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Introduction

Lubricated contacts are widely used in mechanical systems to connect solid bodies that are in relative motion. A lubricant fluid is introduced in the narrow space between the bodies with the purpose of avoiding direct solid-to-solid contact. This contact is said to be in the hydrodynamic regime, and the forces transmitted between the bodies result from the shear and pressure forces developed in the lubricant film.

We consider one of the simplest lubricated systems which consists of two rigid surfaces in hydrodynamic contact. The bottom surface, assumed planar and horizontal moves with a constant horizontal translation velocity and a vertical given force F > 0 is applied vertically on the upper body.

The wedge between the two surfaces is filled with an incompressible fluid. We suppose that the wedge satisfy the thin-film hypothesis, so that a Reynolds-type model can be used to describe the problem.

We denote by Ω the two-dimensional domain in which the hydrodynamic contact occurs. We assume that Ω is open, bounded and with regular boundary ∂Ω. Without lost of generality we consider 0 ∈ Ω. We assume that the upper body, the slider, is allowed to move only by vertical translation. The normalized distance between the surfaces is given by h(x, t) = h 0 (x) + η(t)

where η(t) > 0 represents the vertical translation of the slider and h 0 : Ω -→ [0, ∞[ describes the shape of the slider and is a given function satisfying

(1.1)

h 0 ∈ C 1 ( Ω), min x∈Ω h 0 (x) = h 0 (0) = 0.
The mathematical model we study considers the possible cavitation in the thin film, so the (normalized) pressure "p" of the fluid satisfies the Reynolds variational inequality (see [START_REF] Frêne | Lubrification hydrodynamique[END_REF]):

(1.2)

Ω h 3 ∇p • ∇(ϕ -p) ≥ Ω h ∂ ∂x 1 (ϕ -p) -η ′ (t)
Ω (ϕ -p), ∀ϕ ∈ K where K = ϕ ∈ H 1 0 (Ω) : ϕ ≥ 0 , and "∇" denotes the gradient with respect to the variables x ∈ Ω. Without lost of generality we assume the velocity of the bottom surface is oriented in the direction of the x 1 -axis and its normalized value is equal to 1. The equation of motion of the slider is

(1.3) η ′′ = Ω pdx -F (second Newton Law)
completed with the initial conditions:

(1.4)

η(0) = η 0 (1.5) η ′ (0) = η 1 ,
where η 0 > 0, η 1 ∈ IR are given data. The unknowns of the problem are the pressure p(x, t) and the vertical displacement of the slider η(t). It is known that for any given C 1 function η(t) the problem (1.2) is well posed (see for instance [START_REF] Kinderlehrer | An Introduction to Variational Inequalities and Their Applications[END_REF]).

The system (1.2)-(1.5) is equivalent to the following Cauchy problem for a second order ordinary differential equation in η:

(1.6)    η ′′ = G(η, η ′ ) η ′ (0) = η 1 , η(0) = η 0 , where G :]0, ∞[×IR -→ IR is given by G(β, γ) := Ω q(x)dx -F,
and q ∈ K (depending on β and γ) is the unique solution to (1.7)

     Ω (h 0 + β) 3 ∇q • ∇(ϕ -q) ≥ Ω h 0 ∂ ∂x 1 (ϕ -q) -γ Ω (ϕ -q) ∀ϕ ∈ K.
The main goal of the paper is to give sufficient conditions on the shape h 0 of the slider to obtain global existence on time to (1.6), i.e. there is no contact solid-to-solid for t < ∞. We also study the existence of steady states of the problem. Another interesting physical question which we adress here is to see if there exists a "barrier" value

η b > 0 such that η(t) ≥ η b , ∀ t > 0.
We prove the existence of η b for two of the three cases studied. Third case (the so called "flat case"), we prove that η tends to 0 as t → ∞.

The main ideas of these results are the following: when the distance between the surfaces decreases (i.e. η ′ ≤ 0) there exists a lower bound of the force exerted by the pressure of the fluid on the upper body. This lower bound admits an expression of the form F S + F D , where F S is a "spring-like" force and F D is a "damping force" (see Corollary (3.1) and Remark 3.1). F S depends only on the position η(t) and represents the force exerted by the pressure of the fluid for the stationary position in an auxiliary sub-domain U of Ω.

F D is of the form F D = -η ′ d where d is a "dumping" coefficient and depends only on η. The global existence of the solution η is a consequence of the velocity of blow up of d when η tends to 0. The existence of a "barrier" η b is based on the fact that F S blows up when η tends to 0. In the "flat case" the force F S is equal to zero, which explains the non existence of a barrier.

The present work is related to different articles on the fluid-rigid interaction problems (see for example [START_REF] Conca | Exsitence of solutions for the equations modelling the motion of a rigid body in a viscous fluid[END_REF], [START_REF] Desjardins | Existence of weak solutions for the motion of rigid bodies in a viscous fluids[END_REF], [START_REF] Gérard-Varet | Regularity issues in the problem of fluid structure interaction[END_REF], [START_REF] Hesla | Collision of smooth bodies in viscous fluids: a mathematical investigation[END_REF] and [START_REF] Hillairet | Lack of collision between solid bodies in a 2D incompressible viscous flow[END_REF], for a non-exhaustive bibliography on this subject). These papers concern the study of the motion of one or many rigid bodies inside a domain Q ∈ IR n , n = 2, 3, filled with an incompressible fluid with constant viscosity. The mathematical model is a coupled system between Navier-Stokes equations modeling the fluid and second Newton Law to describe the rigid bodies positions. A relevant problem in this context is the so called "non-collision" problem, where the question is to know if this body will touch the boundary ∂Q of the fluid in finite time. In [START_REF] Hillairet | Lack of collision between solid bodies in a 2D incompressible viscous flow[END_REF] Hillairet consider the particular case where Q is the half-plane IR×IR + and the rigid body is a disk which moves only along the vertical axis. He proves that in absence of external forces the solution is defined globally in time. He also shows that the disk remains all the time "far" from the boundary. In [START_REF] Gérard-Varet | Regularity issues in the problem of fluid structure interaction[END_REF] Gérard-Varet and Hillairet consider a more general shape of the rigid body in a general domain Q in presence of gravity. They prove the existence of a global in time solution of the problem, but now the rigid body can go the boundary of the domain as t goes to infinity. Similar results are given by Hesla in [START_REF] Hesla | Collision of smooth bodies in viscous fluids: a mathematical investigation[END_REF].

The main difference between the above mentioned works and the present one is the obtention in this study of a "barrier" value η b > 0 for any exterior force F . We can explain this difference by the high shear and pressure that develop in a lubricant fluid film, due especially to the relative motion of the closed surfaces. An interesting open question is to see if similar "barrier" results can be obtained for situations when the thin film hypothesis is not satisfied in the fluid (so the full Navier-Stokes equations must be used in the place of Reynolds models), but relative horizontal motion exists between the two surfaces.

Fluid-rigid interaction problems in lubrication where also considered in [START_REF] Díaz | A note on some inverse problems arising lubrication theory[END_REF] where Reynolds equation is used in the place of Reynolds variational inequality in the particular "flat" case. We also mention the papers [START_REF] Buscaglia | Existence of equilibria in articulated bearings[END_REF], [START_REF] Buscaglia | Existence of equilibria in articulated bearings in presence of cavity[END_REF] and [START_REF] Ciuperca | On the existence of solutions of equilibria in lubricated journal bearings[END_REF], where the existence of steady states is studied for lubricated systems with two degrees of freedom.

The contents of the paper are the following: In Section 2 we precise the hypothesis on h 0 and present the main results of the paper. In Section 3 we give some preliminary results and Section 4 is devoted to the proof of the theorems of Section 2.

Main results

We begin by the local in time existence and uniqueness result, for which the minimal hypothesis (1.1) is sufficient.

Theorem 2.1. The function G is locally Lipschitzian, so we have the existence and uniqueness of solution to (1.6) 

locally in time.

Let [0, T [ be the maximal interval of existence of solution to (1.6)

, so η ∈ C 2 ([0, T [).
The main goal of the paper is to prove that T = +∞. It is equivalent to prove that for any fixed T > 0 there exists m > 0 and M > 0 (depending eventually on T ) such that

(2.8) m ≤ η(t) ≤ M, for all t ∈ [0, T [ |η ′ (t)| ≤ M.
Moreover, we are interested to know if there exists such constants m and M independent on T .

In order to study the existence of steady states and global existence of solutions to (1.6) we consider three different cases depending on the shape of the slide h 0 .

Case I. Line contact

We assume that h is equal to 0 only in the line {x 1 = 0} i.e.

h 0 (0, x 2 ) = 0 for all x 2 ∈ IR such that (0, x 2 ) ∈ Ω and h 0 (x 1 , x 2 ) > 0 for all (x 1 , x 2 ) ∈ Ω, x 1 = 0.
We also assume that there exists α ≥ 1 such that (2.9)

h 0 (x 1 , x 2 ) ∼ |x 1 | α when x 1 → 0.
More precisely there exists a neighborhood W of 0 and a function h 1 regular enough on the closure W of W with h 1 > 0 on W such that

h 0 (x 1 , x 2 ) = |x 1 | α h 1 (x 1 , x 2 ) in W.

Case II. Point contact

We assume that h 0 is equal to 0 only in the point {x = 0}, i.e.

h 0 (0) = 0 and h 0 (x) > 0 for all x ∈ Ω -{0}.

We also assume that there exists α ≥ 1 such that (2.10) h 0 (x) ∼ |x| α when x → 0 that is, there exist W and h 1 as in Case I such that

h 0 (x) = |x| α h 1 (x) in W (where | • | is the euclidian norm in IR 2 ).

Case III. Flat slides

We assume that h is flat, i.e.

(2.11)

h 0 = 0 on Ω which implies h(x, t) = η(t).
The results concerning the existence of steady states for cases I and II are enclosed in the following theorem: Theorem 2.2. Let h 0 satisfy assumption 2.9 in case I or 2.10 in case II for α satisfying

(2.12) α > 1 in Case I (line contact) α > 3 2 in Case II (point contact) .
Then there exists at least one stationary solution η > 0 of the Cauchy problem (1.6), i.e. G(η, 0) = 0.

Remark 2.1. The problem of uniqueness of the stationary solution is a difficult one. In [START_REF] Buscaglia | Existence of equilibria in articulated bearings in presence of cavity[END_REF] the authors proved the uniqueness of solutions to the 1-dimension problem for a particular function h 0 .

Results of global existence and barrier functions are presented in the following theorem: Theorem 2.3. We assume that h 0 satisfy assumption 2.9 in case I or 2.10 in case II for α satisfying

(2.13) α ≥ 3 2 in Case I (line contact) α ≥ 2
in Case II (point contact) , then T = +∞. Moreover, there exist constants m 0 , M 0 and M 1 such that 0 < m 0 ≤ M 0 and M 1 ≥ 0 satisfying ∀t ≥ 0:

m 0 ≤ η(t) ≤ M 0 |η ′ (t)| ≤ M 1 , for t ≥ 0.
Remark 2.2. For the one-dimensional problem, i.e. Ω is an interval of IR, the results are the same than in the case II (line contact) for the two-dimensional problem.

Some relevant questions concerning the dynamical system (1.6) remain open: -Uniqueness of solution for the steady states.

-Stability of the steady states.

-Existence of periodic solutions.

-The Attractor of the dynamical system. Theorem 2.4. We assume that h 0 ≡ 0 (Case III), then T = +∞, moreover there exist M 0 , M 1 > 0 such that

0 < η(t) ≤ M 0 |η ′ (t)| ≤ M 1 , for t ≥ 0 and η(t) → 0 as t → +∞. Moreover there exist t 0 ≥ 0, a > 0 and b ∈ IR with t 0 + b > 0, such that η(t) ≥ a √ t + b ∀ t ≥ t 0 .
In addition, no stationary solution exist for the system (1.6).

Remark 2.3. The same result can be obtained for the corresponding one-dimensional problem.

3. Some preliminary results on the function G

3.1.

Results for h 0 satisfying (1.1) (all cases are included). In this subsection we proof some preliminary results on G under the minimal hypothesis (1.1). Let V 1 be defined as follows

(3.14) V 1 = sup x∈Ω - ∂h 0 ∂x 1 (x) It is clear that V 1 ≥ 0. Lemma 3.1. i) There exists c 1 > 0 such that G(β, γ) ≤ c 1 β 3 -F ∀β > 0, γ ≥ 0. ii) G(β, γ) = -F ∀β > 0, γ ≥ V 1 .
Proof. i) We take ϕ = 0 and ϕ = 2q in (1.7) to have

Ω (h 0 + β) 3 |∇q| 2 = Ω h 0 ∂q ∂x 1 -γ Ω q.
We use the inequalities h 0 + β ≥ β, γ ≥ 0, q ≥ 0 to obtain

β 3 Ω |∇q| 2 ≤ Ω h 0 ∂q ∂x 1 .
We use the Poincaré inequality and the proof of case i) ends.

ii) The inequality (1.7) can be written:

Ω (h 0 + β) 3 ∇q • ∇(ϕ -q) ≥ - Ω ∂h 0 ∂x 1 + γ (ϕ -q) dx, ∀ϕ ∈ K. Since γ + ∂h 0 ∂x 1 ≥ 0, ∀ x ∈ Ω
we have that q = 0 which gives the result.

The rest of the results enclosed in this section concern the function G(β, γ) when γ ≤ 0. We begin by a general result on variational inequalities.

Lemma 3.2. Let a ∈ L ∞ (Ω) such that inf Ω a > 0. Let f ∈ H -1 (Ω)
and q ∈ K be the solution of the problem

(3.15) Ω a∇q • ∇(ϕ -q) ≥ < f, ϕ -q >,
for all ϕ ∈ K.

Let U ⊂ Ω arbitrary and open, and let r ∈ H 1 0 (U) the solution to

(3.16) U a∇r • ∇ψ = < f, ψ >, for all ψ ∈ H 1 0 (U).
Then q ≥ r on U.

Proof. We consider ψ ∈ H 1 0 (U), ψ ≥ 0 arbitrary, and we extend it to Ω by 0 and denote the extended function by ψ which belongs to K. For simplicity we omit the tilde. We take ϕ = q + ψ in (3.15) to obtain (3.17)

U a∇q • ∇ψ ≥ < f, ψ >,
Let us denote ξ = qr. From (3.16) and (3.17) we have

(3.18) U a∇ξ • ∇ψ ≥ 0,
for any ψ ∈ H 1 0 (U), ψ ≥ 0. On the other hand we have ξ ≥ 0 on ∂U. From the maximum principle we obtain ξ ≥ 0 on U which proves the lemma.

The following result is a consequence of the above lemma and nonnegativity of the solution q to (1.7) in Ω.

Corollary 3.1. Let us denote for any open set U ⊂ Ω and any β > 0 by q 1β and q 2β the solutions to the following problems

(3.19)    -∇ • [(h 0 + β) 3 ∇q 1β ] = -∂h 0 ∂x 1 on U q 1β = 0, on ∂U and (3.20)    -∇ • [(h 0 + β) 3 ∇q 2β ] = 1 on U q 2β = 0, on ∂U
respectively. We then have

(3.21) G(β, γ) ≥ U q 1β dx -γ U q 2β dx -F.
for all β > 0, γ ∈ IR and U ⊂ Ω open.

Remark 3.1. The expressions U q 1β dx and U q 2β dx represent the force "F S " and the damping coefficient "d" respectively, as we described in the Introduction.

3.2.

The case of non-horizontal slider. In this subsection we assume h 0 = 0 and also that h 0 satisfies the hypothesis of Cases I or II (line contact and point contact case respectively). We prove the existence of a sub-domain U ⊂ Ω such that the averages of the corresponding functions q 1β and q 2β are "large" in some sense when β is small. We denote by ρ ≥ 0 and θ ∈ [0, 2π] the polar coordinates of (x 1 , x 2 ). 

∂h 0 ∂x 1 ≤ -c 2 β 1-1/α on B l,β .

b) Case II. (Contact point)

There exists θ 0 ∈ ]0, π 2 [, c 2 , β 0 > 0 and the sector B p,β defined by

B p,β = {(x 1 , x 2 ) ∈ IR 2 ; β 1/α ≤ ρ ≤ 2β 1/α ; π -θ 0 ≤ θ ≤ π + θ 0 } such that for any 0 < β ≤ β 0 : ∂h 0 ∂x 1 ≤ -c 2 β 1-1/α on B p,β .
Proof. a) We have for x 1 ≤ 0

∂h 0 ∂x 1 = -α(-x 1 ) α-1 h 1 +(-x 1 ) α ∂h 1 ∂x 1 = (-x 1 ) α-1 h 1 (x) -α -x 1 ∂h 1 ∂x 1 h 1 (

x) .

Since h 1 > 0 on W we obtain

x 1 ∂h 1 ∂x 1 h 1 (x) -→ 0 when x -→ 0
and the result is obvious. b) For any x in W -{0} we have

∂h 0 ∂x 1 = α|x| α-1 x 1 |x| h 1 + |x| α ∂h 1 ∂x 1 = |x| α-1 h 1 α x 1 |x| + |x| ∂h 1 ∂x 1 h 1 . Now we can chose θ 0 ∈]0, π 2 [ such that x 1 |x| < -1 2 if π -θ 0 ≤ θ ≤ π + θ 0 (choose for example θ 0 = π 6
). On the other hand we have

|x| ∂h 1 ∂x 1 h 1 -→ 0 when x -→ 0
which proves the lemma.

Lemma 3.4. Let us consider q 1β , q 2β the solutions to (3.19)- (3.20) where U is given by U := B l,β in case I, U := B p,β in case II, with B l,β and B p,β defined in Lemma 3.3. Then there exists β 0 , c 3 , c 4 > 0 such that for any β ∈]0, β 0 ] we obtain

(3.22) B l,β q 1β (x)dx ≥ c 3 β 2(1/α-1) in case I B p,β q 1β (x)dx ≥ c 3 β 3/α-2 in case II moreover (3.23) B l,β q 2β (x)dx ≥ c 4 β 3(1/α-1) in case I B p,β q 2β (x)dx ≥ c 4 β 4/α-3 in case II.
Proof. From (3.20) we deduce

(3.24) U q 2β dx = U (h 0 + β) 3 |∇q 2β | 2 dx.
From the equality

U (h 0 + β) 3 ∇q 2β • ∇ϕ = U ϕ, for all ϕ ∈ H 1 0 (U)
and Cauchy-Schwarz inequality, we get

(3.25) U (h 0 + β) 3 |∇q 2β | 2 dx ≥ sup ϕ∈H 1 0 (U ), ϕ =0 U ϕdx 2 U (h 0 + β) 3 |∇ϕ| 2 .
It suffices to find appropriate test functions ϕ ∈ H 1 0 (U), ϕ = 0 such that the term

( U ϕdx) 2 U (h 0 + β) 3 |∇ϕ| 2 is large enough.
Proof of (3.23) Case I: Line contact. We choose

ϕ(x 1 , x 2 ) = ψ 1 x 1 β 1/α ψ 2 (x 2 )
with

ψ 1 ∈ D(] -2, -1[), ψ 1 ≥ 0, ψ 1 ≡ 0 and ψ 2 ∈ D(] -δ 2 , δ 2 [), ψ 2 ≥ 0, ψ 2 ≡ 0. Then B l,β ϕ dx = -β 1/α -2β 1/α δ 2 -δ 2 ψ 1 x 1 β 1/α ψ 2 (x 2 )dx 1 dx 2 = β 1/α -1 -2 ψ 1 (y 1 )dy 1 δ 2 -δ 2 ψ 2 (x 2 )dx 2 and B l,β (h 0 + β) 3 |∇ϕ| 2 dx = -β 1/α -2β 1/α δ 2 -δ 2 (h 0 +β) 3 1 β 2/α |ψ ′ 1 x 1 β 1/α ψ 2 (x 2 )| 2 + |ψ 1 x 1 β 1/α ψ ′ 2 (x 2 )| 2 dx .
It is easy to show that

B l,β (h 0 + β) 3 |∇ϕ| 2 dx ≤ c ′ 2 β 3-1/α
where c ′ 2 > 0 is a constant independent on β. (3.25) implies

B l,β (h 0 + β) 3 |∇q 2β | 2 dx ≥ c 3 β 3(1/α-1)
and thanks to (3.24) we obtain (3.23) 1 .

Case II: Contact point. We choose ϕ(

x 1 , x 2 ) = ψ 3 ( ρ β 1/α )ψ 4 (θ) with ψ 3 ∈ D(]1, 2[), ψ 3 ≥ 0, ψ 3 ≡ 0, and ψ 4 ∈ D(]π -θ 0 , π + θ 0 [), ψ 4 ≥ 0, ψ 4 ≡ 0.
In polar coordinates, we have

B p,β ϕ dx = 2β 1/α β 1/α π+θ 0 π-θ 0 ψ 3 ρ β 1/α ψ 4 (θ)ρdρdθ = β 2/α 2 1 ψ 3 (ρ 1 )ρ 1 dρ 1 π+θ 0 π-θ 0 ψ 4 (θ) dθ and B p,β (h 0 + β) 3 |∇ϕ| 2 dx = B p,β (h 0 +β) 3 1 β 2/α ψ ′ 3 ρ β 1/α 2 |ψ 4 (θ)| 2 + 1 ρ 2 ψ 3 ρ β 1/α 2 |ψ ′ 4 (θ)| 2 .
We easily obtain

B p,β (h 0 + β) 3 |∇ϕ| 2 dx ≤ c ′ 2 β 3 ,
where c ′ 2 > 0 is a constant independent of β. From (3.25) we obtain

B p,β (h 0 + β) 3 |∇q 2β | 2 dx ≥ c 3 β 4/α-3 ,
and by (3.24) we get (3.23) 2 .

Proof of (3.22) From lemma 3.3 we have

- ∂h 0 ∂x 1 ≥ c 2 β 1-1/α on B l,β (in case I)
and

- ∂h 0 ∂x 1 ≥ c 2 β 1-1/α on B p,β (in case II).
By maximum principle we deduce the inequality

q 1β ≥ c 2 β 1-1/α q 2β , on B l,β (respectively B p,β ).
By (3.23) the proof ends.

The following corollary is a consequence of Corollary 3.1 and Lemma 3.4. Corollary 3.2. For any β ∈ ]0, β 0 ] and γ ≤ 0 we have

G(β, γ) ≥ c 3 β 2(1/α-1) -γc 4 β 3(1/α-1) -F, in case I or G(β, γ) ≥ c 3 β 3/α-2 -γc 4 β 4/α-3 -F, in case II.
with β 0 , c 3 , c 4 as in Lemma 3.4.

Proof of the main results

We consider η(t) the solution of the Cauchy problem (1.6) defined on the maximal interval [0, T [. 4.1. Bounds on η for the non-horizontal slider case. In this subsection we assume that h 0 satisfies the hypothesis of Cases I or II (line contact and point contact case respectively). We prove that η and η ′ are bounded and η reminds "far" from 0. We first prove in Proposition 4.1 that η ′ admits an upper bound and the same for η in Proposition 4.2. These results are needed to prove the existence of lower bounds for η ′ (Propostion 4.3) and η (Proposition 4.4) Let V 2 be defined by (4.26)

V 2 = max{η 1 + 1, V 1 }
for V 1 as in (3.14), then we have:

Proposition 4.1. η ′ (t) < V 2 ∀t ∈ [0, T [.
Proof. We argue by the contrary and assume that t 1 > 0 is the first point such that η ′ (t 1 ) = V 2 , which implies η ′′ (t 1 ) ≥ 0 which contradicts Lemma 3.1 ii) where η ′′ (t 1 ) = -F.

We introduce two energies E 1 , E 2 :]0, +∞[×IR → IR defined by

E 1 (β, γ) = 1 2 γ 2 + F β and E 2 (β, γ) = 1 2 γ 2 + F β + c 1 2β 2 for c 1 as in Lemma 3.1.
The energies E 1 and E 2 are used in the following lemma when η(t) is non-increasing or non-decreasing respectively.

Lemma 4.1. For any t ∈ [0, T [ we have i) d dt E 1 (η(t), η ′ (t)) ≤ 0 if η ′ (t) ≤ 0 ii) d dt E 2 (η(t), η ′ (t)) ≥ 0 if η ′ (t) ≥ 0.
Proof. i) We multiplying the equation

η ′′ + F = G(η, η ′ ) + F
by η ′ and use the inequality G(η, η ′ ) + F ≥ 0 to obtain the result. ii) From Lemma 3.1 i) we have

η ′′ - c 1 η 3 + F ≤ 0.
We multiply by η ′ to end the proof.

Let D 1 and D 2 be defined by

D 1 := c 1 F 1/3
and

D 2 := 2 max η 0 , D 1 , 1 F 1 2 η 2 1 + F η 0 + c 1 2η 2 0 , 1 F 1 2 V 2 2 + F D 1 + c 1 2D 2 1 . Proposition 4.2. η(t) < D 2 ∀t ∈ [0, T [.
Proof. By the contrary we assume that t 3 > 0 is the first time such that (4.27)

η(t 3 ) = D 2 .
Then, it results that η ′ (t 3 ) > 0 or η ′ (t 3 ) = 0 . In the last case, since

η(t 3 ) > D 1 , Lemma 3.1 i) implies η ′′ (t 3 ) = G(η(t 3 ), 0) < 0.
So, in both cases, since η ∈ C 2 , there exists

t 1 ∈ [0, t 3 [ such that η ′ (t) ≥ 0, ∀t ∈ [t 1 , t 3 ],
where t 1 is the smallest number with this property. Two options concerning t 1 are possible: Option 1: t 1 = 0. In this case, we have

η ′ (t) ≥ 0, ∀t ∈ [0, t 3 ].
From Lemma 4.1 ii) we obtain

E 2 (η(t 3 ), η ′ (t 3 )) ≤ E 2 (η 0 , η 1 )
which implies

η(t 3 ) ≤ 1 F 1 2 η 2 1 + F η 0 + c 1 2η 2 0
and contradicts (4.27). Option 2:

t 1 ∈ ]0, t 3 [. We have in this case η ′ (t 1 ) = 0, η ′ (t) ≥ 0 ∀t ∈ [t 1 , t 3 ] which implies η ′′ (t 1 ) ≥ 0. From Lemma 3.1 i) we obtain c 1 η 3 (t 1 ) ≥ F that is η(t 1 ) ≤ D 1 . Let t 2 ∈ [t 1 , t 3 ] be a time such that η(t 2 ) = D 1 .
From Lemma 4.1 ii) and Proposition 4.1 we have

E 2 (η(t 3 ), η ′ (t 3 )) ≤ E 2 (η(t 2 ), η ′ (t 2 )) ≤ 1 2 V 2 2 + F D 1 + c 1 2D 2 1
which implies

η(t 3 ) ≤ 1 F 1 2 V 2 2 + F D 1 + c 1 2D 2 1
and contradicts (4.27) and the proof ends.

We define V 3 as follows (4.28)

V 3 := max 1 -η 1 , 2 2F D 2 , 2 η 2 1 + 2F η 0 . Proposition 4.3. η ′ (t) > -V 3 , ∀t ∈ [0, T [.
Proof. We argue by the contrary and assume that t 2 ∈]0, T [ is the first time such that

(4.29) η ′ (t 2 ) = -V 3 .
We have two options:

Option I. η ′ (t) ≤ 0, ∀t ∈ [0, t 2 ]. From Lemma 4.1 i) we have E 1 (η(t 2 ), η ′ (t 2 )) ≤ E 1 (η 0 , η 1 ) which implies 1 2 |η ′ (t 2 )| 2 ≤ 1 2 η 2 1 + F η 0 and contradicts (4.

29).

Option II: There exists

t 1 ∈ ]0, t 2 [ such that η ′ (t 1 ) = 0 and η ′ (t) ≤ 0 ∀t ∈ [t 1 , t 2 ]. Then E 1 (η(t 2 ), η ′ (t 2 )) ≤ E 1 (η(t 1 ), 0) which combined with Proposition 4.2 implies 1 2 |η ′ (t 2 )| 2 ≤ F D 2
and contradicts (4.29).

The most difficult part is to obtain a lower bound of η (Proposition 4.4). Before we remark that from Corollary 3.2 we have By definition of D 3 we have:

D 3 := 2 3 min η 0 , c 3 F 1/s 1 , (4.34)        D 4 = 1 2 min{η 0 , β 0 , c 3 F 1/s 1 , D -s 2 3 + s 2 c 4 V 3 -1/s 2 } if s 2 > 0 and D 4 = 1 2 min{η 0 , β 0 , c 3 F 1/s 1 , D 3 e -V 3 /c 4 } if s 2 = 0.
(4.38) η ′ (t 1 ) ≤ 0, η ′ (t 2 ) ≤ 0 c 3 η(t) -s 1 > F, ∀t ∈ [t 1 , t 2 ].
We first see

(4.39) η ′ (t) ≤ 0, ∀t ∈ [t 1 , t 2 ].
Suppose that (4.39) is false, then there exists τ ∈]t 

η ′′ ≥ -c 4 η ′ η -1-s 2 on [t 1 , t 2 ].
Case i): s 2 > 0.

We integrate (4.41) to deduce

η ′ (t) ≥ η ′ (t 1 ) + c 4 s 2 η(t) -s 2 - c 4 s 2 η(t 1 ) -s 2 , ∀t ∈ [t 1 , t 2 ]
and thanks to (4.39) and Proposition 4.3 applied for t = t 1 we obtain

c 4 s 2 η(t 2 ) -s 2 ≤ c 4 s 2 η(t 1 ) -s 2 + V 3 . Since η(t 1 ) = D 3 it results η(t 2 ) ≥ D -s 2 3 + s 2 c 4 V 3 -1/s 2
which contradicts (4.36).

Case ii): s 2 = 0. We integrate (4.41) to obtain

η ′ (t) ≥ η ′ (t 1 ) + c 4 log 1 η(t) -c 4 log 1 η(t 1 ) , ∀t ∈ [t 1 , t 2 ]
which implies

c 4 log 1 η(t 2 ) ≤ c 4 log 1 η(t 1 ) + V 3 . Then η(t 2 ) ≥ D 3 e -V 3 /c 4
which contradicts (4.36).

4.2. Bounds on η for the flat case. We consider the case h 0 ≡ 0. Let us introduce the auxiliary function w defined as the unique solution to the problem By maximum principle we have w > 0 on Ω which implies C(Ω) > 0.

In the following, for any real number z we denote z + = max{z, 0} (positive part) and z -= -min{z, 0} (negative part). We have the identity z = z +z -.

Lemma 4.2. η satisfies the following differential equation

η ′′ = C(Ω) (η ′ ) - η 3 -F.
Proof. For h 0 ≡ 0 the inequality (1.7) becomes (4.43)

β 3 Ω ∇q • ∇(ϕ -q) ≥ -γ Ω (ϕ -q), ∀ ϕ ∈ K.
The required result is a direct consequence of the following facts -if γ ≥ 0 the solution of (4.43) is q = 0 -if γ < 0 the solution of (4.43) is q = -γw β 3 . The bounds on η and η ′ can be summarized in the following proposition Proposition 4.5. The following inequalities are valid: I) For η 1 ≤ 0 and t ∈ ]0, T [ we have

Ia) -η 2 1 + 2F η 0 ≤ η ′ (t) < 0 Ib) η 0 C(Ω) C(Ω)+2η 2 0 F t-2η 2 0 η 1 1/2 ≤ η(t) ≤ η 0 .
II) For any η 1 > 0 we define t 0 = η 1 F and η0 = η 0 + η 2 1 2F , then t 0 < T and we have IIa) η(t) = -1 2 F t 2 + η 1 t + η 0 for t ∈ [0, t 0 ] IIb) -√ 2F η0 ≤ η ′ (t) < 0 for t ∈ ]t 0 , T [

IIc) η0 C(Ω) C(Ω)+2η 2 0 F (t-t 0 ) 1/2
≤ η(t) ≤ η0 for t ∈ ]t 0 , T [.

Proof. I)

We assume that η 1 ≤ 0. Then, Lemma 4.2 implies η ′′ (0) = -F and therefore there exists a point t 1 ∈ ]0, T ] such that η ′ (t) < 0, ∀ t ∈ ]0, t 1 [, where t 1 denotes the largest element with this property. We now prove (4.44) η ′ (t) < 0, ∀ t ∈ ]0, T [, which is equivalent to assert t 1 = T . In order to prove (4.44) we argue by contradiction and assume t 1 < T and η ′ (t 1 ) = 0 which implies η ′′ (t 1 ) ≥ 0 and contradicts η ′′ (t 1 ) = -F which is obtained from Lemma 4.2 and proves (4.44). (4.44) implies (4.45)

η ′′ = -C(Ω) η ′ η 3 -F on [0, T [.
We multiply by η ′ to obtain that 1 2 (η ′ ) 2 +F η is a non-increasing function on [0, T ]. This completes the proof of the double inequality in Ia). Since η is a non-increasing function, we deduce the inequality of the right-hand side of Ib). Now we integrate (4.2) over [0, t[ to obtain

η ′ = η 1 + C(Ω) 2η 2 - C(Ω) 2η 2 0 -F t.
Thanks to η ′ < 0 of Ia) we obtain C(Ω) 2η 2 < C(Ω) 2η 2 0 + F tη 1 on ]0, T [ which completes the proof of Ib). II) we assume that η 1 > 0. Then, Lemma 4.2 implies η ′′ = -F for t ∈ [0, t 0 ] which proves IIa). Since η ′ (t 0 ) = 0 and η(t 0 ) = η0 the proofs of IIb) and IIc) are similar to the proofs of Ia) and Ib) respectively.

4.3.

Proofs of the theorems. Proof of Theorem 2.1. Let us fix β > 0 and γ ∈ IR and take β > 0 and γ ∈ IR such that ( β, γ) are close enough to (β, γ). We denote by q ∈ K the solution to the Reynolds inequality

Ω h 0 + β 3 ∇q • ∇(ϕ -q) ≥ Ω h 0 ∂ ∂x 1 (ϕ -q) -γ Ω (ϕ -q), ∀ϕ ∈ K
which can be written in the form

Ω (h 0 + β) 3 ∇q • ∇(ϕ -q) ≥ Ω h 0 ∂ ∂x 1 (ϕ -q) -γ Ω (ϕ -q)+ + (β -β) Ω A β, β(x)∇ q • ∇(ϕ -q) (4.46)

Lemma 3. 3 .

 3 a) Case I. (Line contact) There exist δ, β 0 , c 2 > 0 and B l,β defined by B l,β :=] -2β 1/α , -β 1/α [ × ]δ, δ[ such that for any 0 < β ≤ β 0 we have

( 4 . 4 α

 44 30) G(β, γ) ≥ c 3 β -s 1c 4 γβ -1-s 2 -F, ∀β ∈]0, β 0 ], ∀γ ≤ 0where β 0 , c 3 , c 4 were defined in Lemma 3in Case II, Notice that s 1 > 0 and s 2 ≥ 0. Let D 3 and D 4 > 0 be defined by(4.33) 

2 in

 2 Case I (line contact) or α ≥ 2 in Case II (point contact) we have η(t) > D 4 , ∀t ∈ [0, T [. Proof. By the contrary we assume t 2 ∈ ]0, T [ is the first time such that (4.36) η(t 2 ) = D 4 .Notice that η 0 > D 3 > D 4 . Let t 1 ∈]0, t 2 [ be the last point where (4.37) η(t 1 ) = D 3 .

  1 , t 2 [ such that η ′ (τ ) > 0.Let τ 1 be the supremum of τ ∈]t 1 , t 2 [ satisfying η ′ (τ ) > 0. It is clear that τ 1 < t 2 and it is a local maximum of η which implies

	(4.40)	η ′ (τ 1 ) = 0 η ′′ (τ 1 ) ≤ 0.
	Then from (4.30) and (4.38) we have
		η ′′ (τ 1 ) = G(η(τ 1 ), 0) ≥	c 3 η(τ 1 ) s 1 -F > 0
	which contradicts (4.40). Then (4.39) is proved.
	Combining (4.30) and (4.38) we deduce
	(4.41)	

where A β, β is uniformly bounded in β. We take ϕ = q in (1.7), ϕ = q in (4.46) and we add both inequalities to get

By Poincaré inequality the proof ends. Proof of Theorem 2.2. Let us introduce the function g :]0, +∞[→ IR defined by

From Theorem 2.1, it is clear that g is continuous. Lemma