that this set does not intersect the set
of undesirable states. If order to prove that we eventually reach a given set of
states, we can compute a subset of the set of states that eventually reach them
(an under-approximation thereof), in the hope that this set includes the initial
states.

Most introductory materials on abstract interpretation describe abstraction
as a Galois connection between a concrete space S (typically, the powerset P(Σ)
of the set of states Σ of the program, or the powerset of the set of finite execution
traces Σ∗ of the program) and an abstract space S♯. For instance, if the program
state consists in a program counter location, taken within a finite set P of
program locations, and three integer variables, Σ = P ×Z3, S = P(P ×Z3), the
abstract state can be, for instance, a member of S♯ = P → ({⊥} ∪ I3), where
P is the set of program locations, a → b denotes the set of functions from a
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to b, I is the set of well-formed pairs (a, b) defining intervals (a ∈ Z ∪ {−∞},
b ∈ Z ∪ {+∞} and a ≤ b) and ⊥ is a special element meaning “unreachable”.
S and S♯ are ordered; here, S is ordered by set inclusion ⊆ and S♯ is ordered
by ⊑P , the pointwise application of ⊑ for all program locations: ⊥ ⊑ x♯ for
all x in S♯, and ((a1, b1), (a2, b2), (a3, b3)) ⊑ ((a′

1, b
′

1), (a
′

2, b
′

2), (a
′

3, b
′

3)) if for all
1 ≤ i ≤ 3, a′

i ≤ ai and bi ≤ b′i. For the sake of simplicity, we shall give
examples further on where P is a singleton; the generalization to any finite P

is straightforward. P → ({⊥} ∪ I3) is then isomorphic to {⊥} ∪ I3 and we
shall thus consider, as a running example, the case where S is P(Z3) and S♯ is
{⊥} ∪ I3.

S and S♯ are connected by an abstraction map α and a concretization map
γ. γ maps any abstract state x♯ to the set of concrete states that it represents.
Here, γ ((a1, b1), (a2, b2), (a3, b3)) is the set of triples (v1, v2, v3) such that for
all 1 ≤ i ≤ 3, ai ≤ vi ≤ bi. α maps a set x of concrete states to the “best”
(least) abstract element x♯ such that x ⊆ γ(x♯). Here, if x ⊆ Z3, then for all
1 ≤ i ≤ 3, ai = inf(v1,v2,v3)∈x vi and bi = sup(v1,v2,v3)∈x vi. γ must be monotone

with respect to ⊆ and ⊑: if x♯ ⊑ y♯, then γ(x♯) ⊆ γ(y♯).
In some presentations of abstract interpretation, abstract elements x♯ are

identified with their concretization γ(x♯). For instance, one talks directly of the
interval [a, b], not of the pair (a, b). This can make explanations smoother by
clearing up notations. It is however important for some purposes to distinguish
the machine representation of an abstract element x♯ from its concretization
γ(x♯), if only because γ may not be injective. For instance, x = y ∧ x ≤ 1 and
x = y ∧ y ≤ 1 define exactly the same part of the plane (as geometrical convex
polyhedra) but are different in their machine representation. This is the same
difference as that between the syntax and the semantics of a logic.

In this article, we ditinguish this syntactic and semantical aspects, for several
reasons. First, certain abstract operations may be sensitive to the syntax of
an abstract element; that is, they may yield different results for x♯ and y♯

even though γ(x♯) = γ(y♯), as we shall recall in §1.3 about the polyhedra and
octagons.

Also, while in many cases ⊑ is defined by a ⊑ b ⇐⇒ γ(a) ⊆ γ(b), this
relation may sometimes be too costly or impossible to compute, and some
smaller relation may be used. For instance, if one uses a product of several ab-
stract domains D

♯
1 × . . .×D♯

m, each Di fitted with a decidable ordering ⊑i, and

γ(x♯
1, . . . , x

♯
m) = γ1(x

♯
1)∩ . . .∩γm(x♯

m) then it is straightforward to consider the
product ordering (x1, . . . , xm) ⊑ (x′

1, . . . , x
′

m) ⇐⇒ x1 ⊑i x′

1 ∧ . . .∧xm ⊑m x′

m.
If x ⊑ x′ for this ordering, then γ(x) ⊆ γ(x′), but the two are not necessarily
equivalent. Consider for instance a simplification of the domain of difference
bounds [15], expressed as a product of simpler domains: the concrete states in

Q3, the abstract domains D
♯
1 = D

♯
2 = D

♯
3 = Q, γ1(c1) = {(x, y, z) ∈ Q3 | x−y ≤

c1}, γ2(c2) = {(x, y, z) ∈ Q3 | y− z ≤ c2}, γ3(c3) = {(x, y, z) ∈ Q3 | x− z ≤ c3}.
Obviously, γ(1, 1, 2) = γ(1, 1, 3), yet (1, 1, 3) 6⊑ (1, 1, 2). In order to use the
product ordering, one has to perform beforehands a reduction operation map-
ping (1, 1, 3 to (1, 1, 2), but such an operation may be nontrivial: the one in the
octagon abstract domain involves a Floyd-Warshall shortest path computation,
the one in the template linear constraints [20] involves linear programming. In
the case of real-life static analysis tools, e.g. the Astrée static analyzer [4],
with many nontrivial abstract domains interacting, it is not obvious whether
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γ(a) ⊆ γ(b) is decidable, and even if it were, how to decide it within acceptable
time.

Finally, since our goal is to write programs and proofs in a proof assis-
tant based on intuitionistic type theory, we thought it best to clearly separate
the computational, constructive content from the non-computational content:
membership in the set of reachable states of a program is, in general, recur-
sively enumerable but not recursive (from Turing’s halting problem: one cannot
in general decide whether the “end” line of the program is reachable); thus the
characteristic function of that set cannot be defined by constructive logic, since
this would involve describing an algorithm computing that function.

1.2 Obtaining invariants

Abstract interpretation replaces a possibly infinite number of concrete program
execution, which cannot be simulated in practice, by a simpler “abstract” exe-
cution. For instance, one may replace running a program using our three integer
variables over all possible initial states by a single abstract execution with in-
terval arithmetic. The resulting final intervals are guaranteed to contain all
possible outcomes of the concrete program. More formally, if one has a tran-
sition relation τ ⊆ Σ × Σ, one defines the forward concrete transfer function
fτ : S → S as fτ (x) = {σ′ | σ →τ σ′ ∧ σ ∈ x}. fτ (W ) is the set of states
reachable in one forward step from W . We say that the abstract transfer func-
tion fτ

♯(x♯) is a correct abstraction for fτ if for all x♯, fτ ◦ γ(x♯) ⊆ γ ◦ fτ
♯(x♯).

This soundness property means that if we have a superset of the concrete set of
states before the execution of τ , we get a superset of the concrete set of states
after the execution of τ .

As usual in program analysis, obtaining loop invariants is the hardest part.
Given a set x0 ⊆ Σ of initial states, we would like to obtain a superset of the
set of reachable states x∞ = {σ′ | σ →∗

τ σ′ ∧ σ ∈ x0}. The set of states xn

reachable in at most n steps from x0 is defined by induction: xn+1 = φ(xn),
where φ(x) = fτ (x)∪x0 is monotone, because fτ is by definition a ∪-morphism.
The sequence (xn) is ascending, and its limit is x∞, which is the least fixed
point of φ by Kleene’s fixed point theorem; this sequence is thus often known as
Kleene iterations. x∞ is also known as the strongest invariant of the program.
An inductive invariant or post-fixpoint is a set x such that x0 ⊆ x and fτ (x) ⊆ x,
and by Tarski’s theorem, the intersection of all such sets is x∞.

Obviously, the set of all possible states (often noted ⊤) is an inductive in-
variant, but it is uninteresting since it cannot be used to prove any non-trivial
property of the program. A major goal of program analysis is to obtain program
invariants x that are strong enough to prove interesting properties, without be-
ing too costly to establish.

In some cases, interesting inductive invariants may be computed directly.
Various approaches have recently been proposed for the direct computation of
invariants, without Kleene iterations. Costan et al. [6] proposed a method for
computing least fixed points in the lattice of real intervals by downward policy
iteration, also known as strategy iteration, a technique borrowed from game
theory; they later extended their framework to other domains. Gawlitza and
Seidl [12] proposed a method for computing least fixed points in certain lattices
by upward strategy iteration. Monniaux [17, 18] showed that least fixed point
problems in some lattices expressing numerical constraints can be reduced to
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quantifier elimination problems, which in turn can be solved algorithmically.
Other recent proposals include expressing the least invariant problem in the
abstract lattice directly as a constrained minimization problem, then solving it
with operational research tools [7]. One common factor to these approaches is
that they target specific classes of abstract domains and programs; in addition,
they may also suffer from high complexity.

1.3 Abstract Kleene iterations and widening operators

The more traditional approach to finding inductive invariants by abstract inter-
pretation is to perform abstract Kleene iterations. Let x

♯
0 be an abstraction of

x0. Define φ♯(x♯) = f ♯
τ (x♯) ⊔ x

♯
0, where ⊔ is a sound overapproximation of the

concrete union ∪: γ(x♯) ∪ γ(y♯) ⊆ γ(x♯ ⊔ y♯). From the soundness of f ♯
τ and ⊔,

φ♯ is a sound abstraction of φ: for all x♯, φ ◦ γ(x♯) ⊆ γ ◦ φ♯(x♯). By induction,
for all n, xn ⊆ γ(x♯

n): assuming xn ⊆ φ(x♯
n), xn+1 = φ(xn) ⊆ φ ◦ γ(x♯

n) ⊆

γ ◦ φ♯(x♯
n) = x

♯
n+1.

In many presentations of abstract interpretation, it is supposed that the ab-
stract transfer function f ♯

τ and the abstract union ⊔ are monotonic. Intuitively,
this means that if the analysis has more precise information at its disposal,
then its outcome is more precise. This is true for elementary transfer functions
in most abstract domains, and thus of their composition into abstract trans-
fer functions of more complex program constructions. A well-known exception
is when the abstract transfer function is itself defined as the overapproxima-
tion of a least fixed-point operation using a widening operator (see below), yet
there exist less well-known cases where the abstract transfer function may be
non-monotonic.1

Let us nevertheless temporarily assume that f ♯
τ and ⊔ and, thus, φ♯, are

monotonic, and that a♯, b♯ ⊑ a♯ ⊔ b♯ for all a♯ and b♯. Then x0
♯ ⊑ x1

♯ and by
induction, for all n, φ♯ being monotonic, x♯

n = φ♯n
(x0

♯) ⊑ φ♯n
(x1

♯) = x
♯
n+1;

the sequence x♯
n is therefore ascending. If this sequence is stationary, there is

a N such that x
♯
N+1 = x

♯
N . Then, γ(x♯

N ) = γ(x♯
N+1) = γ(f ♯

τ (x♯
N ) ⊔ x

♯
0) ⊇

γ ◦ f ♯
τ (x♯

N ) ⊇ fτ ◦ γ(x♯
N ), and γ(x♯

N ) = γ(x♯
N+1) = γ(f ♯

τ (x♯
N ) ⊔ x

♯
0) ⊇ γ(x♯

0),

which means that γ(x♯
N ) is an inductive invariant. Obviously, if the abstract

domain S♯ is finite, then any ascending sequence is stationary.2

More generally, the same results hold for any domain of finite height (there
exists an integer L such that any strictly ascending sequence has at most length

1Such is for instance the case of the symbolic constant propagation domain proposed by
Miné [16, §5][15, §6.3.4]. The full symbolic propagation strategy can induce non-monotonic
effects: if the analysis knows more relationships, it can perform spurious rewritings and para-
doxically provide a less precise result.

The same is true of Miné’s linearization step, which dynamically abstracts nonlinear ex-
pressions as linear expressions. Consider the nonlinear expression x × y where x ∈ [mx, Mx],
y ∈ [my, My ] and mx, my > 0: a choice has to be made between several valid linearizations,
here x× [my, My] and [mx, Mx]×y. While all choices between candidate linearizations lead to
sound results, they do not have the same precision and the choice heuristic does not necessarily
choose the one leading to the most precise results later on.

2This explains the popularity of Boolean abstractions: S♯ is the set of sets of bit vectors
of fixed length L, and these sets are often represented by reduced ordered binary decision

diagrams (ROBDD) [5]. Reachability analysis in BDD-based model-checkers is thus a form
of Kleene iteration in the BDD space. Very astute implementation techniques, involving
generalized hashing of data structures, ensure that equality tests take constant time and that
φ♯ is computed efficiently.
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L), and, even more generally, for any domain satisfying the ascending chain
condition (there does not exist any infinite strictly ascending sequence). Yet,
even the very simple domain of products of intervals that we defined earlier does
not satisfy the ascending chain condition!

In domains that do not satisfy the ascending condition, the abstract Kleene
iterations may fail to converge in finite time. Such is the case, for instance, of
the interval abstraction of the program with a single integer variable defined by
the transition system τ : for all n, n →τ n + 1, and the initial state is 0. The
best abstract transfer function φ♯ maps a pair (0, n) representing an integer
interval {0, . . . , n} to the pair (0, n + 1), thus the abstract Kleene iterations are
x♯

n = (0, n) and the analysis fails to converge in finite time.
The traditional solution to the convergence problem in domains that do

not satisfy the ascending chain condition is to use a widening operator, which
is a form of convergence accelerator applied to abstract Kleene iterations [8,
Def. 4.1.2.0.4][9, §4]. Intuitively, the widening operation examines the first
abstract Kleene iterations and conjectures some possible over-approximation of
the limit, which is then checked for stability; further iterations may be necessary
until an inductive invariant is reached. For each infinite height domain, one or
more widening operators must be designed. Consequently, most literature on
abstract interpretation domains includes descriptions of widening operators.

For instance, the interval abstract domain can be fitted with a simple widen-
ing discarding unstable bounds [8], then later with the less brutal “widening up
to” [13, §3.2] or “widening with thresholds”[3, §6.4][4, §7.1.2]. The domain of
convex polyhedra was first fitted with a very simple widening that discarded all
unstable constraints [10], but this widening was later refined in order to make
it insensitive to syntactic variations in the way semantically equivalent con-
straints were given [14, p. 56–57][13, §2.2]. Miné [15] fitted the octagon abstract
domain with a similar construction, widening to +∞ the unstable constraints.
Again, this widening was sensitive to syntax, which lead to proposals of semantic
widenings [1]. Widening techniques are not restricted to numerical domains; for
instance there are specific techniques for widening over automata [11] (roughly
speaking, they overapproximate a language defined by an automaton by the
language defined by a quotient, of limited size, of that automaton; the limited
size ensures termination).

Here is the most common definition:

Definition 1. A widening operator ▽ on an abstract domain (S♯,⊑) is a binary
operator that satisfies the three following properties:

1. x♯ ⊑ x♯
▽y♯

2. y♯ ⊑ x♯
▽y♯

3. for any sequence v♯
n, a sequence of the form u

♯
n+1 = u♯

n▽v♯
n is ultimately

stationary.

We can then use u
♯
0 = x

♯
0, u

♯
n+1 = u♯

n▽φ♯(u♯
n). By the third property of

the widening operator, there exists N such that u
♯
N = u

♯
N▽φ♯(u♯

N ). Thus,

φ♯(u♯
N) ⊑ u

♯
N , and γ ◦ φ♯(u♯

N ) ⊆ γ(u♯
N). But x0 ∪ fτ ◦ γ(u♯

N ) = φ ◦ γ(u♯
N) ⊆

γ◦φ♯(u♯
N) ⊆ γ(u♯

N ) thus fτ ◦γ(u♯
N) ⊆ γ(u♯

N) and γ(u♯
N ) is an inductive invariant.

Let us now have a second look at the hypotheses that we used to establish
that result. Though it is often assumed that the abstract domain is a complete
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⊥

1 2 . . .

2

⊥

⊥

1

1 2

⊑

⊑ ⊑ ⊑

. . .

3

+∞

⊑

Figure 1: Interpretation of widening as a well-founded tree for the domain
1 ⊏ 2 ⊏ 3 ⊏ . . . + ∞. This domain may be used to construct the domain of
intervals: an interval [x, y] is represented by the pair (−x, y) ∈ N2, pointwise
ordered, and the widening operation described here is applied to each coordinate.
Each node represents a proposal u♯

n from the widening system. Each edge is
labelled with the answer v♯

n from the analysis system. The widening system
either answers ⊑ when it determines that v♯

n ⊑ u♯
n, or makes a new proposal.

A proposal of +∞ forces termination: whatever u♯
n the analysis system then

supplies, u♯
n ⊑ +∞ (we left out its outgoing branches, all finishing in ⊑). A

path from the root of the tree is an abstract Kleene iteration sequence. The
well-foundedness of the tree ensures the termination of such sequences.

lattice, and that the abstract transfer function is monotonic, we never used
either hypotheses. In fact, the only hypotheses that we used are:

• fτ is monotonic and the concrete domain P(S) is a complete lattice, thus φ

has a least fixed point which is the least inductive invariant of the program.

• For all a♯ and b♯, b♯ ⊑ a♯
▽b♯.

• For all sequence v♯
n, any sequence defined by u

♯
n+1 = u♯

n▽v♯
n is stationary.

2 Relaxation of conditions and interpretation in

inductive types

During our work on the Astrée tool [4], and when formalizing the notion of
widening in the Coq proof assistant [2],3 we realized that the usual definitions
of abstract domains and widenings are unnecessarily restrictive for practical
purposes. Pichardie [19, §4.4] already proposed a relaxation of these conditions,
but his definition of widenings is still fairly complex. We propose here a dras-
tically reduced informal definition of widenings, which subsumes both the ⊑
ordering and the ▽ operator; this definition will be made formal as Def. 3.

3Coq is a proof assistant based on higher order logic, available from http://coq.inria.fr .
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Definition 2. A widening system is an algorithm that proposes successive
abstract elements u

♯
0, u

♯
1, . . . , u

♯
n to the rest of the analyzer, and receives v♯

n

from it. It can then either terminate with some guarantee that γ(v♯
n) ⊆ γ(u♯

n),

or propose the next element u
♯
n+1. The system never provides infinite sequences.

In practical use, v♯
n = φ♯(u♯

n) and φ♯ is an abstraction of the concrete trans-
former φ of a loop or, more generally, of a monotonic system of semantic equa-
tions.

It is obvious that any widening that verifies the conditions of Def. 1 also
verifies these conditions. Note that Def. 2 is strictly laxer than Def. 1. For
instance, we make no requirement that γ(u♯

n) ⊆ γ(u♯
n+1); a widening system

could first try some ascending sequence u
♯
0, . . . , u

♯
n, regret, and restart with

another sequence u
♯
n+1, . . ..

A more mathematical way of seeing this definition is by interpreting the
widening system as a well-founded tree:

Definition 3. Let S♯ be an abstract domain with the associated concretization
map γ. Let ⊑ be a preorder over S♯ such that γ is monotonic. A widening
system is a well-founded tree whose nodes are labeled by elements of S♯ (there
may be several nodes with the same label). From a node labeled with u♯, there
are branches labeled with every v♯ such that v♯ 6⊑ u♯.

Let u
♯
0 be the label for the root of the tree, and let u

♯
0, v

♯
0, u

♯
2, . . . be a path

into the tree consisting in successive nodes and edges. Because the tree is well-
founded, this path is finite, which means that it terminates with u

♯
N , v

♯
N such

that v
♯
N ⊑ u

♯
N . This recalls the termination property of Def. 1.

Definition 3, combined with the ⊑ test can be easily recast as couple of
mutually inductive types :

widening ≡ S♯ × (S♯ → answer)
answer ≡ termination | next of widening

(1)

From each node labeled by u♯, for each v♯ there is an edge labeled by v♯,
which either leads to “termination” if v♯ ⊑ u♯, or to another node (see Fig. 1).

Note that, even in an eager language such as Objective Caml, the widening
tree is never constructed in memory: its nodes are constructed on demand by
application of the function S♯ → answer.

In a higher-order type system with dependent sums and products such as the
Calculus of inductive constructions (as in Coq), the above inductive datatype
can be adorned with proof terms. A tree node widening is a pair (u♯, a) where
a maps each v♯ to an answer. a(v♯) is either “⊑”, carrying a proof term stating
that γ(v♯) ⊆ γ(u♯), or another widening tree node.

3 Implementation in Coq

We shall first show how to implement our concept of widening system in Coq,
then we shall give a few concrete examples of how common abstract interpreta-
tion techniques can be implemented within this framework.4

4Source code may be downloaded from
http://www-verimag.imag.fr/∼monniaux/download/domains coq.zip.
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3.1 Framework

We assume we have an abstract domain S with an ordering domain le (repre-
senting ⊑). In practice, this ordering is supposed to be decidable: there exists
a function domain le decide that takes x and y as inputs and decides whether
x ⊑ y.

The answer is the disjunctive sum {domain_le y x} + widening: it either
provides a new widening object, or a proof that y ⊑ x. By inlining this type
into the definition of widening, we obtain:

Variable S : Set.

Hypothesis domain_le : S -> S -> Prop.

Hypothesis domain_le_decide :

forall x y : S,

{ domain_le x y } + {~ (domain_le x y) }.

Inductive widening: Set :=

widening_intro : forall x : S,

(forall y : S, widening + {domain_le y x}) -> widening.

Note that all properties desired of the widening are lumped in this definition.
The Inductive keyword introduces a type whose elements are all well-founded
by construction; Coq will make it impossible to create widening trees that are
not well-founded. The correct termination property (termination only if v♯ ⊑
u♯) is also ensured by construction: a leaf edge corresponding to u♯ and v♯ may
be constructed only by giving a proof of v♯ ⊑ u♯ (a term belonging to the type
domain le v♯ u♯).

In the above definition, we have added the hypothesis that ⊑ is decidable
(domain le decide). This is not needed for this definition, but is useful in many
constructions, and is a very reasonable assumption to make. Indeed, the reason
why we introduced ⊑ as just any order such that γ is monotonic, and not the
most precise one, is that the most precise one might not be decidable, or too
costly to decide effectively.

Since widening is an inductive type, defining well-founded trees, it is possible
to define functions by induction over elements of that type. One especially
interesting inductively defined function takes f ♯ : S♯ → S♯ as a parameter and
computes x♯ such that f ♯(x♯) ⊑ x♯ by well-founded induction over the widening
tree. On a widening node labeled by u♯, it computes v♯ = f ♯(u♯) then requests
the “answer” from the widening node on the value v♯:

• Either it answers with another widening node and the function is called
recursively.

• Or it answers with a proof that v♯ ⊑ u♯ and the algorithm terminates with
the requested answer (both u♯ and a proof that f ♯(u♯) ⊑ u♯).

Section Recursor.

Variable f : S -> S.

Fixpoint abstract_lfp_rec

(iteration_step : widening) :

{ lfp : S | domain_le (f lfp) lfp } :=
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let (x, xNext) := iteration_step in

match xNext (f x) with

| inleft next_widening => abstract_lfp_rec next_widening

| inright fx_less_than_x => exist (fun x => domain_le (f x) x)

x fx_less_than_x

end.

End Recursor.

For ease of use, we pack S, domain le, an abstraction relation domain abstracts

and other related constructs into one single domain record.

3.2 Examples

In numerical abstract domains, it is common to use “widening up to” [13, §3.2] or
“widening with thresholds” [3, §6.4][4, §7.1.2]: one keeps an ascending sequence

z
♯
1, . . . , z

♯
n of “magical” values, and x♯

▽y♯ is the least element z
♯
k greater than x♯⊔

y♯. For instance, instead of widening a sequence of integer intervals [0, 1], [0, 2]
etc. to [0, +∞[, we may try some “magical” values such as [0, 255], [0, 32767]
etc. Yet, if all elements in the sequence fail to define an inductive invariant, we
are forced to try [0, +∞[. In other words, after trying the “magical” values, we
revert to the usual brutal widening on the intervals.

This is easily modeled within our framework by a “widening transformer”:
taking a widening W as input and a finite “ramp” l of values, it outputs a
widening W ′ that first applies the thresholds and, as a last resort, calls W .
Variable T : domain is a parameter defining the original domain and original
widening, which is used as the last resort by our transformed widening. Function
ramp widening search searches for the next threshold in the “ramp”.

Section Widening_ramp.

Variable T : domain.

Fixpoint ramp_widening_search (bound : (domain_set T))

(ramp : (list (domain_set T))) { struct ramp } : (list (domain_set T)) :=

match ramp with

| nil => ramp

| (cons ramp_h ramp_t) =>

match (domain_le_decide T bound ramp_h) with

| left _ => ramp

| right _ => ramp_widening_search bound ramp_t

end

end.

Fixpoint ramp_widening (ramp : (list (domain_set T))) :

(widening (domain_set T) (domain_le T)) :=

match ramp with

| nil => domain_widening T

| (cons ramp_h ramp_t) =>

(widening_intro (domain_set T) (domain_le T) ramp_h

(fun (y : (domain_set T)) =>

9



match domain_le_decide T y ramp_h with

| left STOP =>

inright

(widening (domain_set T) (domain_le T)) STOP

| right _ =>

inleft

(domain_le T y ramp_h)

(ramp_widening (ramp_widening_search y ramp_t))

end))

end.

A trick often used in static analysis is to delay the widening [4, §7.1.3].
Instead of performing ▽ at each iteration, one performs ⊔ for a finite number
of steps, then one tries ▽ again. For termination purposes, it suffices that there
is some “fairness property”: ▽ should not be delayed infinitely. One can for
instance choose to delay widening by n steps of ⊔ after each widening step.
This is again implemented as a “widening transformer”:

Definition delayed_widening_each_step :

nat -> (widening (domain_set T) (domain_le T)).

We can similarly build a product domain S
♯
1 × S

♯
2. The widening on cou-

ples (a1, a2)▽(b1, b2) = (a1▽1b1, a2▽2b2) is implemented by a “widening trans-

former” taking one widening W1 on S
♯
1 and a widening W2 on S

♯
2 as inputs,

and producing a widening on S
♯
1 × S

♯
2 by syntactic induction on W1 and W2:

if a1 ⊑1 b1 ∧ a2 ⊑2 b2, then (a1, a2) ⊑ (b1, b2) for the product ordering and
one terminates; if a1 ⊑1 b1 but a2 6⊑2 b2 then one stays on a1 but moves one
step into W2 (and mutatis mutandis reversing the coordinates); if a1 6⊑1 b1 and
a2 6⊑2 b2, then one moves into both W1 and W2. This implements the usual
widening on products. This construct can be generalized to any finite products
of domains.

4 Conclusion

By seeing the combination of the computational ordering ⊑ and the widening
operator ▽ as a single inductive construct, one obtains an elegant characteriza-
tion extending the usual notion of widening in abstract interpretation, suitable
for implementation in higher order logic.
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[8] Patrick Cousot. Méthodes itératives de construction et d’approximation
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[16] Antoine Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’06), volume 3855 of LNCS, pages 348–363. Springer,
January 2006. ISBN 3-540-31139-4. doi: 10.1007/11609773.

[17] David Monniaux. Automatic modular abstractions for linear constraints.
In POPL (Principles of programming languages). ACM, 2009. ISBN 978-
1-60558-379-2. doi: 10.1145/1480881.1480899.

[18] David Monniaux. Optimal abstraction on real-valued programs. In Gilberto
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