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We obtain an estimate for the norm of the second fundamental form of stable H-surfaces in Riemannian 3-manifolds with bounded sectional curvature. Our estimate depends on the distance to the boundary of the surface and on the bound on the sectional curvature but not on the manifold itself. We give some applications, in particular we obtain an interior gradient estimate for H-sections in Killing submersions.

Introduction

Let (M, g) be a smooth Riemannian 3-manifold. Consider an immersed surface Σ M with trivial normal bundle. Call A its second fundamental form and N a global unit normal on it. We denote by H the length of the mean curvature vector of Σ. When Σ has constant mean curvature H, we say that Σ is an H-surface.

Recall that an H-surface Σ is said strongly stable if for any u ∈ C ∞ 0 (Σ) we have

Σ |∇u| 2 dΣ ≥ Σ (|A| 2 + Ric(N ))u 2 dΣ,
where dΣ and ∇ stand respectively for the area element and the gradient on Σ, and Ric denotes the Ricci curvature of M . Throughout this paper, we will use the term stable to mean strongly stable. Curvature estimates for stable H-surfaces in 3-manifolds are an important tool in the study of H-surfaces, see for instance Meeks-Perez-Ros [START_REF] Meeks | Stable constant mean curvature surfaces[END_REF]. Graphs are stable and more generally, surfaces transverse to an ambient Killing field are stable. Curvature estimates for graphs were obtained in 1952 by Heinz [START_REF] Heinz | ber die Lsungen der Minimalflchengleichung[END_REF]. In 1983, Schoen [START_REF] Schoen | Estimates for stable minimal surfaces in three-dimensional manifolds[END_REF] obtained an estimate for the norm of the second fundamental form of stable minimal surfaces in a 3-manifold M depending on the distance to the boundary on the surface and an upper bound on the curvature tensor of M and its covariant derivative. In particular, in R 3 , he showed the existence of a constant C > 0 such that for any stable and orientable minimal surface Σ one has In 1999, Bérard and Hauswirth [START_REF] Bérard | General curvature estimates for stable H-surfaces immersed into a space form[END_REF] extended Schoen's work to stable H-surfaces with trivial normal bundle in space forms. In 2005, using different methods based on ideas of Colding and Minicozzi [START_REF] Colding | Estimates for parametric elliptic integrands[END_REF], Zhang [START_REF] Zhang | Curvature estimates for CMC surfaces in three dimensional manifolds[END_REF] extended Schoen's result to stable H-surfaces (with trivial normal bundle) in a general 3-manifold, again the estimate depends on H, an upper bound on the sectional curvature and on the covariant derivative of the curvature tensor of M .

In this paper we obtain an estimate for the norm of the second fundamental form of stable H-surfaces in Riemannian 3-manifolds assuming only a bound on the sectional curvature. Our estimate depends on the distance to the boundary of the surface and only on the bound on the sectional curvature of the ambient manifold. More precisely, our main result is the following: Main Theorem. Let (M, g) be a complete smooth Riemannian 3-manifold of bounded sectional curvature |K| ≤ Λ < +∞.

Then there exists a universal constant C which depends neither on M nor on Λ, satisfying the following:

For any immersed stable H-surface Σ M with trivial normal bundle, and for any p ∈ Σ we have

|A(p)| ≤ C min d(p, ∂Σ), π 2 √ Λ .
We also obtain a local version of our result, see Theorem 2.5. Our method of proof is completely different from the above mentioned works and is based on a blow-up argument. For the readers convenience we sketch the idea of the proof.

Assuming by contradiction the result is not true, we have for each n a stable H n -surface Σ n in some 3-manifold M n with bounded sectional curvature, |K| ≤ Λ, admitting a point p * n ∈ Σ n satisfying |A n (p * n )| min d(p, ∂Σ), π 2 √ Λ > n. In addition, there exists a real number r n > 0 such that the geodesic disk D * n on Σ n centered at p * n with radius r n lies in the domain of some chart of M n which allows us to treat this disk as a surface in a Euclidean ball of fixed radius in R 3 endowed with the pull-back metric, with p * n at the origin. Furthermore in our construction we can make r n |A n (p * n )| → +∞. We then blow-up the latter metric multiplying by the factor |A n (p * n )|. This sequence of new metrics converges to the Euclidean metric on compact sets of R 3 . The sequence (D * n ) gives rise to a new sequence of surfaces still denoted by (D * n ) with controlled geometry and second fundamental form at the origin of norm 1. We can then construct a complete surface S, passing through the origin, in the accumulation set of the sequence (D * n ), whose universal cover S is a stable H-surface in the Euclidean space R 3 . It is well-known that S is then a plane which contradicts the fact that the second fundamental form of S has norm 1 at the origin.

However, this blow-up argument requires some care because of technical difficulties we explain in the proof.

It is worth noticing that an estimate of the type (1) cannot be expected in general, even for minimal surfaces, as such an estimate would imply that a complete stable H-surface is totally geodesic. For example, in H 3 there are complete non-totally geodesic stable H-surfaces, see Silveira [START_REF] Da Silveira | Stability of complete noncompact surfaces with constant mean curvature[END_REF]. Also in H 2 × R, for any 0 ≤ H ≤ 1/2 there are non-constant entire vertical H-graphs, and therefore stable, see Nelli and Rosenberg, [START_REF] Nelli | Minimal surfaces in H 2 × R[END_REF] and [START_REF] Nelli | Global properties of constant mean curvature surfaces in H 2 × R[END_REF].

As a consequence of the Main Theorem we have the following:

Corollary 1.1. Let (M, g) be a complete smooth Riemannian 3-manifold of bounded sectional curvature |K| ≤ Λ < +∞.
Then there exists a constant C, which depends neither on M nor on Λ, such that for any immersed complete stable H-surface Σ M , with trivial normal bundle, we have: This corollary was enunciated by Ros [START_REF] Ros | One-sided complete stable minimal surfaces[END_REF] for minimal surfaces (even with non trivial normal bundle) with the additional hypotheses that the derivatives of the curvature tensor are bounded and the injectivity radius is bounded from below.

• if Σ is non compact, then |A(p)| ≤ C √ Λ for any p ∈ Σ, • if Σ is compact, then |A(p)| min diam Σ, π √ Λ ≤ C
We are grateful to G. Besson, E. Hebey, J. Jost and M. Vaugon for useful information about harmonic coordinates.

Proof of the Main Theorem

In the blow-up argument we sketched before, the first idea which comes to mind is to use a chart given by the exponential map, that is, to use geodesic normal coordinates. However in those coordinates bounded geometry guarantees only a C 0 -control of the metric. For example consider the metrics g n , n ∈ N, on R 2 given in polar coordinates by

g n = dr 2 + G 2 n (r, θ)dθ 2 , with G n (r, θ) = r(1 + ar 2 + e -1/r 2 cos nθ),
where a > 0 is big enough. In Cartesian coordinates x = r cos θ, y = r sin θ, we have

g n = x 2 x 2 + y 2 + y 2 G 2 n (x 2 + y 2 ) 2 dx 2 + 2xy 1 x 2 + y 2 - G 2 n (x 2 + y 2 ) 2 dxdy + y 2 x 2 + y 2 + x 2 G 2 n (x 2 + y 2 ) 2 dy 2 = g n 11 dx 2 + 2g n 12 dxdy + g n 22 dy 2 .
It is easily seen that g n is a complete and smooth metric on R 2 and that g n ij (0) = δ ij for any n ∈ N, so that, (x, y) are geodesic normal coordinates at the origin for the metrics g n . The Gauss curvature of g n is given by

K n = -1 Gn ∂ 2 Gn ∂r 2
. Thus, a computation shows that

K n = - 6a + ( 4 r 6 -2 r 4 )e -1/r 2 cos nθ 1 + ar 2 + e -1/r 2 cos nθ .
Therefore, for a > 0 big enough, the Gaussian curvatures K n are negative and uniformly bounded on R 2 with respect to n. Consequently, the injectivity radius of (R 2 , g n ) is infinite for any n ∈ N. We can show directly (or as a consequence of Rauch comparaison theorem) that for any r > 0 there exists Q 0 > 0 depending on r, a and not on n such that on the geodesic balls of (R 2 , g n ) centered at the origin with radius r we have

Q -1 0 δ ij ≤ g n ij ≤ Q 0 δ ij , as quadratic forms,
this gives a uniform C 0 -control of the metrics g n . Nevertheless we do not have uniform C 1 -control. Indeed, consider for example the coefficient g n 11 , we have

∂g n 11 ∂x = ∂ ∂x x 2 x 2 + y 2 + ∂ ∂x y 2 (x 2 + y 2 ) 2 G 2 n + 2G n y 2 (x 2 + y 2 ) 2 ∂G n ∂x .
Observe that at any fixed point (x, y) = (0, 0), there is only one term which is not uniformly bounded with respect to n: the one involving the partial derivative of G n with respect to x. In coordinates (x, y) we have

G n (x, y) = x 2 + y 2 + a(x 2 + y 2 ) 3/2 + x 2 + y 2 e -1/(x 2 +y 2 ) Re(x + iy) n (x 2 + y 2 ) n/2 .
Also, at any fixed point (x, y) = (0, 0), in the partial derivative ∂G n /∂x, the only term which is not uniformly bounded with respect to n is the one involving the derivative of Re(x + iy) n /(x 2 + y 2 ) n/2 . We have, using the relations x = r cos θ, y = r sin θ, ∂ ∂x

Re(x + iy) n (x 2 + y 2 ) n/2 = n Re(x + iy) n-1 (x 2 + y 2 ) n/2 -nx Re(x + iy) n (x 2 + y 2 ) 1+n/2 = n r cos(n -1)θ - n r cos θ cos(n -1)θ = n r sin θ sin nθ.
This shows that at any fixed point (x, y) = (0, 0) whose argument θ is not rational with π the partial derivative (∂g n 11 /∂x)(x, y) is not uniformly bounded with respect to n. Consequently uniform estimates of the Gaussian curvature do not imply a local C 1 -control of the metric in geodesic normal coordinates.

For this reason we will instead use harmonic coordinates. More precisely, we will need the following result which can be deduced from [START_REF] Hebey | Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds[END_REF]Theorem 6].

Theorem 2.1. Let α ∈ (0, 1) and δ > 0. Let (M, g) be a smooth Riemannian 3manifold, without boundary, of bounded sectional curvature |K| ≤ Λ < +∞ and Ω an open subset of M . Set

Ω(δ) = x ∈ M | d g (x, Ω) < δ
where d g is the distance asociated to g. Suppose there exists i > 0 such that for all x ∈ Ω(δ) we have inj (M,g) (x) ≥ i, where inj (M,g) (x) is the injectivity radius at x.

Then there exist a constant Q 0 > 1 and a real number r 0 > 0, depending only on i, δ, Λ and α, and not on M , such that for any x ∈ Ω, there exists a harmonic coordinate chart (U, ϕ, B(x, r 0 )), U being an open subset of R 3 containing the origin and B(x, r 0 ) the geodesic ball in M centered at x of radius r 0 , with ϕ(0) = x, and such that the metric tensor g is C 1,α -controlled. Namely the components g ij , i, j = 1, 2, 3 of g satisfy:

Q -1 0 δ ij ≤ g ij ≤ Q 0 δ ij , as quadratic forms, (2) 3 k=1 sup y∈U |∂ k g ij (y)| + 3 k=1 sup y =z |∂ k g ij (y) -∂ k g ij (z)| d g (y, z) α ≤ Q 0 . (3) 
We will also need the following result. Lemma 2.2. Let (M, g) be a smooth complete Riemannian manifold of bounded sectional curvature, |K| ≤ Λ < +∞ -thus for each x ∈ M the exponential map

exp x : B 0 ( π √ Λ ) ⊂ T x M → B(x, π √ Λ ) is a local diffeomorphism. Then in the closed ball B 0 ( π 4 √ Λ ), the injectivity radius in B 0 ( π √ Λ ) endowed with the pull-back metric exp * x g is at least π 4 √ Λ .
Proof. For any p ∈ B 0 ( π 4 √ Λ ) we denote by i(p) the injectivity radius of p and by C(p) its cut-locus in (B 0 ( π √ Λ ), exp * x g). We denote by i 0 the infimum of i(p), p ∈ B 0 ( π

4 √ Λ ). Assume by contradiction that i 0 < π 4 √ Λ . Let (p n ) ∈ B 0 ( π 4 √ Λ ) be a sequence such that i(p n ) → i 0 and i(p n ) < π 4 √ Λ . For each n we take a point q n ∈ B 0 ( π 2 √ Λ ) such that i(p n ) = d(p n , q n )(= d(p n , C(p n )), where d is the distance in (B 0 ( π √ Λ ), exp *
x g), we can assume that q n ∈ B 0 ( 3π 8 √ Λ + i 0 2 ). Up to choosing subsequences, we can assume that (p n )

converges to p ∞ ∈ B 0 ( π 4 √ Λ ) and that (q n ) converges to q ∞ ∈ B 0 ( 3π 8 √ Λ + i 0 2 ) ⊂ B 0 ( π 2 √ Λ ) and so d(p ∞ , q ∞ ) = i 0 .
Note that i 0 > 0. Indeed, there is a neighborhood W ⊂ B 0 ( π √ Λ ) of p ∞ and there exists δ > 0 such that for any points x, y in W there is a unique minimizing geodesic of length < δ joining x to y, see do Carmo [START_REF] Carmo | Francis Flaherty. Mathematics: Theory & Applications[END_REF]Remark 3.8,p.72]. It follows easily that there exist a neighborhood W ′ ⊂ W of p ∞ and δ ′ > 0 such that for any x ∈ W ′ we have i(x) ≥ δ ′ , and so i 0 ≥ δ ′ .

Since d(p n , q n ) < d(p n , ∂B 0 ( π √ Λ )), there exists for each n a minimizing geodesic α n in B 0 ( π √ Λ ) joining p n to q n . Actually, as q n ∈ C(p n ) and is not conjugate to p n (since d(p n , q n ) < π 4 √ Λ ) there is another minimizing geodesic β n joining p n to q n . As d(p n , q n ) = i(p n ), by a usual argument, cf. for instance Petersen [START_REF] Petersen | Riemannian geometry[END_REF]Lemma 16,p.142], α n and β n fit smoothly together at q n to form a geodesic loop γ n (with possibly a corner at p n ). As the length of γ n is bounded from below by 2i 0 , up to taking a subsequence,

γ n converges to a geodesic loop γ ∞ at p ∞ of length 2i 0 = 2d(p ∞ , q ∞ ) with midpoint q ∞ . Therefore q ∞ ∈ C(p ∞ ) and consequently i(p ∞ ) = i 0 .
We now discuss two cases.

Case 1. Assume that q ∞ ∈ B 0 ( π 4 √ Λ )
. Consider the geodesic sphere S centered at 0 of smallest radius enclosing the loop γ ∞ . Then γ ∞ is tangent to S at some smooth point z. We now see this is contra-

dictory. For x ∈ B 0 ( π 2 √ Λ ), set r(x) = d(x, 0). Consider the function f (t) = r(γ ∞ (t)), where t is an arc length parameter of γ ∞ with γ ∞ (0) = z. We have f ′ (0) = 0 and f ′′ (t) = ∇ 2 r(γ ′ ∞ , γ ′ ∞ ) + ∇r, D dt γ ′ ∞ = ∇ 2 r(γ ′ ∞ , γ ′ ∞ ). By comparison theorems we know that ∇ 2 r is positive definite since r(z) ≤ π 4 √ Λ + i 0 ≤ π 2 √
Λ , Petersen [16, Chapter 6, Section 5, Theorem 27]. Therefore f has a local strict minimum at 0 contradicting the fact that S encloses the loop γ ∞ .

Case 2. Assume that q ∞ ∈ B 0 ( π 4 √ Λ ).
By the symmetry of the cut-locus, p ∞ ∈ C(q ∞ ). Observe that we have by con-

struction i 0 ≤ i(q ∞ ) ≤ d(p ∞ , q ∞ ) = i 0 . Therefore i(q ∞ ) = d(p ∞ , q ∞ )
and so p ∞ is a closest point to q ∞ in C(q ∞ ). As before we deduce that γ ∞ is also smooth at p ∞ .

Taking the smallest geodesic sphere centered at 0 enclosing the closed geodesic γ ∞ , we arrive to a contradiciton as in case 1.

We now start the proof of our Main Theorem.

We first show that the conclusion of the theorem is true with a constant C(Λ) depending on Λ. Later we will show that this constant may be chosen independant of Λ.

Assume by contradiction that for any n ∈ N * there are: a complete smooth Riemannian 3-manifold (M n , g n ) with bounded sectional curvature, |K| ≤ Λ, a stable

H n -surface Σ n M n and a point p n ∈ Σ n satisfying (4) |A n (p n )| min(d Σn (p n , ∂Σ n ), π 2 √ Λ ) ≥ n,
A n being the second fundamental form of Σ n . We denote by

D n ⊂ Σ n the open geodesic disk of radius min(d Σn (p n , ∂Σ n ), π 2 √ Λ ) centered at p n .
For any n ∈ N * let us denote by 0 n the origin in

T pn M n . Call D n the connected component, containing 0 n , of exp -1 pn (D n ) ∩ B 0n ( π 8 √ Λ ) ⊂ T pn M n .
We endow the ball B 0n ( π √ Λ ) with the pull-back metric exp * pn g n . By abuse of notation, we still denote by g n this metric and note that its sectional curvature satisfies |K| ≤ Λ.

Observe that D n is a stable H n -surface with trivial normal bundle in B 0n ( π √ Λ ). Indeed, by a result of Fischer-Colbrie and Schoen [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3manifolds of nonnegative scalar curvature[END_REF], there exists a positive Jacobi function u on D n , therefore u • exp pn is a positive Jacobi function on D n , this implies stability of D n (cf. [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3manifolds of nonnegative scalar curvature[END_REF]). By abuse of notation we still denote by A n the second

fundamental form of D n in (B 0n ( π √ Λ ), g n ). Note that (5) |A n ( 0 n )| min d e Dn ( 0 n , ∂ D n ), π 2 √ Λ ≥ n. Indeed, we have |A n ( 0 n )| = |A n (p n )| and one can check that for any x ∈ ∂ D n we have d e Dn ( 0 n , x) ≥ d Dn (p n , ∂D n ) (consider the two cases x ∈ ∂B 0n ( π 4 √ Λ ) and x ∈ ∂B 0n ( π 4 √ Λ )
). Then we conclude by [START_REF] Carmo | Francis Flaherty. Mathematics: Theory & Applications[END_REF]. Let α ∈ (0, 1) be a fixed number. Consider the constants Q 0 > 1 and r 0 given in Theorem 2.1 applied to (M, g)

= (B 0n ( π √ Λ ), g n ), Ω = B 0n ( π 8 √ Λ ), δ = π 8 √ Λ and i = π 4 √ Λ (cf. Lemma 2.
2). We can assume that r 0 ≤ π 4 √ Λ . Let p * n be a point in the closure of D n where the function f :

D n → R defined by f (x) = |A n (x)| min d e Dn (x, ∂ D n ), r 0 reaches its maximum. Note that p * n is an interior point of D n since f ≡ 0 on ∂ D n . One can check that f ( 0 n ) ≥ r 0 √ Λ π n. As f ( 0 n ) ≤ f (p * n ) ≤ |A n (p * n )|r 0 we get (6) |A n (p * n )| ≥ √ Λ π n. Put ρ n = min d e Dn (p * n , ∂ D n ), r 0 . Consider the geodesic disk D * n ⊂ D n of radius ρ n /2 centered at p * n . Consider for any n ∈ N * the harmonic chart of M n , (U n , ϕ n , B(p * n , r 0 )),
given by Theorem 2.1, where U n ⊂ R 3 is an open neighborhood of the origin and ϕ n (0) = p * n . By the property (2) the Euclidean ball of radius r 0 /Q 0 centered at the origin, B e (0, r 0 /Q 0 ), is contained in U n for any n.

Call

λ n = |A n (p * n )|, by (6), λ n → +∞. Since λ n = |A n (p * n )| ≥ H n ,
the sequence H n /λ n is bounded and so, up to taking a subsequence, we can assume that [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] H

n λ n → H * < ∞.
We can also assume that (λ n ) is nondecreasing. Let F n be the homothety of 3 and, up to taking a subsequence, we can assume that the sequence (V n ) is monotone for the inclusion.

R 3 of ratio 1/λ n . Put V n = F -1 n (U n ) and observe that B e (0, λ n r 0 /Q 0 ) ⊂ V n ⊂ B e (0, Q 0 λ n r 0 ) for any n. Therefore ∪ n V n = R
We call (x 1 , x 2 , x 3 ) the cartesian coordinates of x ∈ U n and (y 1 , y 2 , y 3 ) those of y = F -1 n (x) ∈ V n . Now we use a blow-up argument, we endow V n with the metric

h n = λ 2 n F * n (ϕ * n g n ).
In the coordinates (x 1 , x 2 , x 3 ) the metric ϕ * n g n reads as

(ϕ * n g n )(x) = i,j g n ij (x)dx i dx j .
For any C 1,α -function w on an open set Ω ⊂ R 3 we set:

w C 1,α (Ω) = w ∞ + 3 k=1 sup y∈Ω ∂ k w(y) + 3 k=1 sup y =z ∂ k w(y) -∂ k w(z) |y -z| α .
Observe that, because of property (2) of Theorem 2.1, up to passing to a subsequence, we can assume that the sequence of inner products (g n ij (0)) converges to some inner product on R 3 . Up to a linear change of coordinates we can assume that this limit is the Euclidean inner product (δ ij ).

From properties (2) and (3) of Theorem 2.1, there exists a constant Q > 1 such that :

(8) g n ij C 1,α (Un) ≤ Q.
For each n and each y ∈ V n we have

h n (y) = i,j g n ij ( y λ n )dy i dy j .
Thus the components h n ij of h n in the coordinates y = (y 1 , y 2 , y 3 ) are given by h n ij (y) = g n ij ( y λn ) for any y ∈ V n . Observe that

∂h n ij ∂y k (y) = 1 λn ∂g n ij ∂x k ( y λn ), so we get on V n : (9) ∂h n ij ∂y k ≤ Q λ n , k = 1, 2, 3.
Therefore we have for any y ∈ V n (10)

|h n ij (y) -δ ij | ≤ √ 3 Q λ n |y| + |h n ij (0) -δ ij |.
Thus on any Euclidean ball B R ⊂ V n of radius R > 0 centered at the origin, we get [START_REF] Lpez | Ros Complete minimal surfaces with index one and stable constant mean curvature surfaces[END_REF] h

n ij -δ ij C 1,α (B R ) ≤ √ 3 Q λ n R + 3 Q λ n + Q 1+α λ 1+α n + |h n ij (0) -δ ij |.
It follows that the sequence (V n , h n ) converges uniformly on compact subsets of R 3 for the C 1,α -Euclidean topology to (R 3 , g euc ), where g euc stands for the Euclidean metric.

Composing with the diffeomorphism (

ϕ n • F n ) -1 we view D * n as immersed in V n . Note that the image (ϕ n • F n ) -1 (p * n ) = 0 ∈ R 3
for any n and that D * n is a geodesic disk of radius λ n ρ n /2 centered at p * n for the metric induced by h n . Note that

λ n ρ n = f (p * n ) ≥ f ( 0 n ) ≥ r 0 √ Λ π n, thus (12) 
λ n ρ n → +∞. For x ∈ D * n we have d e Dn (p * n , ∂ D n ) ≤ 2d e Dn (x, ∂ D n ). Since f (x) ≤ f (p * n ) we deduce that the second fundamental form A * n of D * n in (V n , h n ) satisfies (13) |A * n (x)| = |A n (x)| λ n ≤ min d e Dn (p * n , ∂ D n ), r 0 min d e Dn (x, ∂ D n ), r 0 ≤ 2.
It is important to observe that ( 14)

|A * n (p * n )| = 1 for any n ∈ N * .
Let us call II n the second fundamental form of D * n in (R 3 , g euc ). Given m ∈ N * denote by ∆ n,m the connected component of D * n ∩ B m passing through 0 (that is, containing p * n ). As the sequence of metrics h n converges on compact sets of R 3 to g euc for the C 1,α -Euclidean topology, we deduce from Proposition 4.1 in the appendix that there exists n m ∈ N * such that for any n ≥ n m and any x ∈ ∆ n,m , we have

|II n (x)| -|A * n (x)| ≤ 1 m . Furthermore we have d ∆n,m (p * n , ∂∆ n,m ) ≥ m, if n m is big enough, since λ n ρ n → +∞. Observe that if m ′ > m then ∆ n,m ⊂ ∆ n,m ′ .
Moreover we can assume that the sequence (n m ) is increasing. We set ∆ m = ∆ nm,m . Thus, we have constructed in this way a sequence of connected surfaces ∆ n R 3 passing through 0 (that is, containing p * n ) with the following property: for any k ∈ N * there exists n k such that for any n ≥ n k and any x ∈ ∆ n ∩ B k we have

(15) |II n (x)| -|A * n (x)| ≤ 1 k and d ∆n (p * n , ∂∆ n ) ≥ k.
In particular we get for n ≥ n k

(16) |II n (p * n )| -1 ≤ 1 k .
Furthermore, for any k, any n ≥ n k and any x ∈ ∆ n ∩ B k we get from ( 13) and ( 15):

(17) |II n (x)| ≤ 5.
We will use the following well known result which can be deduced from Colding-Minicozzi [START_REF] Colding | Minimal Surfaces[END_REF] or Perez-Ros [START_REF] Pérez | Properly embedded minimal surfaces with finite total curvature, The global theory of minimal surfaces in flat spaces[END_REF]. Proposition 2.3. Let Σ R 3 be an immersed surface whose second fundamental form A satisfies |A| < 1 4δ for some constant δ > 0. Then for any x ∈ Σ with d Σ (x, ∂Σ) > 4δ there is a neighborhood of x in Σ which is a graph of a function u over the Euclidean disk of radius √ 2δ centered at x in the tangent plane of Σ at x. Moreover u satisfies [START_REF] Ros | One-sided complete stable minimal surfaces[END_REF] |u| < 2δ, |∇u| < 1 and |∇ 2 u| < 1 δ .

We deduce from the estimate ( 17) and Proposition 2.3 that for each n big enough, a part of the surface ∆ n is the graph of a function u n over a Euclidean disk of radius √ 2δ, with δ = 1/20, centered at the origin in the tangent plane of ∆ n at the origin. Furthermore the functions u n satisfy the uniform estimates [START_REF] Ros | One-sided complete stable minimal surfaces[END_REF]. Up to passing to a subsequence, still denoted ∆ n , and up to a rotation in R 3 , we can assume that the tangent planes T 0 ∆ n converge to the horizontal plane P through the origin. Consequently, for n big enough, a part of ∆ n is the graph of a function still denoted u n , over the Euclidean disk D δ of radius δ centered at the origin in P . By continuity, note that the new functions u n satisfy the following uniform estimates for n big enough:

(19) |u n | < 3δ, |∇u n | < 2 and |∇ 2 u n | < 1 δ (with δ = 1 20
).

Thus we have obtained uniform C 2 -estimates for the functions u n on D δ . To go further we need C 2,α -estimates, 0 < α < 1. This is the content of the next lemma.

Lemma 2.4. For any δ ′ ∈ (0, δ) there exits a constant C which does not depend on n such that for n big enough we have

(20) u n C 2,α (D δ ′ ) < C,
where D δ ′ denotes the disk in P of radius δ ′ centered at the origin.

Proof. Since the mean curvature of ∆ n for the metric h n is H n /λ n , we infer, see for instance Colding-Minicozzi [2, p. 99-100], that the function u n is solution of an elliptic PDE of the form: ( 21)

L(u) := a ij (u, ∇u, h n )u ij +b i (u, ∇u, h n , ∂ m h n )u i = 2 H n λ n W (∇u, h n )+c(u, ∇u, h n , ∂ m h n ),
where by h n we mean the components (h n ) αβ of the metric h n and by ∂ m h n we mean the partial derivatives

∂(hn) αβ ∂ym , 1 ≤ α, β, m ≤ 3.
Moreover the functions a ij , b i , W and c depend in a smooth way on their arguments.

Recall that the sequence (u n ) has uniform C 2 -estimates on D δ and so has uniform C 1,α -estimates. Moreover the sequence of metrics (h n ) converges to the Euclidean metric g euc for the C 1,α -topology on compact sets.

Recall also that H n /λ n is bounded, see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. Thus the functions

a ij (u, ∇u, h n ), b i (u, ∇u, h n , ∂ m h n ) and 2(H n /λ n )W (∇u, h n )+ c(u, ∇u, h n , ∂ m h n ) have uniform C 0,α - estimates on D δ , that is, C 0,α -estimates independant on n.
By Schauder estimates, see Chapter 6] or Petersen [16, Chapter 10], for any δ ′ ∈ (0, δ), there exists a constant C 0 > 0 which does not depend on n such that:

(22) u n C 2,α (D δ ′ ) < C 0 L(u n ) C α (D δ ) + u n C α (D δ ) .
Consequently, there exists a constant C > 0 which does not depend on n such that:

(23) u n C 2,α (D δ ′ ) < C,
which concludes the proof of the lemma.

Fix some δ ′ ∈ (0, δ). As the sequence (u n ) is C 2,α -bounded on the disk D δ ′ , by Arzela-Ascoli's theorem there is some subsequence, still denoted (u n ), which converges to a C 2 -function u in the C 2 -topology. Since the mean curvature, H n /λ n , of the graph of u n for the metric h n tends to H * , see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], thanks to the Proposition 4.1 we know that the mean curvature of the graph of u n for the Euclidean metric also tends to H * . We deduce that the graph of u, denoted by S, is an H * -surface for the Euclidean metric.

Note that this graph contains the origin and that its second fundamental form A verifies: |A(0)| = 1 and |A| < 5 on D δ ′ (by ( 13), ( 14) and Proposition 4.1). Let x 0 ∈ D δ ′ at Euclidean distance δ ′ /2 from 0 and fix once for all some δ ′′ ∈ (δ ′ , δ). Note that for n big enough, a part of the surface ∆ n is the graph of a function v n over the Euclidean disk D δ ′′ (x 0 ) centered at (x 0 , u(x 0 )) ∈ S in the tangent plane T (x 0 ,u(x 0 )) S. Using the same arguments as before, we can extract a subsequence of (v n ) whose graphs converge to a H * -graph over the disk D δ ′ (x 0 ). Observe that this new graph is not contained in S because |∇u| ≤ 1. We have in this way obtained a new H * -surface extending S. We will still denote this extended H * -surface by S.

As d ∆n (0, ∂∆ n ) → +∞, using a standard diagonal process, we obtain a complete H * -surface S immersed in R 3 , passing through the origin and whose second fundamental form A satisfies: Consider the universal covering S of S, observe that S is naturally immersed in R 3 and its second fundamental form is bounded. Consequently, there exists an ε > 0 such that the map Π : W := S × (-ε, +ε) → R 3 given by Π(p, t) = p + t N (p) is an immersion, where N is the Gauss map of S. Therefore we can endow W with a flat metric which makes Π a local isometry. Note that S is a complete H * -surface in W .

Claim: S is stable in W .

For any geodesic disk in S of radius δ ′ , for n big enough, a piece of ∆ n is a graph over this geodesic disk of S. By construction of S, using this fact, for any compact and simply connected domain U in S, a piece of ∆ n will be a graph over U for n big enough. Using a continuation argument, for any compact and simply connected domain U in S, we can lift a part G n of ∆ n , n big enough, to get a surface G n in W which will be a graph over U . Moreover the graphs G n converge to U in the C2 -topology.

Observe that each graph G n is a stable H-surface (with H = H n /λ n ) in (a part of) W endowed with the metric Π * (h n ). Indeed, since G n is two-sided and stable for the metric h n , by a result of Fischer-Colbrie and Schoen [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3manifolds of nonnegative scalar curvature[END_REF], there exists a positive Jacobi function v n on G n . The function v n = v n • Π is thus a positive Jacobi function on G n for the metric Π * (h n ). Again by [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3manifolds of nonnegative scalar curvature[END_REF] this implies that G n is stable.

For n big enough, G n is the graph over U of a function which tends to 0 in the C 2 -norm as n goes to +∞. In this way we may see the stability operator of G n :

J n = ∆ n + | B * n | 2 + Ric n (ν)
as an operator on U. Here B * n stands for the second fundamental form of G n , ∆ n denotes the Laplacian on G n and Ric n (ν) denotes the Ricci curvature in the direction of the unit normal field ν to G n , all of them with respect to the metric Π * (h n ).

As the metrics Π * (h n ) converge to the flat metric Π * (g euc ) in the C 1,α -topology and |Ric n (ν)| ≤ 2Λ/λ 2 n , it follows that the domain U is stable for the flat metric. This implies that S is stable in W for the flat metric as claimed.

As the immersion Π is a local isometry we infer that the complete immersion S → S ⊂ R 3 is stable. Thanks to results of do Carmo-Peng [START_REF] Carmo | Stable complete minimal surfaces in R 3 are planes[END_REF], Fischer-Colbrie and Schoen [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3manifolds of nonnegative scalar curvature[END_REF], Pogorelov [START_REF] Pogorelov | On the stability of minimal surfaces[END_REF], Lopez-Ros [START_REF] Lpez | Ros Complete minimal surfaces with index one and stable constant mean curvature surfaces[END_REF] and Silveira [START_REF] Da Silveira | Stability of complete noncompact surfaces with constant mean curvature[END_REF], we know that S is a plane. This contradicts the fact that |A(0)| = 1, see (24).

It remains to check that C(Λ) can be chosen independant of Λ. First we can assume that C(Λ) is the infimum among the constants satisfying the conclusion of the theorem. Let Σ be any stable H-surface in (M, g). Observe that Σ is a stable H τ -surface in (M, τ 2 g) for any τ > 0 and that the quantity

|A(p)|min d(p, ∂Σ), π is scale invariant. It follows that C(Λ) = C(Λ/τ 2 ) for
any τ > 0 and so C(Λ) does not depend on Λ, which concludes the proof of the Main Theorem.

The same proof gives the following local result.

Theorem 2.5. Let (M, g) be a smooth Riemannian 3-manifold (not necessarily complete), with bounded sectional curvature |K| ≤ Λ < +∞. Let Ω be an open subset of M such that there exists δ > 0 for which Ω(δ) is relatively compact in M (cf. Theorem 2.1 for the notation).

Then there exists a constant C = C(δ 2 Λ) > 0 depending only on the product δ 2 Λ and neither on M nor on Ω, satisfying the following:

For any immersed stable H-surface Σ Ω, with trivial normal bundle, and for any p ∈ Σ we have

|A(p)| < C min d(p, ∂Σ), π 2 √ Λ , δ .

Applications

In this section we consider Riemannian 3-manifolds (M 3 , g) which fiber over a Riemannian surface (M 2 , h). We assume that the fibration Π : (M 3 , g) → (M 2 , h) is a Riemannian submersion with the following properties.

(1) Each fiber is a complete geodesic of infinite length.

(2) The fibers of the fibration are the integral curves of a unit Killing vector field ξ on M 3 .

A fibration satisfying ( 1) and ( 2) will be called a Killing submersion. It can be shown that such a fibration is (topologically) trivial. Indeed, there always exists a global section s : M 2 → M 3 (see Steenrod [START_REF] Steenrod | The Topology of Fibre Bundles[END_REF]Theorem 12.2]). Considering the flow ϕ t of ξ, a trivialization of the fibration is given by the diffeomorphism:

(p, t) ∈ M 2 × R → ϕ t (s(p)) ∈ M 3 .
Notice that there are many such 3-manifolds, including R 3 , PSL(2, R) (which fibers over the hyperbolic plane H 2 ), the Heisenberg space Nil 3 (which fibers over the Euclidean plane R 2 ) and the metric product spaces M 2 × R for any Riemannian surface (M 2 , h). Definition 3.1. Let Π : (M 3 , g) → (M 2 , h) be a Killing submersion.

(1) Let Ω ⊂ M 2 be a domain. An H-section over Ω is an H-surface in M 3 which is the image of a section s : Ω → M 3 , with s of class C 2 on Ω and C 0 on Ω. (2) Let γ ⊂ M 2 be a smooth curve with geodesic curvature 2H. Observe that the surface Π -1 (γ) ⊂ M 3 has mean curvature H. We call such a surface a vertical H-cylinder.

We may also consider H-sections without boundary.

Remark 3.2. Let s : Ω → Σ ⊂ Ω be a H-section where Ω ⊂ M 2 is a relatively compact domain. We make the following observations.

(1) For any interior point p ∈ Ω the H-surface Σ is transversal at s(p) to the fiber. Indeed, assume by contradiction that Σ is tangent to the fiber at the interior point s(p). Let S ⊂ M 3 be the vertical H-cylinder tangent to Σ at s(p) with the same mean curvature vector. Then, in a neighborhood of s(p), the intersection Σ∩S is composed of n ≥ 2 smooth curves passing through s(p).

But the union of those curves cannot be a graph, contradicting the assumption that Σ is a graph over Ω. (2) Let s 1 : Ω → Σ 1 ⊂ Ω be another H-section over Ω such that the mean curvature vector field H 1 points in the same direction as the mean curvature vector field H of Σ, that is, the scalar products g( H, ξ) and g( H 1 , ξ) have the same sign. Assume that there exists a constant C > 0 such that |s(p)-s 1 (p)| < C at any p ∈ ∂Ω where |s(p)s 1 (p)| denotes the distance on the fiber over p between the points s(p) and s 1 (p). As ξ is a Killing field, the translated copies of Σ along the fibers are also H-surfaces whose mean curvature vector has the same orientation as that of Σ. Then applying the maximum principle to Σ 1 and a translation of Σ by ξ, we deduce that we have also |s(p)s 1 (p)| < C at any p ∈ Ω.

This gives for any such H-section Σ 1 height estimates, relative to Σ, depending on the vertical distance between the boundaries of Σ and Σ 1 .

Our first application is as follows.

Theorem 3.3. Let Π : (M 3 , g) → (M 2 , h) be a Killing submersion and let s : Ω → Σ ⊂ M 3 be an H-section over a domain Ω ⊂ M 2 . Let U 0 be a neighborhood of an arc γ ⊂ ∂Ω and s 0 : U 0 → M 3 a section.

Assume that for any sequence

(p n ) of Ω which converges to a point p ∈ γ, the height of s(p n ) goes to +∞, that is s(p n ) -s 0 (p n ) → +∞.
Then, γ is a smooth curve with geodesic curvature 2H. If H > 0 then γ is convex with respect to Ω if, and only if, the mean curvature vector H of Σ points up, that is, if g( H, ξ) > 0 along Σ. Moreover, Σ converges to the vertical H-cylinder Π -1 (γ) with respect to the C k -topology for any k ∈ N; this convergence will be made precise in the proof.

Proof. Let p ∈ γ and (p n ) a sequence in Ω converging to p. Let B(p, ρ) be a compact geodesic disc of M 2 centered at p, with the radius ρ small so that s(Ω ∩ B(p, ρ)) is far from ∂Σ. Let Σ n be the H-section obtained by translating Σ by the integral curves of ξ so that s(p n ) goes to s 0 (p n ) = p n . After passing to a subsequence, we can assume the tangent planes T e pn Σ n converge to a 2-plane P e p of the tangent space T e p M 3 ; here p = s 0 (p).

We deduce from the Main Theorem, Proposition 4.3 (H-sections are stable) and a continuity argument that there exist two real numbers δ, δ 0 > 0 such that for n big enough, a part of Σ n is the Euclidean graph (in the sense of Remark 4.2) of some function u n over the disk of P e p centered at p with Euclidean radius δ. Furthermore this part of Σ n contains the geodesic disk, denoted by D n , centered at p n with radius δ 0 .

Since the mean curvature of each D n is constant and equal to H, the functions u n satisfy an elliptic PDE. Therefore, using the Schauder theory, we can find a subsequence of the previous subsequence converging for the C k -topology, for any k ∈ N, to some H-surface D e p passing through p with tangent plane P e p , T e p D e p = P e p . Since D e p is the limit of vertical graph and p = Π( p) is a boundary point of Ω, the tangent plane at p must be vertical. Furthermore D e p contains the geodesic disk centered at p with radius δ 0 /2. Denoting by N the unit normal field along D e p given by the limit of the unit normal fields along the disks D n , observe that the function g(N, ξ) is a Jacobi function on D e p . As each D n is a vertical graph, this function has a sign, but it vanishes at an interior point of D e p : p. Therefore, the maximum principle, see Spivak [21, Chapter 10, Addendum 2, Corollary 19] shows that g(N, ξ) is the null function. This means that the normal field N is horizontal. Clearly, this implies that the limit surface D e p is a part of the vertical cylinder over some curve α ⊂ M 2 . Since D e p has mean curvature H and the fibers are geodesic lines of M 3 , the curve α must be smooth and must have geodesic curvature 2H in M 2 .

Since each D n is, up to a translation along the fibers, part of the graph Σ over Ω, we deduce that:

(1) α ⊂ Ω ⊂ M 2 .
(2) Each converging subsequence of D n must converge to the same H-surface D e p .

(3) The limit surface D e p doest not depend on the sequence (p n ) of Ω converging to p ∈ γ. Now we show that we have α ⊂ γ ⊂ ∂Ω, that is, the arc γ is smooth and has geodesic curvature 2H.

Assume by contradiction that there is an interior point q ∈ α ∩ Ω. Take any point q ∈ D e p in the fiber over q, Π( q) = q. By construction, q is the limit of some sequence ( q n ) with q n ∈ D n . Since the sequence ( D n ) converges to (a part of) the vertical cylinder Π -1 ( α) with the C k -topology for any k ∈ N, the surface Σ must be vertical at s(q), contradicting the fact that Σ is transversal to the fibers, see Remark 3.2- [START_REF] Bérard | General curvature estimates for stable H-surfaces immersed into a space form[END_REF].

The assertion about the convexity of the arc γ is obvious.

Remark 3.4. In the case where M 3 is the metric product space H 2 × R or S 2 × R, the result above was shown in an analytic way by Hauswirth, Rosenberg and Spruck [START_REF] Hauswirth | Infinite boundary value problems for constant mean curvature graphs in H 2 × R and S 2 × R, to appear in[END_REF]. Therefore, bounding |∇ h u| from above is equivalent to bounding |g(N, ξ)| from below away from 0.

Remark 3.5. In a Riemannian product (M 3 , g) = (M 2 , h) × R, consider a domain Ω ⊂ M
As a second application we obtain interior gradient estimates, see Remark 3.5, for H-sections. Theorem 3.6. Let Π : (M 3 , g) → (M 2 , h) be a Killing submersion. Let Ω ⊂ M 2 be a relatively compact domain and s 0 : Ω → Σ 0 a C 0 -section over Ω.

Then, for any C 1 , C 2 > 0, there exists a constant α = α(C 

(p n )) ≤ 1 n ,
where N n is the unit normal field along Σ n oriented by H n .

Since Ω is compact, there exists a subsequence of (p n ) converging to a point p ∈ Ω, with d(p, ∂Ω) ≥ C 2 . For each n ∈ N * we denote by Σ n the vertically translated copy of Σ n passing through p n := s 0 (p n ). Observe that the sequence ( p n ) converges to p := s 0 (p).

Since each H n -surface Σ n is a vertical graph, Σ n is stable. Thus we can apply our Main Theorem and Proposition 4.3. Therefore, there exist positive constants δ and δ 0 such that for each n ∈ N * a part S n of Σ n is a Euclidean graph over the disk of T e pn Σ n centered at p n with Euclidean radius δ 0 , furthermore S n contains the geodesic disk D n of Σ n centered at p n with radius δ.

As usual, up to choosing a subsequence, we can assume that the sequence of tangent planes (T e pn Σ n ) converges to a 2-plane P e p ⊂ T e p M 3 at p. Taking into account (26), we deduce that P e p is vertical. Thus, there exists a positive number δ ′ 0 < δ 0 such that for n big enough, a part of S n is a Euclidean graph over the disk of P e p centered at p with Euclidean radius δ ′ 0 and this part contains the geodesic disk of Σ n centered at p n with radius δ/2.

Observe that the sequence (H n ) is bounded. Indeed, consider the geodesic sphere S( p) in M 3 centered at p with radius C 2 /2 and H 0 > 0 an upper bound of the absolute mean curvature of S( p).

Using the comparison principle applied to Σ n and a suitable translated copy of S( p) along the fibers, we get |H n | ≤ H 0 . Up to taking a subsequence, we can assume that H n → H.

As in the proof of the Main Theorem, using the Schauder theory, we can prove that a subsequence of ( S n ) converges in the C k -topology, for any k ∈ N, to a H-surface S shows that g(N, ξ) is the null function on S, where N is the limit unit normal field on S. This means that S is part of a vertical H-cylinder over some curve γ ⊂ Ω, that is, S ⊂ Π -1 ( γ). Since S is a H-surface, γ is a smooth curve with geodesic curvature 2H. Finally, S contains the geodesic disk of Π -1 ( γ) centered at p with radius δ/2.

Let us call q ∈ Π -1 (p) ⊂ M 3 the point in the same fiber than p with vertical distance δ/4, lying over p. Observe that, by construction, q is the limit of some sequence ( q n ), with q n ∈ D n ⊂ Σ n . Observe that Π( q) ∈ Ω and d(Π( q), ∂Ω) ≥ C 2 since Π( q) = p. Therefore, the same arguments used above show that the geodesic disk of the vertical H-cylinder Π -1 ( γ) centered at q with radius δ/2 is the limit of a sequence (Σ ′ n ), Σ ′ n ⊂ Σ n , extending in this way the part S of Π -1 ( γ). Repeating this argument, we can show that a connected part of the vertical Hcylinder Π -1 ( γ), which is as high as we want, is contained in the limit set of the sequence ( Σ n ). This gives a contradiction since the vertical distance between Σ 0 and Σ n is uniformly bounded by C 1 by hypothesis.

Appendix

Proposition 4.1. Let U ⊂ R 3 be an open set and let S ⊂ U be an immersed C 2surface without boundary. Let g be a metric on U , denote by g euc the Euclidean metric. Let respectively A and A be the second fundamental forms of S for the metrics g euc and g. Assume that |A| < C for some constant C > 0.

Then, for any n ∈ N * , there exists a constant C n > 0 which does not depend on S such that if g ijg euc,ij C 1 (U ) < C n , 1 ≤ i, j ≤ 3, then for any p ∈ S and any nonzero tangent vector v ∈ T p S we have:

(27) |λ p (v) -λ p (v)| < 1 n and |H -H|(p) < 1 n ,
where λ p (v), resp. λ p (v), denotes the normal curvature of S at p in the tangent direction v with respect to the metric g euc , resp. g, and H, resp. H, denotes the mean curvature of S at p for the metric g euc , resp. g, (the curvatures of both surfaces being computed with respect to normals inducing the same transversal orientation).

Consequently, for any n ∈ N * , there exists a constant C ′ n > 0 which does not depend on S such that if g ijg euc,ij C 1 (U ) < C ′ n , 1 ≤ i, j ≤ 3, then we have:

(28) |A| -|A| < 1 n .
Proof. Let us denote the normal curvatures by λ(v) and λ(v).

Observe that if we have g ijg euc,ij C 1 (U ) < C for some constant C > 0 then, for any Euclidean change of coordinates we certainly have g ijg euc,ij C 1 (U ) < 9C in the new coordinates. We can choose Euclidean coordinates (x 1 , x 2 , x 3 ) of R 3 such that the origin coincides with p, the tangent plane T p S coincides with the plane {x 3 = 0} and v is tangent to the x 1 -axis. Thus, a neighborhood S p of p in S is the graph of a function x 3 = u(x 1 , x 2 ) defined in a neighborhood V of the origin in the plane {x 3 = 0}. Therefore a parametrization of S p is given by (

x 1 , x 2 ) → F (x 1 , x 2 ) = (x 1 , x 2 , u(x 1 , x 2 )), (x 1 , x 2 ) ∈ V ⊂ {x 3 = 0}. Let us set F i = ∂F ∂x i , u i = ∂u ∂x i , i = 1, 2. We have (29) u i (0) = 0, i = 1, 2.
We denote by N the Gauss map of S for the metric g and by N the Gauss map of S for the metric g euc , both oriented so that at 0 we have N (0) = (0, 0, 1) and g euc (N, N )(0) > 0.

We have by definition:

λ(v) = g(N , ∇ F 1 F 1 ) g(F 1 , F 1 ) (0) and λ(v) = u 11 1 + u 2 1 (0),
where ∇ stands for the Levi-Civita connection with respect to the metric g.

Using (29) we get F 1 (0) = ∂ x 1 . Furthermore a straightforward computation shows that:

N (0) = 1 g 33 g 13 ∂ x 1 +g 23 ∂ x 2 +g 33 ∂ x 3 (0) and ∇ F 1 F 1 (0) = ∇ ∂x 1 ∂ x 1 (0)+u 11 (0)∂ x 3 ,
Therefore we deduce that

λ(v) = 1 g 11 g 33 g(∇ ∂x 1 ∂ x 1 , g 13 ∂ x 1 + g 23 ∂ x 2 + g 33 ∂ x 3 )(0) + u 11 (0) , (30) λ(v) = u 11 (0). ( 31 
)
Observe that if the metrics g and g euc are close enough on U in the C 1 -topology then the expression g(∇ ∂x 1 ∂ x 1 , g 13 ∂ x 1 + g 23 ∂ x 2 + g 33 ∂ x 3 )(0) is as close to 0 as we want and the expression 1 g 11

√

g 33 is as close to 1 as we want. Observe that these expressions are independant of u, that is, independant of the surface S. By hypothesis, we have |λ(v)| < C. Therefore there exists a constant D n > 0 which does not depend on

S such that g ij -g euc,ij C 1 (U ) < D n , 1 ≤ i, j ≤ 3, implies that |u 11 (0)| < 2C. Consequently we have: |λ(v) -λ(v)| < 2C 1 - 1 g 11 g 33 + 1 g 11 g 33 g(∇ ∂x 1 ∂ x 1 , g 13 ∂ x 1 + g 23 ∂ x 2 + g 33 ∂ x 3 )(0) .
For the same reasons as before, there exists a constant C n > 0, with C n < D n , which does not depend on S such that g

ij -g euc,ij C 1 (U ) < C n , 1 ≤ i, j ≤ 3, implies that |λ(v) -λ(v)| < 1 n .
Let us denote by λ max , λ min , λ max and λ min the principal curvatures of S at P for the metrics g and g euc respectively. It follows that:

|λ max -λ max | < 1 n and |λ min -λ min | < 1 n .
Therefore:

|H -H| < 1 n .
Let k > 0 be some integer and let C k be the constant given in the first part of the proposition. Thus, if g ijg euc,ij C 1 (U ) < C k , 1 ≤ i, j ≤ 3, then we have: Remark 4.2. Let (M, g) be a smooth Riemannian 3-manifold and let S M be an immersed surface. Let p ∈ S be an interior point of S. Let (U, ϕ, B(p, r 0 )) be a harmonic coordinate chart at p, where B(p, r 0 ) is the geodesic ball in M centered at p with radius r 0 such that B(p, r 0 ) ∩ ∂S = ∅. Let us denote the harmonic coordinates on U by (x 1 , x 2 , x 3 ) and let us consider the Euclidean metric dx 2 1 + dx 2 2 + dx 2 3 on U . Viewing the connected component of B(p, r 0 ) ∩ S through p in U observe that a neighborhood of p in S is a Euclidean graph over a Euclidean disk in the tangent plane T p S centered at p. The arguments of the proof of the Proposition 4.1 can be used to show the following result which is very useful for the applications. Proposition 4.3. Let (M, g) be a smooth Riemannian 3-manifold (not necessarily complete), with bounded sectional curvature |K| ≤ Λ < +∞ and let r > 0. Let Ω ⊂ M be an open subset of M such that the injectivity radius in M at any x ∈ Ω is ≥ r.

Then for any C 1 > 0 and C 2 > 0 there exist constants δ, δ 0 > 0 depending only on C 1 , C 2 , Λ and r and neither on M nor on Ω satisfying the following:

For any immersed surface S Ω whose second fundamental form A satisfies |A| < C 1 and for any p ∈ S such that d S (p, ∂S) > C 2 then a part S 0 of S is contained in the image of a harmonic chart and is a Euclidean graph (see Remark 4.2) over the disk of T p S centered at p with Euclidean radius δ. Furthermore, the subset S 0 contains the geodesic disk of S centered at p with radius δ 0 .

Proof. Let us fix some constants α ∈ (0, 1) and Q 0 > 1. The Theorem 6 in Hebey-Herzlich [START_REF] Hebey | Harmonic coordinates, harmonic radius and convergence of Riemannian manifolds[END_REF] shows that there exists some r 0 = r 0 (Q 0 , α, r, Λ) > 0 such that for any x ∈ Ω there exists a harmonic coordinate chart (U, ϕ, B(x, r 0 )) satisfying the assumption of the Theorem 2.1 where B(x, r 0 ) is the geodesic ball in M centered at x with radius r 0 .

Let C 1 , C 2 , S and p ∈ S be as stated. Consider a harmonic coordinate chart (U, ϕ, B(p, r 0 )) at p, and call x = (x 1 , x 2 , x 3 ) the coordinates on U ⊂ R 3 , we have

3 k=1 sup x∈U |∂ k g ij (x)| ≤ Q 0 and Q -1 0 δ ij ≤ g ij ≤ Q 0 δ ij as quadratic forms.
We want to show that there exists a constant C where ∂ k stands for the partial derivative with respect to y k . Let us denote by λ p (v), resp. λ p (v), the normal curvature of S at p in the tangent direction v with respect to the Euclidean metric g euc , resp. g. We get from the formulae (30) and (31) established in the proof of the Proposition 4.1 that λ p (v) = (g 11 g 33 )(0)λ(v)g(∇ ∂y 1 ∂ y 1 , g 13 ∂ y 1 + g 23 ∂ y 2 + g 33 ∂ y 3 )(0).

Taking into account the formulae (32) we get that the expressions (g 11 g 33 )(0) and |g(∇ ∂y 1 ∂ y 1 , g 13 

( 1 )

 1 |A(p)| ≤ C d Σ (p, ∂Σ) ,for any p ∈ Σ, where d Σ denotes the intrinsic distance on Σ.
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 2 for any p ∈ Σ, where diam Σ denotes the intrinsic diameter of Σ. Proof. For non compact surfaces, this follows immediately from the Main Theorem. Suppose now that Σ is compact. Set d = diam Σ and let p ∈ Σ, then the geodesic disk D in Σ of center p and radius d/2 satisfies d(p, ∂D) = d/2. Applying the Main Theorem to D we get |A(p)| min d 2 Λ ≤ C. The result follows.
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 323 C 3 (C 1 ) which does not depend on p ∈ S or on S such that |A(p)| < C 3 where A denotes the second fundamental form of S ∩ B(p, r 0 ) for the Euclidean metric dx2 1 Let v ∈ T p S be a nonzero tangent vector. Choose Euclidean coordinates y = (y 1 , y 2 , y 3 ) in U such that the tangent plane T p S coincides with the plane {y 3 = 0} and v is tangent to the y 1 -axis. In those new coordinates we have (32)3 k=1 sup y∈U |∂ k g ij (y)| ≤ 9Q 0 and Q -1 0 δ ij ≤ g ij ≤ Q 0 δ ij as quadratic forms.

∂ y 1 +

 1 g 23 ∂ y 2 + g 33 ∂ y 3 )(0)| are bounded by a constant Q 1 which only depends on Q 0 . Therefore the expression |λ p (v)| is bounded by a constant C 4 which depends only on C 1 and Q 0 and which does not depend on p ∈ S or on S. Consequently we have |A| < 2C 4 on S. Now the proof follows from the Proposition 2.3 setting δ = 1/8C 4 . The second part of the estimates (32) shows that we can choose δ 0 = δ/Q 0 .

  1 , C 2 , Ω) such that for any p ∈ Ω with d(p, ∂Ω) > C 2 and for any H-section s : Ω → Σ ⊂ M 3 over Ω satisfying |ss 0 | < C 1 on Ω, we have Proof. Assume by contradiction that there exist positive constants C 1 and C 2 such that for any n ∈ N * there exists a H n -section s n : Ω → Σ n ⊂ M 3 over Ω with |s ns 0 | < C 1 , and there exists a point p n ∈ Ω such that d(p n , ∂Ω) > C 2 and verifying

	(25)	g N, ξ (s(p)) > α,
	where N is a unit normal field along Σ.
	(26)	g N n , ξ (s n

√Λ