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DELOCALIZATION FOR RANDOM LANDAU HAMILTONIANS
WITH UNBOUNDED RANDOM VARIABLES

FRANCOIS GERMINET, ABEL KLEIN, AND BENOIT MANDY

ABSTRACT. In this note we prove the existence of a localization/delocalization
transition for Landau Hamiltonians randomly perturbed by an electric poten-
tial with unbounded amplitude. In particular, with probability one, no Landau
gaps survive as the random potential is turned on; the gaps close, filling up
partly with localized states. A minimal rate of transport is exhibited in the
region of delocalization. To do so, we exploit the a priori quantization of the
Hall conductance and extend recent Wegner estimates to the case of unbounded
random variables.

1. INTRODUCTION

In this note we prove the existence of a dynamical localization/delocalization
transition for Landau Hamiltonian randomly perturbed by an electric potential
with unbounded amplitude, extending results from [GKSI] [GKS2|. In [GKSI] the
perturbation had to be sufficiently small compared to the strength of the magnetic
field: the amplitude of the random potential was such that the Landau gaps sur-
vived after adding the perturbation. In [GKS2] the Landau gaps where allowed to
close, but the random potentials were bounded. In this article we consider random
potentials such that, with probability one, all the Landau gaps close as the ran-
dom potential is turned on, and are shown to be (partially) filled up with localized
states. As in [GKSI][GKS2], a minimal rate of transport is exhibited in the region
of delocalization.

These results exploit the a priori quantization of the Hall conductance proved in
[GKS2]. Many of the results we will need rely on [GKIl, [GK4], where the random
potential was assumed to be bounded. Such a strong assumption is not necessary,
and can be replaced by weaker hypotheses, satisfied by the random Landau Hamil-
tonian with unbounded random couplings studied in this paper. We will require
Wegner estimates for these random operators, which are obtained by extending the
analysis of [CHKI [CHK?2] to the case of unbounded random variables, a result of
independent interest.

We now describe the model and the results. We consider a Z?-ergodic Landau
Hamiltonian

Hpaw=Hp+\V, on L*R?dx), (1.1)

where Hp is the (free) Landau Hamiltonian,

HB = (—Zv — A)2 Wlth A = g(.’L'Q, —,CCl). (12)
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(A is the vector potential and B > 0 is the strength of the magnetic field, we use
the symmetric gauge and incorporated the charge of the electron in the vector po-
tential), A > 0 is the disorder parameter, and V,, is an unbounded ergodic potential:
there is a probability space (£2,P) equipped with an ergodic group {7(a); a € Z?} of
measure preserving transformations, a potential-valued map V,, on €2, measurable
in the sense that (¢, V,¢) is a measurable function of w for all ¢ € C°(R?). We
assume that

Vala) = 3 wyule - ). (1.3)

JEZ?

where the single site potential u is a nonnegative bounded measurable function on
R? with compact support, uniformly bounded away from zero in a neighborhood of
the origin, and the w;’s are independent, identically distributed random variables,
whose common probability distribution p has a bounded density p with suppp =R
and fast decay:

p(w) < poexp(—|w|®), (1.4)

for some pgy €]0, +o0[ and a > 0. We fix constants for u by
C-Xas_0) Su<Cixay, (0 Wwith Cx, 6+ €]0, 00], (1.5)
and normalize u so that we have ||} . 70 ujllc < 1. (We write Ap(z) :== = +

[fé, % [d for the box of side L > 0 centered at z € R2, with XAy (x) being its
characteristic function. We also write x» = XA, ()-)

Under these hypotheses, Hp ) ., is essentially self-adjoint on CZ° (RY) with prob-

ability one, with the bound ((x> =4/1+ |£E|2)

Hpxw > —co(log(z))?, for all z € RY, (1.6)

for any given 3 > a~!, with ¢, depending also on «, 3,d. (See Lemma [ATl)
Moreover, the unbounded random potential V,, satisfies the probability estimate
of Lemma [AT] namely (AT, the condition that replaces the boundedness of the
potential in [GKT] [GK4]. Note that (AJ) is similar to the condition given in [Ul
Eq. (3.2)]. Using the Wegner estimate given in Theorem [B.I] we can conclude,
similarly to the results in [U] for a continuous Gaussian random potential, that

the results of [GKIl [GK4], and hence also [GK2] [GK5], hold for Hp ) .. (See also
Appendix [Al) This condition also suffices for the validity of [GKS2, Theorems 1.1

and 1.2]. Thus we just refer to [GKIl, [GK2] [GK4, [GK5] [GKS2] where appropriate.

The spectrum o(Hp) of the Landau Hamiltonian Hp consists of a sequence of
infinitely degenerate eigenvalues, the Landau levels:

B,=02n-1)B, n=1,2,.... (1.7)

For further reference, we also set
By =] —,2B[, and B, =]|B,—B,B,+ B[, n=23,.... (1.8)
On the other hand, as soon as A > 0, the spectrum fills the Landau gaps and we

have [BCH]

O’(HBy)\ﬁw) = R, P — a.s. (19)
The fact that the Landau gaps are immediately filled up as soon as the disorder is
turned on implies that the approach used in [GKSI] is non applicable. More prop-
erties of the Hall conductance are needed in order to perform the simple reasonning
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that provides the existence of a dynamical transition. More precisely, it becomes
crucial to know a priori that the Hall conductance is an integer in the region of com-
plete localization (which includes the spectral gaps), a fact that was circumvented
in [GKSI] by resorting to an open gap condition. That the Hall conductance for
ergodic models is integer valued in the localization region was known for discrete
Anderson type models since [BeES| [AG]. For ergodic Schrodinger operators in the
continuum, it was first established in [AvSS] for energies in gaps and extended to
the region of complete localization in [GKS2], where the analysis of [AG] has been
carried over to the continuum. This property has to be combined with the continu-
ity of the Hall conductance for arbitrary small A (in order to let A go to zero). In
[GKS2] it is shown that it is actually enough to prove the same continuity property
but for the integrated density of states; see [GKS2l Lemma 3.1]. This is done in
this note by revisiting the article [HiKS]; see Theorem[B:2l But first, we extend the
Wegner estimate given in [CHK2| to unbounded random variables; the estimate is
given in terms of the concentration function of a measure which is a modification
of the single-site probability measure p. (See Theorem [BI] which has independent
interest.)

We state the main result of this note and its corollary. Following [GK4l [GK5|
[GKSTLI[GKS2], we set Eg{;\ to be the region of complete localization (gaps included),
that is, the set of energies where the multiscale analysis applies (or, if applicable,
the fractional moment method of [AENSS]). Its complement is the set of dynamical
delocalization Zp1. An energy E € Zp1} such that for any € > 0, [E — ¢, E 4 ¢] N
Eg{j\ # (), is called a dynamical mobility edge.

Theorem 1.1. Let Hp ). be a random Landauw Hamiltonian as above. For each
n=12,..., i X is small enough (depending on n) there exist dynamical mobility
edges Ejyn(B, A) € By, j=1,2, such that

masx | Ejin(B, A) = Ba| < Ku(B)A log\|¥ — 0 as A — 0, (1.10)
J=1,

with a finite constant K, (B). (It is possible that Elﬁn(B,)\) = Egyn(B,)\), ie.,
dynamical delocalization occurs at a single energy.)

By the characterization of the region of complete localization established in
[GK4], Theorem [T has a consequence in terms of transport properties of the Hall
system. Indeed, to measure “dynamical delocalization” as stated in the theorem,
we introduce

P
2

. 2
M o(p, X, 1) = [[(@) 20w X (Hp o)X (1.11)
the random moment of order p > 0 at time ¢ for the time evolution in the Hilbert-
Schmidt norm, initially spatially localized in the square of side one around the
origin (with characteristic function xg), and “localized” in energy by the function
X € O (R). Its time averaged expectation is given by

1 oo
Mpa(p, X,T) = T/ E{Mpro(p, X, 1)} e dt. (1.12)
0

Corollary 1.2. The random Landav Hamiltonian Hp ). exhibits dynamical de-
localization in each Landau band B,(B,\): For each n = 1,2,... there exists at
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least one energy En(B,\) € B, (B, \), such that for every X € C (R) with X =1
on some open interval J > E,(B,\) and p > 0, we have

Mpa(p, X, T) > CpaxT5C (1.13)
for all T > 0 with Cp x > 0.

As mentioned aboved, to prove Theorem [T we extend the Wegner estimate of
[CHK?2] to measures p with unbounded support. More precisely, the finite volume

As in [CHKZ2], we do not require the probability measure p to have a density.
Precise statements and proofs are given in Appendix [Bl

2. HALL CONDUCTANCE AND DYNAMICAL DELOCALIZATION

We start by introducing some notation. Given p € [1,00), 7, will denote the Ba-
nach space of bounded operators S on L?(R?, dz) with ||S||z, = |||, = (tr |S|p)% <
0o. A random operator S, is a strongly measurable map from the probability space
(€2, P) to bounded operators on L?(R?,dx). Given p € [1,00), we set

MSulll, = {ELNSulB} = [1Sullz, || Lo .8 - (2.1)
and
Sl = MSullllLe @,y - (2.2)
We define the (B, A, E) parameter set by
E={(0,00) x [0,00) x R} \ Upe(0,00) 1(B,0) x o(Hp)};

that is we exclude the Landau levels at no disorder. We set

P Bw = X]—co,B](HBAw)-

The Hall conductance o (B, \, E) is given by (e.g.[BeES| [AvSS, [AG] BoGKS,
[GKS1] [GKS2])

ou(B,\E) = =2miE{tr {xoPe xEw|[PBNEw X1],[PBNEw X2]] X0}, (2.3)
defined for (B, A, E') € = such that

IX0PBx 5w ([PBAEwW X1]: [PB A E.wW Xo]] Xolll; < o0 (2.4)
(X; denotes the operator given by multiplication by the coordinate z;, i = 1,2,
and | X| the operator given by multiplication by |z|.) In particular, oy (B, A\, E) is
well-defined for all (B, A, E) such that E € ZB%. Moreover it is proved in [GKS2]
that o (B, A, E) is integer valued for all (B, A, E) such that E € Eg%. We need to
investigate the continuity properties of o (B, A, E), as A tends to zero. In [GKS2]
we prove that for any (B, \, E) such that F € Eg{j\, for any p > 1, there exists a
constant C'(p, B, A\, E) < oo for any (B’, X', E’) in a neighborhood of (B, \, E),

|UH(B/7>\/;E/) 7O—H(Bv)‘aE)| (25)
1
<C(p,B, )\, E) sup llxo (Pp 3 B w = P Ew) Xulll{ -
ue

We shall combine this fact with the following proposition, a consequence from The-
orem [B:2] which includes an extension of [HiKS] to unbounded random variables.
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Proposition 2.1. Let I be an open interval in a spectral gap of Hg. Then for all
A > 0 the Hall conductance is Holder continuous in E € I, and for any E € I the
Hall conductance at Fermi energy E is Holder continuous in the disorder parameter

A>0.
Proof. The proposition is a direct consequence of Theorem and (2.5). O
Proof of Theorem [l We set

Lp=Kp\/*, Np=1LgN, and Z% = LpZ> (2.6)

B
Note that Lp > 1 may not be an integer. We consider squares Az, (0) with L € Np
and identify them with the torii Ty, := R?/(LZ?) in the usual way. We further let
Ar(z) =Z* N AL(z). Given L € Np we define finite volume Landau Hamiltonians
Hp o on L2(AL(0)) as in [GKSIL Section 5], and set
Hp oo =Hpor+AVow on L*AL(0)),

Vorw@ = Y wiulz—i), (2.7)
€A _5,(0)
It follows from (L4]) that
p({lul > e}) < Coexp (—3le|*) forall &> 0. (2.8)

Let L € Np (see [Z0)), and let Hp 5 o7, and Vj 7, be as in ). A straightfor-
ward computation shows that uniformly in A € [0, 1],

P {U(HBVA,OVLM) c UIBu—2e. B + )\5]} >P{lwi <cifie ;5 (0}
n=1

> (1 Coexp (—3[e[*)) 57 > 1= CyCy exp (— 3e]*) L2, (2.9)

We now apply the finite volume criterion for localization given in [GK2l The-
orem 2.4], in the same way as in [GK2, Proof of Theorem 3.1], with parameters
(we fix ¢ €]0,1]) mrx = 308 10 = 318,11, and Qp a1 < Q, for some Q < oo
independent of A € [0,1] as it follows from Theorem [B.Il (Note that the fact that
we work with length scales L € Np instead of L € 6N only affects the values of the
constants in [GK2 Eqs. (2.16) -(2.18)].)

To conduct the multiscale analysis of [GKIL [GK2], we note that in finite volume
we have, for any given 1 < 1, and uniformly in A € [0, 1],

P(|AV,(z)| < L7, for all x € AL(y)) (2.10)
>P(|Vo(x)] < L7, for all x € Ar(y)) (2.11)
>1—Chexp(—5L")L7, (2.12)

which is as close to 1 as wanted, provided L is large enough (independently of ).
Probabilistic bounds on the constant in SLI and EDI follow, with constants bounded
by L"/?. Since we are working in spectral gaps, we use the Combes-Thomas estimate
of [BCH], Proposition 3.2] (see also [KIK1, Theorem 3.5]-its proof, based on [BCH]
Lemma 3.1}, also works for Schrodinger operators with magnetic fields), adapted
to finite volume as in [GKZ, Section 3.

Now fix n € N, take I = Z,,(B), and set L = L(n, B) to be the smallest L €
Np satisfying [GK2, Eq. (2.16)]. Let E € Z,(B), |E — B,| > 2)\e, where ¢ =
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g(n,B,\)) > 0 will be chosen later. Then, using (Z9) and the Combes-Thomas
estimate, we conclude that condition [GK2, Eq. (2.17)] will be satisfied at energy
Eif

e>Cs(log L), (2.13)
Cy (Ae) M Le=CoVel < (2.14)

for appropriate constants C; = Cj(n,B), j = 3,4,5, with C5 > 0. This can be
done by choosing (in view of (Z.9))

e=Cs(log L), (2.15)

and taking L large enough to satisfy (214) depending on A < 1. We conclude from
[GK2| Theorem 2.4] that

{E € T,(B); |E — Bn| > CsA |1og/\|i} c by, (2.16)

for all A < 1. In particular, for all n € N there is A\, > 0 such that B,, — B € Eg{j\
for all A € [0, \,,].

The existence at small disorder of dynamical mobility edges Ejﬁn(B JA), 7 =1,2,
satisfying (LI0) now follows from [GKS2] and ([ZI6). Indeed, since B, — B € B}
for all A € [0,),], the Hall conductance is constant at energy B, — B for all
A € [0,A,]. Since for A = 0, its value is n — 1, we can conclude that there is
an energy of delocalization between B,, — B and B,, + B = B,+1 — B for all
A € [0,min {\,, Apy1}]. Then ZTI6) and the constancy of the Hall conductance on
sub-intervals of Z3% imply the estimate (LI0). O

APPENDICES

In these appendices we extend results known for Anderson-type random Schrédinger
operator to unbounded random variables. These appendices are of separate interest
and independent of the rest of the paper.

We consider a random Schrédinger operator of the form H)y ,, = Hp + AV, on
L2(R%,dz), where the random potential V, is as in (L3)) and A > 0. The unper-
turbed Hamiltonian Hy will be either the Landau Hamiltonian Hp on L?(R?, dx),
as in ([L2), or it will have the general form Hy = (—iV — Ag)? + Vo on L2(R?, dz),
d € N, where both Ay and Vj are regular enough so that Hy is essentially self-adjoint
on C§°(R?) and bounded from below by some constant © € R. As a sufficient condi-
tion, it is enough to require that the magnetic potential Ay and the electric potential
Vo satisfy the Leinfelder-Simader conditions (cf. [BoGKS]):

o Ap(x) € Lt (R4 RY) with V- Ag(z) € L (RY).

e Vo(z) = Voi(z) — Vo—(x) with Vo4 (z) € L2 _(R?), Vo.(z) > 0, and
Vo.— (z) relatively bounded with respect to A with relative bound < 1, i.e.,
there are 0 < a < 1 and (8 > 0 such that

Vo, < allAdl| + Bl[¢]| for all ¢ € D(A).

We will say that Hy is periodic if Ay and Vj are Z?-periodic. It has the property
(UCP) if it satisfies the unique continuation principle. (Hp has the (UCP) if A,
and Vp are sufficiently regular; see the discussion in [CHKI].)



APPENDIX A. APPLICABILITY OF THE MULTISCALE ANALYSIS

We provide here estimates that are needed for extending the multiscale analysis,

more precisely results of [GKI], [GK2l [GK4, [GK5, [GKST, [GKS2], from bounded

to unbounded random variables, as mentioned in the introduction. Finite volume
operators are as defined in those papers. We fix the disorder A > 0 and omit it
from the notation. Note that the constants are all uniform in A for A < Ag.

Lemma A.1. Given a box A, there exists L*, such that for any L > L* we have,
for any B > a~ 1,
P{Ixa; Volloo < Cy(log L)} > 1 = C(a, 84, d)po exp(~C(a, 5,64, )| log L|*?).
(A1)

Then for P-a.e. w we have
V() > —cu(log(z))?  for all z € RY, (A.2)

where ¢, > 0 (depending also on d,«, 3). As a consequence H,, satisfies the lower
bound

H, > —c,(log(z))?, for all z € RY, (A.3)

for any given B > a~! and is essentially self-adjoint on C°(R?) with probability
one.

Proof. To get (AT]), we note that
P{l[xa, Violloo < C(log L)’} > 1 = C(2L)"P{|w| > (log L)’} (A4)

The bound (A.2) then follows from the Borel-Cantelli Lemma. Now in view of
(A2), Hp,, satisfies the lower bound (A3) and thus H,, is essentially self-adjoint on
C>(R9) with probability one by the Faris-Levine Theorem [RS| Theorem X.38]. [

Bounds on the constant in SLI and EDI follow from (AJ]). GEE follows from heat
kernel estimates, as given in [BrLM]|. As for SGEE, the bound has been derived by
Ueki [U] for Gaussian random variables. For the reader’s convenience we provide a
short proof in the next theorem. Recall that Hy > ©. We write Ep, (I) = x7(Hy).

Theorem A.2. There exist m(d) > 0 such that if E(Jwe|™ ) < 0o, with a > 0,
then for any bounded interval I we have

E {|wo|* tr xoFr,, (I)x0} < C(Ho,d, I, a), (A.5)

for some constant C(Hy,d,I,a) < co. Moreover, m(1) = 1 and m(d) = 2 for
d=2,3.

Proof. For simplicity, we assume that the support of ug is included in the unit cube
centered at the origin. If not, straightforward modifications of the argument (as in
[CHK2]) yield the result as well. We write H = H,, = Hy + V,,, with Hy bounded
from below, say Hy > 0. We denote by E the center of the interval I. We set I to
be the interval I but enlarged by a distance d := 2|I| from above and below: I C I
and dist(I,1¢) = d. We have

tr XOEH(I) =tr XOEH(I)EHO (i) + tr XOEH(I)EHU (ic) (AG)
< C(|B| + 311 + tr xoEw (1) Eg, (I°). (A7)
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Now, with Ry(z) = (Ho — 2)~ 1,

trxoEn (I Ew, (1) = trxo Ex (I)(H, — E — V,,)Ro(E)Ep, (I°) (A.8)
< %'tr xXoEw(I)xo + | tr xoEx (I)V, Ro(E)Er, (I¢)x0| (A.9)

1 ~
< 5 trxoBu(l)xo + ) lwjui Ro(E) Buy (I)xolli (A.10)
70
+ |wol| tr xo Exr (IuoRo(E) Emr, (I°) X0l (A.11)

so that, for p > d given, taking advantage of u;xo = 0if j # 0 (use Helffer-Sjostrand
formula plus resolvent identities to get trace class operators),

> llwjuj Ro(E) Eay (I9)x0ll1 < Elwo| Y Cp(1+15]) 77 (A.12)
Jj#0 Jj#0

Next, if d = 1 then ugRo(E)Eg, (I¢) is trace class, and Elwg| < oo is a sufficient
condition. If d = 2,3 (in the present application d = 2), then Cauchy-Schwartz
inequality leads to

| tr xo Er (IwouoRo(E)Er, (I°)) (A.13)
< [IxoEu (I)]l2[lwoRo(© — 1)xoll2l|(Ho + © + 1) Ro(E) Bty (1) (A.14)
E|+10|+1
< (14 B Bl fnro® — Dl (A15)
1 E 1\?

The latter trace is finite in dimension d = 2, 3, finishing the proof provided Ewg <
0. In higher dimensions, one repeats the very last step as many times as necessary,

as in [CHK2]. O

APPENDIX B. OPTIMAL WEGNER ESTIMATE WITH UNBOUNDED RANDOM
VARIABLES

In this appendix we extend the analyses of [CHK2] and [HiKS] to unbounded
random variables.
Given a finite box A C RY, we denote by H /(\/2 an appropriate self-adjoint re-

striction of Hy , to A, in which case H ;Auz has a compact resolvent (see [CHKI]
[CHK2| [GKST]). There is no other restriction on the boundary condition in The-
orem [BI(b),(c) below. When we use the (UCP) for Hy periodic, as in Theo-
rem [BIla), we assume periodic boundary condition as in [CHK2]. If Hy = Hp,
the Landau Hamiltonian, in Theorem [B.l(a) we assume finite volume operators as
defined in [GKSI] Section 4] and used in [CHKZ2] Section 4].

If A is a Borelian, EH;/\B) (A) denotes the associated spectral projection for H/(\Ag

In this appendix we assume 0 < X < 1 since we are mostly interested in small
values of the coupling constant, but arguments easily extend to A < A for any
given Ag.
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Given an arbitrary Borel measure v on the real line, we set (), (s) to be a multiple
of its concentration function:

Q.(s) ::85161£1/([a,a+s]) (B.1)

Note that @,(s) < oo if v is a finite measure. The Wegner estimate in [CHK2] is
stated in terms of @),; in our extension to unbounded measures @), is replaced by
Q (0, for an appropriate ¢ > 1, where dp(D (s) := |s|%dpu(s) for ¢ > 0.

Theorem B.1. Consider Hy,, with 0 < A < 1. There ezists 1 < m(d) < oo, such
that if B{|wo| ™D} < oo, given Ey € R:
(a) Assume either Hy = Hp or Hy is periodic with the (UCP). Then there

exists a constant Ky (\), depending also on d, Ey, d1 and Cy, such that
for any compact interval A C] — oo, Ey[ we have

E {tr By (A)} < Kw (N Qe (JANIA]. (B.2)

(b) Assume the IDS of Hy is Holder continuous with exponent § > 0 in some
open interval Ay C] — oo, Eo|, then there exists a constant Ky depending
on d, Ey, 6+,Cy, such that for any A < 1, A C Ay compact, |A| small
enough, and any 0 < v < 1,

E {tr By (A)} < Ky max (|A|zw, ADQ (|A|)) A (B.3)
In particular, if Q,m (€) < CeS, for some ¢ €]0,1], then
¢s
E {tr EH;?L)J(A)} < Kw|A|77m@ Al (B.4)

(¢) Assume E € Ay C (R\ o(Hy))N] — o0, Eo[, A¢ compact, then there exists
a constant Ky, depending on d, Ey, 0+, Cy and Ag, such that for any
A <1 and any A C Ag centered at E, |A| small enough,

E {tr By (A)} < KwAQ e (JA])IA] (B.5)

We adapt the proof of [CHKZ2], using the basic spectral averaging estimate proved
in [CHK2]: Let Hy and W be self-adjoint operators on a Hilbert space H, with
W > 0 bounded. Let Hy := Hy + sW for s € R. Then, given ¢ € H with ||¢] =1,
for all Borel measures v on R and all bounded intervals I C R we have ([CH]

Corollary 4.2], [CHKZ, Eq. (3.16)f1
[ w(s) (o I (V) < Qull) (B.6)

The result is stated in [CHK2] for a probability measure v with compact support,
but their proof works for an arbitrary Borel measure v. In particular, for H, as in
Theorem B}, we get, for any ¢ € L2(R%), j € Z¢, a > 0, and any interval I. of
length € > 0,

E{Jw; |*(é, VU5 Ey (1) Vi 8)} < 3 Qe ()] (B.7)
IThere the estimate (B6) is stated with W instead of VW, with the additional hypothesis

that W < 1. But a careful reading of their proof shows that they actually prove (B.) as stated
here.
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As a consequence, for any trace class operator S > 0,

E{|wj|atr{¢u—jEHi¢l (Ig)w—js}} < L(tr $)Q e (6). (B.8)

Proof of Theorem [Bl Recall that Hy, = Ho + AV, A €]0,1], and to alleviate
notations we write Ex(A) := EH(A) (A) and B} (A) = EHW (A). To simplify the
exposition we assume that the support of u is smaller than the unit cube; if not
the case, the proof can be modified in a straightforward way, as in ﬂm In
particular, u;u; = 0 if @ # j. We also introduce x to be the characteristic function
of a cube containing the support of u, contained in the unit cube, such that x;x; = 0
if i # j, where x;(z) = x(z — j). With A C A, and denoting da = dist(A, A¢), we
get

tr(Ea(A)) = tr(Ea(A)EY(A)) 4 tr(Er (A)EY (A9)). (B.9)

We first consider the term tr(Ex (A)ES (A

of the random variables. We have,

¢)) and take care of the unboundedness

tr(BA(A)ES (A9) < Ca(A)N D [wiwj|| tr(u; Ex(A)u; Kij)| (B.10)
1,JEA
S Cy(D)N > Jwiwj || tr(uy Ex(A)ui Kij)| (B.11)
i,JENiIF£]
+ Ca(DND Jwil?| tr(ui Ba (A)ui Kp))| (B.12)
iEA
where
Kij = xi(Hg + M)y, (B.13)
and
HY + M\ s 2AM+Ay) | (M+A)?
—— | EJ(AY)| < (1 = A) (B.14
() s < (1+ 2 L B2l ) ) (g

for some M < oo such that Hy+ M > 1, for example M = 1 is enough, and where
the x4, Vi € Z% are compactly supported functions, with support slightly larger than
the u;’s one such that x;u; = u,;. Note that K;; is trace class as soon as i # j (since
we assume suppu; C Aq(j)), as can be seen by a successive use of the resolvent
identity, and by Combes-Thomas its trace class norm satisfies || K;;||; < Cqe~ 7771,
for i # j. It follows, as in [CGK] Eqs (4.1)-(4.4)], that

D lwiwy] [tr(u; Ea(A)uiKij))| (B.15)
i#j
< Z (lws[? tr(us Ba (A)ui Kijl) + |w;[? tr(u; Ea (A)ug | K1) (B.16)
1#]
= |wil [tr(ui Ba(A)u;Si)] (B.17)
where )
Sy =5 2 (1Kl + K5 > 0, (B.18)
i#j
with
max trS; < Q2 < oo. (B.19)
JEA
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It remains to consider the diagonal term i = j, that is |w;|? tr(u; Ex (A)u; Ki;). Note
that K; is trace class in dimension d = 1,2,3 but not higher. To deal with the
general case of arbitrary dimension we proceed as in [CHK2] and perform successive
Cauchy-Schwartz inequalities, getting, for any integer m > 1, for some constant
Kd,m < 00,

Cd(A)|wi|2tr(uiEA(A)uiKi') (BQO)
< % tr(ui Ex (A)u;) + Kgm (Ca(A)|wi))2™ tr(u Ex(A)u K2 ). (B.21)

We chose m so that K2 is trace class, that is, we take m(d) := 2™+! > d, i.e.,
m = [logd/log?2], where [z] stands for the integer part of z. It follows that, using
>_juj <1, uniformly in A <1,

tr(Ea(A)EY(A)) (B.22)
1 s
<3 Ztr(uiEA(A)ui) + K g m(ay\? Z(Cd(A)|wi|)’"(d) tr(u Ea(A)uiS;) (B.23)
1 A / 2 |W’L| m(d) A ~
< T EA(A) + Ky ) Z R tr(u Ea (A)uS;), (B.24)
where
=S+ K7 >, (B.25)

is a trace class operator. We apply (B.8)) to finish the bound:

Q pm(ay

~ 1
Etr(Ex(A)ENA%)) < JEtrEA(A) + C&AW(|A|)|A|. (B.26)
A

We now turn to the first term of the right hand side in (B3), that is tr(Ex (A) EL (A)).
To get the general Wegner estimate (B.2)) the latter is treated as in [CHK2], using
either the unique continuation principle for the free Hamiltonian, or, in the Landau
case, explicit properties of the Landau Hamiltonian. Note that we then incorporate
da in the constant. To get (B3), we control tr(Ex(A)E)(A)) using the hypoth-
esis on the IDS of Hy, that is tr By, (A) < C|A|°|A|. In this case, we need da to
be small enough and it then remains to control the growth of the constant in the
second term of the r.h.s. of (B:26). Taking da = &7, with 0 < v < 1, and using
Quman (JA]) < Ce if pu is ¢-Hélder continuous, we get, with a new constant Ky,

and ¢ small enough so that A C Ay,

1
Etr EA(A) S KWmaX (576, WQ#(m(d» (E)) |A| (B27)
< Kymax (575 : sGm(dh) Al (B.28)
< Kyemmm A (B.29)

where we have chosen v such that v6 = ¢ — m(d)~.
Finally, in the particular case of (BA), tr Ey,(A) =0 as long as A C Ag. O

The following theorem contains an extension of [HiKS|] to unbounded random
variables. We set, for E' € R, Py g .o = X]—oc,£](Hx,w), the Fermi projection.
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Theorem B.2. Consider H) ,, with0 < XA <1 Assume that the IDS of Hy is Holder
continuous in E € Ay an open interval. Then for some v > 0 and Ca, < 00, for
any E,E' € Ay, |E — E'| small enough, we have uniformly in 0 < A <1,

HgggE{HXo (Prpw = Pyerw) Xull } < CaolE— E'I7, (B.30)
and for some V' >0, for all E € Ao, for all N, X" € [0,1], |\ — X'| small enough,
né%(IE{HXO (Pxv 5w — Purpw) Xl b < CaglN = N7 (B.31)

Proof. Eq. (B30) follows from Cauchy-Schwarz and the continuity of the Integrated
Density of States of Hy ., given by Theorem [BIlEq. (B:4)). We turn to (B:3)). Let
E € Ag and X, N\ € [A1, A2] possibly containing 0. We let v = [N — \’|%*, where
a € (0,1) will be chosen later. Let f(t) be a smooth decaying switch function,

equal to 1 for ¢ <0 and 0 for ¢t > 1. We set g(t) = f (t*(s;'”), note g € C*°(R),
with 0<g(t) <1,9(t) =1ift < E—~,9g(t) =0if t > E. We write
P)\’,E,w - P)\”,E,w = {P)\’,E,w - QQ(H)\’,LJ)} (B32)
+ {92(H)\’,w) - gQ(H/\”,w)} + {gQ(H)\“,w) — P/\”,E,w} .

By construction, for any A > 0 we have

0< Prpw—9*(Hxw) < Papw—Pro v, (B.33)
and thus, for \# = X, ) and any u € Z?, we have
IIxo0 (Pre 5w — 9*(Hox w)) xalll, (B.34)

1 1
< HHXO (P/\#,E,w - QQ(H)\#,w)) : ‘2 HH(P/\#,E,w - QQ(H,\#,W)) % Xu

= [llx0 (Pr# k.0 — 9% (Ha# o)) xol|ll,

< Ixo (Px#. 2w — Pr# 2—v.0) Xol[|; < Cany"
To control the middle term in the r.h.s. of (B:32), we proceed as in [HiKS| Eq. (3.8)]
and sequel. In the Helffer-Sojstrand formula, one needs to go to the (4+2d)th order.

The term corresponding to [HIKS| Eq. (3.15)] is controled as follows (we denote by
Ry, (z) the resolvent of Hj ,):

2

[|1Rx,w(2) Vi Ry 1w (2) Ve Rrw (2) X0 | (B.35)

< > Jwjwkl[IRaw(2)u; Ry w(2)urRaw(2)xoll (B.36)
j.kezd

< Z |wjwi||Sz|2eel¥=I Tkl g el =1k (B.37)
J,kezd

It follows, using the Combes-Thomas inequality, that

El[Xug(Hxw)l[11Rx 0 (2) Vo Ry w(2) Vo R w(2)xoll (B.38)
< Y EBlwjwrllxug(Haw)l1) [Sz] e cl3=llimklgmelS=Ik] (B.39)
j,k€Z
< C(1,d)[S2| 78 Y emelvellimklemelsziik] (B.40)
j,kezd

< O(I,d)|Sz| 7272, (B.41)
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by Theorem[A:2l The term corresponding to [HiKS|, Egs. (3.16)-(3.18)] is controled

in a similar way using Theorem [A.2] O
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