
HAL Id: hal-00363204
https://hal.science/hal-00363204v1

Preprint submitted on 20 Feb 2009 (v1), last revised 23 Nov 2009 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A minimalistic look at widening operators
David Monniaux

To cite this version:

David Monniaux. A minimalistic look at widening operators. 2009. �hal-00363204v1�

https://hal.science/hal-00363204v1
https://hal.archives-ouvertes.fr


A minimalistic look at widening operators

David Monniaux

February 20, 2009

Abstract

We consider the problem of formalizing the familiar notion of widening
in abstract interpretation in higher-order logic. It turns out that many
axioms of widening (e.g. widening sequences are increasing) are not useful
for proving correctness. After keeping only useful axioms, we give an
equivalent characterization of widening as a well-founded tree. In type
systems supporting dependent products and sums, this tree can be made
to reflect the condition of correct termination of the widening sequence.

1 Abstract interpretation

We shall first recall the usual definitions of abstract interpretation and widening
operators.

Abstract interpretation is a framework for formalizing approximation rela-
tionships arising in program semantics and static analysis [Cousot and Cousot,
1992]. Soundness of the abstraction is expressed by the fact that the approxi-
mation takes place in a controlled direction. If, through static analysis, we wish
to derive information that some event is unreachable, then we can try comput-
ing some kind of superset of the set of reachable states (an over-approximation)
and show that this set does not intersect the event. If we wish to obtain a set of
initial states that necessarily result in some event further down the program, we
compute some under-approximation of the set of initial states that verify that
property. Because most static analysis takes place with over-approximations,
we shall only consider this case in this article.

Most introductory material on abstract interpretation describe abstraction
as a Galois connection between a concrete space S (say, the powerset P(Σ) of
the set of states Σ of the program) and an abstract space S♯. For instance,
if the program state consists in three integer variables, Σ = Z

3, S = P(Z3)
and the abstract state can be, for instance, {⊥} ∪ I3, where I is the set of
well-formed intervals (a, b) (a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞} and a ≤ b) and ⊥
is a special element meaning “unreachable”. S and S♯ are ordered; here, S is
ordered by set inclusion ⊆ and S♯ is ordered by ⊑: ⊥ ⊑ x♯ for all x in S♯,
and ((a1, b1), (a2, b2), (a3, b3)) ⊑ ((a′

1, b
′

1), (a
′

2, b
′

2), (a
′

3, b
′

3)) if for all 1 ≤ i ≤ 3,
a′

i ≤ ai and b′i ≥ bi.
S and S♯ are connected by an abstraction function α and a concretization

function γ. γ maps any abstract state x♯ to the set of concrete states that it
represents; here, γ ((a1, b1), (a2, b2), (a3, b3)) is the set of triples (v1, v2, v3) such
that for all 1 ≤ i ≤ 3, ai ≤ vi ≤ bi. α maps a set x of concrete states to the
“best” (least) abstract element x♯ such that x ⊆ γ(x♯). Here, if x ⊆ Z

3, then

1



for all 1 ≤ i ≤ 3, ai = inf(v1,v2,v3)∈x vi and bi = sup(v1,v2,v3)∈x vi. ⊆ and ⊑ must

be compatible: if x♯ ⊑ y♯, then γ(x♯) ⊆ γ(y♯).
Abstract interpretation replaces a possibly infinite number of concrete pro-

gram execution, which cannot be simulated in practice, by a simpler “abstract”
execution. For instance, one may replace running a program using our three
integer variables over all possible initial states by a single abstract execution
with interval arithmetic. The resulting final interval is guaranteed to contain
all possible outcomes of the concrete program. More formally, if one has a tran-
sition relation τ ⊆ Σ × Σ, one defines the forward concrete transfer function
fτ : S → S as fτ (x) = {σ′ | σ →τ σ′ ∧ σ ∈ x}. fτ (W ) is the set of states reach-
able in one forward step from W . We say that fτ

♯(x♯) is a correct abstraction
for fτ if for all x♯, fτ ◦γ(x♯) ⊆ γ ◦fτ

♯(x♯). This means that if we have a superset
of the concrete precondition, we get a superset of the concrete postcondition.

As usual in program analysis, obtaining loop invariants is the hardest part.
Given a set x0 ⊆ Σ of initial states, we would like to obtain a supserset of
the set of reachable states x∞ = {σ′ | σ →∗

τ σ′ ∧ σ ∈ x0}. Equivalently,
one may define the sets of states xn reachable in at most n steps from x0 by
induction: xn+1 = fτ (xn), then take their union

⋃
∞

n=0 xn, which is the least
fixed point of x 7→ x0 ∪ fτ (x). Also equivalently, this is the least inductive
invariant containing x0, that is, the least set x∞ containing x0 and stable by τ

(fτ (x∞) ⊆ x∞): x∞ =
⋂
{x | fτ (x) ⊆ x}.

If x
♯
0 is an abstraction of x0 (x0 ⊆ γ(x0

♯)), and we define x
♯
n+1 = f ♯

τ (x♯
n),

then for all n, xn
♯ is an abstraction of xn. If S♯ is a complete lattice (any subset

of S♯ has a least upper bound and a greatest lower bound), then x♯
∞

=
d

∞

n=0 x♯
n

exists and is an abstraction of x∞. This result can be also obtained from the
fact that f ♯

τ (x♯
∞

) ⊑ x♯
∞

.
For practical implementations, we cannot afford to wait until convergence

at infinity. If S♯ has infinite ascending sequences, then we need some way
to enforce convergence in a finite amount of iterations. In some cases, least
inductive invariants may be computed directly (e.g. as solutions to constraint
solving problems), but often, one has to use a widening operator ▽ that verifies
three properties: x♯ ⊑ x♯

▽y♯, y♯ ⊑ x♯
▽y♯, and for any sequence v♯

n, a sequence

of the form u
♯
n+1 = u♯

n▽v♯
n is ultimately stationary.

We can then use u
♯
0 = ⊥, u

♯
n+1 = x

♯
0 ⊔ f ♯

τ (u♯
n), and name u♯

∞
the stationary

limit. u♯
∞

is an abstraction of x∞. This can be proved by: x
♯
0 ⊔ f ♯

τ (u♯
∞

) ⊑ u♯
∞

,
thus x0 ∪ γ ◦ f ♯

τ (u♯
∞

) ⊆ γ(u♯
∞

). Since fτ (u♯
∞

) ◦ γ(u♯
∞

) ⊆ γ ◦ f ♯
τ (u♯

∞
), it follows

that fτ (u♯
∞

) ◦ γ(u♯
∞

) ⊆ γ(u♯
∞

), and thus γ(u♯
∞

) is an inductive invariant for τ

that contains x0, and thus contains the least of such invariants, x∞.
Remark that whether S♯ is a complete lattice, whether f ♯

τ is monotonic,
are irrelevant to this result. The only relevant axioms are that fτ is mono-
tonic (which is always the case if it derives from a transition relation), that the
concrete space is a complete lattice (again, this is always the case if it is the
powerset of the state space), that the abstraction is sound, that the abstract
ordering ⊑ is compatible with the concrete ordering ⊆, and that the widening
system always terminates with some u

♯
n+1 such that u

♯
n+1 ⊑ u♯

n. This motivates
our work.

2



⊥

1 2 . . .

21

⊥

⊥

1

1 2

⊑

⊑ ⊑ ⊑

. . .

3

+∞

Figure 1: Interpretation of widening as a well-founded tree

2 Relaxation of conditions and interpretation in

inductive types

When formalizing the notion of widening in the Coq proof assistant, we re-
alized that the conditions described above were too restrictive: most axioms
about widenings are actually not needed for proving the soundness of analyses.
Pichardie [2005, §4.4] already proposed a relaxation of these conditions, but his
definition of widenings is still fairly complex. We propose here a drastically
reduced definition of widenings, which subsumes both the ⊑ ordering and the
▽ operator.

Definition 1. A widening system is an algorithm that proposes successive
abstract elements u

♯
0, u

♯
1, . . . , u

♯
n to an abstract transformer φ♯ : S♯ → S♯, and

receives φ♯(u♯
n) (in practical use, φ♯ will correspond to the concrete transformer

φ of a loop or, more generally, of a monotonic system of semantic equations). It
can then either terminate with some guarantee that γ ◦ φ♯(u♯

n) ⊆ γ(u♯
n), either

propose the next element u
♯
n+1. The system never provides infinite sequences.

It is obvious that any widening that verifies the conditions of §1 also verifies
these conditions. Note that Def. 1 is strictly laxer than §1. For instance, we
make no requirement that γ(u♯

n) ⊆ γ(u♯
n+1); a widening system could first try

some ascending sequence u
♯
0, . . . , u

♯
n, realize that it is probably a bad idea to go

this way, and restart with another sequence u
♯
n+1, . . ..

Definition 1 can be easily recast as couple of mutually inductive types :

widening ∼= S♯ × (S♯ → answer)
answer ≡ termination | next of widening

(1)

These types define a tree. A run of the widening system, that is, a sequence
u

♯
0, u

♯
1, . . . , u

♯
n, corresponds to a path in the tree. The absence of infinite widen-

ing sequences means that the tree should be well-founded. Note that, even in
an eager language such as Objective Caml, this tree is never constructed in

3



memory: its nodes are constructed on demand by application of the function
S♯ → answer.

In a higher-order type system with dependent sums and products such as the
Calculus of inductive constructions (as in Coq), the above inductive datatype
can be adorned with proof terms. A tree node widening is a pair (u♯, a). a(v♯) is
either termination, carrying a proof term stating that γ(v♯) ⊆ γ(u♯), or another
widening tree node.

3 Implementation in Coq

We implemented this definition into Coq, and it gave a very terse and usable def-
inition of widening. We assume we have an abstract domain S with a decidable
ordering domain le (representing ⊑):

Variable S : Set.

Hypothesis domain_le : S -> S -> Prop.

Hypothesis domain_le_decide :

forall x y : S,

{ domain_le x y } + {~ (domain_le x y) }.

Inductive widening: Set :=

widening_intro : forall x : S,

(forall y : S, widening + {domain_le y x}) -> widening.

(abstract lfp rec f widening) computes x such that (domain le x x)

using the widening chain widening:

Section Recursor.

Variable f : S -> S.

Fixpoint abstract_lfp_rec

(iteration_step : widening) :

{ lfp : S | domain_le (f lfp) lfp } :=

let (x, xNext) := iteration_step in

match xNext (f x) with

| inleft next_widening => abstract_lfp_rec next_widening

| inright fx_less_than_x => exist (fun x => domain_le (f x) x)

x fx_less_than_x

end.

End Recursor.

For ease of use, we pack S, domain le, an abstraction relation domain abstracts

and other related constructs into one single domain record. (domain abstracts
x♯ x) means that x ⊆ γ(x♯).

In numerical abstract domains, it is common to use “widening up to” or
“widening with thresholds”: one keeps an ascending sequence z

♯
1, . . . , z

♯
n of “spe-

cial” values, and x♯
▽y♯ is the least element z

♯
k greater than x♯⊔y♯. This is easily

achieved within this framework by a “widening transformer”: taking a widening
W as input and a finite list l of values, it outputs a widening W ′ that first ap-
plies the thresholds and, as a last resort, calls W . (Please note that Variable

T : domain is a parameter including the original widening ramp.)

4



Section Widening_ramp.

Variable T : domain.

Fixpoint ramp_widening_chain_search (bound : (domain_set T))

(ramp : (list (domain_set T))) { struct ramp } :

(list (domain_set T)) :=

...

Fixpoint ramp_widening_chain (ramp : (list (domain_set T))) :

(widening_chain (domain_set T) (domain_le T)) := ...

One can choose to delay widening by n steps of ⊔ after each widening step.
This is again implemented as a “widening transformer”:

Definition delayed_widening_each_step :

nat -> (widening_chain (domain_set T) (domain_le T)).

We can similarly build a product domain S
♯
1 × S

♯
2. The widening on cou-

ples (a1, a2)▽(b1, b2) = (a1▽1b1, a2▽2b2) is implemented by a “widening trans-

former” taking one widening W1 on S
♯
1 and a widening W2 on S

♯
2 as inputs,

and producing a widening on S
♯
1 × S

♯
2 by syntactic induction on W1 and W2:

if a1 ⊑1 b1 ∧ a2 ⊑2 b2, then (a1, a2) ⊑ (b1, b2) for the product ordering and
one terminates; if a1 ⊑1 b1 but a2 6⊑2 b2 then one stays on a1 but moves one
step into W2 (and mutatis mutandis reversing the coordinates); if a1 ⊑1 b1 and
a2 6⊑2 b2, then one moves into both W1 and W2. This implements the usual
widening on products. This construct can be generalized to any finite products
of domains.

4 Conclusion

By seeing the combination of the computational ordering ⊑ and the widening
operator ▽ as a single inductive construct, one obtains an elegant characteriza-
tion extending the usual notion of widening in abstract interpretation, suitable
for implementation in higher order logic.

References

P. Cousot and R. Cousot. Abstract interpretation frameworks. J. of Logic and

Computation, pages 511–547, Aug. 1992.

D. Pichardie. Interprétation abstraite en logique intuitionniste : extraction

d’analyseurs Java certifiés. PhD thesis, Université Rennes 1, 2005. In French.

5


	Abstract interpretation
	Relaxation of conditions and interpretation in inductive types
	Implementation in Coq
	Conclusion

