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, where a wealth of calculation details is presented regarding various polymer chain models and their ability to accurately predict viscoelastic flows. One of the simplest polymer chain idealization is the Bird and Warner's model of finitely extensible nonlinear elastic (FENE) chains. In this work we offer a proof that the steady state 1 configurational distribution equation has unique solutions irrespective of the (outer) flow velocity gradients (i.e. for both slow and fast flows).

Introduction

The viscoelastic flow behavior of polymeric liquids is strongly influenced by the complexity of various inter and intra molecular interactions. At microscopic level, long chain entanglements are a consequence of chain connectivity and backbone uncrossability due to intermolecular repulsive exclusive volume forces. Macromolecules diffusion (and conformational relaxation) is slowed down due to hydrodynamic drag and Brownian forces.

Bird, Curtiss, Armstrong and Hassager, together with their collaborators (see [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF] and references cited therein), enriched significantly Kirkwood's early ideas [START_REF] Kirkwood | Gordon and Breach[END_REF] and produced a general kinetical theoretical framework for both diluted and concentrated polymeric systems. Here, the macromolecules are modeled as freely jointed bead-rod or bead-spring chains. One of the simplest version of this chain model is the (now popular) Bird -Warner's elastic dumbbell chain, that consists of two beads connected by a Finitely Extensible Nonlinear Elastic -aka FENEspring. The salient features of this model, of relevance to this work, are briefly reviewed below, for sake of clarity. Let x ∈ R n , n = 2, 3, denote the (microscopic) dumbbell connector vector, y ∈ R n the (macroscopic) Eulerian position vector. In the absence of inertia and of external forces, the balance of hydrodynamic, Brownian and intermolecular forces results in the so-called Fokker-Planck-Smoluchowski with Dirichlet boundary condition for the configurational function ψ(t, y, x) diffusion equation. In dimensionless form it looks:

∂ ψ ∂t + u • ∇ y ψ = ∇ x • -θx ψ + 1 2De ∇ x ψ + 1 2De
F (c) (x) ψ , over B(0, δ) (1a) ψ| ∂B(0, δ) = 0 (1b)

In the above equation, B(0, δ) is the open ball of radius δ centered at 0, De is the Deborah number and θ = (∇ y u) T is a tensor which represents the (macroscopic) velocity gradient;

the corresponding term accounts for the flow type. The second term in the rhs represents the statistically averaged Brownian force due to thermal fluctuations in the liquid. The last term, F (c) , is the elastic force that accounts for the dumbbell's elastic response to strain input, for which Warner [START_REF] Warner | Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells[END_REF] proposed the following expression (valid for x < δ, with δ a polymer depending parameter):

F (c) (x) = x 1 -( x / δ) 2 (2) 
The above is commonly called the FENE force. Now, as an aside, the model is quite flexible in that it may sustain other types of elastic forces: e.g. Peterlin's force (actually a linearized version of eq.( 2)) usually referred to as FENE-P (see [START_REF] Chilcott | Creeping flow of dilute polymer solutions past cylinders and spheres[END_REF][START_REF] Herrchen | A detailed comparison of various FENE dumbbell models[END_REF]):

F (c) (x) = x 1-< x 2 > / δ2 = x 1-< tr(x ⊗ x) > / δ2 (3) 
Asymptotic solutions to the diffusion equation are known for some steady state flows: see [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF] (for concise presentations see [START_REF] Larson | Constitutive Equations for Polymer Melts and Solutions[END_REF][START_REF] Beris | Thermodynamics of Flowing Systems With Internal Microstructure[END_REF][START_REF] Huilgol | Fluid Mechanics of Viscoelasticity[END_REF][START_REF] Morrison | Understanding Rheology[END_REF][START_REF] Öttinger | Beyond Equilibrium Thermodynamics[END_REF]). They were obtained through series expansions about the (known) equilibrium function ψeq (x).

Next, let (t, y) ∈ R + × (Q ⊂ R n ). The momentum balance equation reads (see [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]):

∂u ∂t + (u • ∇ y ) u = ν∆u -∇ y p + ∇ y • S, over R + × Q (4a) ∇ y • u = 0, over R + × Q (4b)
where ν > 0, u = u(t, y) ∈ R n , p = p(t, y) ∈ R. S(t, y) ∈ Sym(R) is the symmetric extra stress tensor given by ( [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF]):

S(t, y) = µ B(0, δ)
x ⊗ F(x) ψ(t, y, x)dx -

B(0, δ) ψ(t, y, x)dx I (5)
where µ > 0 is a fluid related parameter (actually a given constant).

One observes that whenever the velocity gradient is such that ∂u i /∂y j = a ij = constant, i a ii = 0, and ψ is a solution of (1a)-(1b), then S defined in equation ( 5) is always independent of y, hence ∇ y • S = 0. In such a situation there exist u and p so that (4a)-(4b) are solved.

That this is indeed the case may be inferred from the following. Using Einstein's summation convention over dummy indices,

u i = a ij y j + c, therefore ∂u i ∂y k u k = a ik [a kj y j + c] = a ik a kj y j + d i , d i = c i,k a ik . Hence [∇ y • (u ⊗ u)] i = a ik a kj y j + d i = α ij y j + d i . Therefore ∇ y • (u ⊗ u) may be expressed as ∇ y • (u ⊗ u) = -∇ y p
, where p = -(1/2)α ij y i y jd i y i , since the matrix of entries α ij is symmetric. We conclude that for any traceless matrix A whose entries a ij are constants, and for a steady state, homogeneous flow solution ψ(x) -i.e. independent of t and y -to equations (1a)-(1b), there exists a steady state solution to (4a)-(4b) given by:

u i (x) = a ij y j + c (6a) p = - 1 2 a ik a kj y i y j -c i,k a ik y i (6b)
and with S given by eq [START_REF] Herrchen | A detailed comparison of various FENE dumbbell models[END_REF].

For this work we shall consider u as being given by eq(6a), where A is a given matrix, and we shall prove the existence of a solution ψ, independent of t and y, to (1a)-(1b).

Before proceeding further, we pause for the following important observation. The solution ψ to (1a)-(1b) we inquire about -being a probability density -has to be non-trivial ( ψ = 0), non-negative and integrable. As ψ = 0 is a solution to the aforementioned problem and as we have to mind about non-trivial ones, the solution non-uniqueness must be compulsory. Next, we know from [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Ciuperca | On the optimal control of coefficients in elliptic problems. Applications to the optimization of the head slides[END_REF] that ψ = 0 is the unique solution to (1a)-(1b) whenever

F (c) is an element of L r (B(0, δ)), r > n.
Therefore, what makes possible the existence of non-trivial solutions, is

the fact that F (c) is NOT an element of L r (B(0, δ)), r > n (in fact F (c)
is not an element of L r (B(0, δ)) for any r ≥ 1). 1a) is usually re-written as (see [START_REF] Degond | Viscoelastic fluid models derived from kinetic equations for polymers[END_REF]):

Now, as

F (c) = ∇ xU (x), with U(x) = -δ2 /2 log 1 -x 2 / δ2 , equation (
- 1 2De ∇ x • M (x)∇ x ψ M + ∇ x • θx ψ = 0 (7)
where the function M : B(0, δ) → R is given by:

M (x) = 1 J 1 - x 2 δ2 δ2 /2 (8) 
where J is a normalization constant so that:

B(0, δ) M (x) dx = 1. (9) 
Next, for sake of generality, we replace θx by an arbitrary function k : B(0, δ) → R n , and the problem we focus on can be re-formulated as:

- 1 2De ∇ • M ∇ ψ M + ∇ • k ψ = 0, ∀x ∈ B(0, δ) (10a) ψ| ∂B(0, δ) = 0 (10b) ψ ≥ 0 (10c) B(0, δ) ψ (x) dx = a (10d) 
where a = 1 meas(Q) is a given constant.

Next, for notation convenience, we carry out the variable change x = x/ δ. This transforms

the domain Ω into Ω = B(0, 1) = {x ∈ R n , x ≤ 1}. Let us denote ψ(x) = ψ(x), k(x) = 2 δ De k(x), δ = δ2 /2 and let M : Ω → R, M(x) = (1 -x 2 ) δ .
Then, equations (10a)-(10d) become in Ω:

-∇ • M∇ ψ M + ∇ • (kψ) = 0, ∀x ∈ Ω (11a) ψ| ∂Ω = 0 (11b) ψ ≥ 0 (11c) Ω ψ(x)dx = b (11d)
with b > 0 and k : Ω → R n given. As in practical situations δ is (roughly speaking) close to 10, then δ is close to 50.

The goal of this paper is to prove the existence and uniqueness of a solution to the system of equations (11a)-(11d). We easily see that the aforementioned problem can be also formulated as following: prove that 0 is a simple eigenvalue of the operator (denoted from now on L) defined by the lhs of (11a) and the boundary condition (11b), with a corresponding non-negative and integrable eigenvector. In fact, we will prove that 0 is the principal eigenvalue of L in the sense that the real part of any other eigenvalue of it is non-negative. To achieve this we use the classical Krein-Rutman theorems, in both weak and strong senses, on an appropriate operator obtained from L. This will also entail that ψ is positive over Ω and behaves like M on the boundary ∂Ω.

The boundary value problem problem with unknowns u and ψ as presented in (1a), (1b), (4a), (4b), [START_REF] Herrchen | A detailed comparison of various FENE dumbbell models[END_REF] has attracted the attention of several investigators working in the area. For instance, in [START_REF] Zhang | Local existence for the FENE-dumbbell model of polymeric fluids[END_REF] Zhang and Zhang proved the existence of a local in time, regular solution to the system formed by equations (1a), (1b), (4a), (4b), and [START_REF] Herrchen | A detailed comparison of various FENE dumbbell models[END_REF]. The existence of a global in time solution was proved in [START_REF] Lin | On the global existence of smooth solution to the 2-D FENE Dumbell Model[END_REF] by Lin et al, and that in a particular case referred to as the "co-rotational" velocity field, that is, in equation (1a) the term θ = (∇u) T is replaced by θ = ∇ y u -(∇ y u) T . Moreover, for this same system of equations, in [START_REF] Barret | Existence of global weak solutions for some polymeric flow models[END_REF], Barret et al offered a proof for the existence and uniqueness of a solution to a regularized problem associated to the system (1a), (1b), (4a),(4b), [START_REF] Herrchen | A detailed comparison of various FENE dumbbell models[END_REF]. Next, in [START_REF] Jourdain | Existence of solution for a micro-macro model of polymeric fluid: the FENE model[END_REF] Lelièvre et al proved the existence and uniqueness of a local in time solution to the one dimensional motion system of equations in which the Fokker-Planck-Smoluchowski equation is replaced by a stochastic diffusion differential equation.

In [START_REF] Du | FENE dumbbell model and its several linear and nonlinear closure approximations[END_REF] Du et al focused on the Fokker-Plank-Smoluchowski evolution equation only, assuming a steady and homogeneous macroscopic velocity field. For this they proved the global in time existence and uniqueness of a solution. For the corresponding steady state problem, the forementioned authors proved the existence of a solution only in the particular case where the tensor θ in (1a) is either symmetric or antisymmetric. Some of their numerical simulations suggest the existence of steady-state solutions for arbitrary θ.

In this work we do prove the existence and uniqueness of steady state solutions for arbitrary θ.

As an aside, in [START_REF] Degond | Viscoelastic fluid models derived from kinetic equations for polymers[END_REF] Degond et al provided arguments in support of the validity of an asymptotic expansion solution, valid for small De numbers, first obtained in [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF].

This paper is organized as follows:

• in Section 2 we state the main steady state existence and uniqueness result,

• Section 3 addresses some important functional analysis preliminaries,

• Section 4 is devoted to proving the conclusive existence and uniqueness result.

2 Functional framework. Presentation of the main result.

Let the following spaces be defined as:

L 2 M ≡ L 2 M (Ω) := u ∈ L 1 loc (Ω), Ω u 2 M dx < ∞ (12) 
H 1 M ≡ H 1 M (Ω) := u ∈ L 1 loc (Ω), Ω u 2 M + M ∇ u M 2 dx < ∞ (13) 
endowed with the norms

Ω u 2 M dx 1/2
and respectively

Ω u 2 M + M ∇ u M 2 dx 1/2 .
It is clear that L 2 M is a Hilbert space. To see that H 1 M is also a Hilbert space, let us remark that

H 1 M = M • Ĥ1 M with Ĥ1 M = v ∈ L 1 loc (Ω), Ω (Mv 2 + M |∇v| 2 )dx < ∞ .
It is well-known, as being a classical weighted Sobolev space, that Ĥ1 M is complete (see for exemple Theorem 3.2.2.(a) in Triebel's monograph [START_REF] Triebel | Interpolation Theory, Function Spaces, Differential Operators[END_REF]) when endowed with the norm

Ω (Mv 2 + M |∇v| 2 )dx 1/2 . Since the application ψ ∈ Ĥ1 M → Mψ ∈ H 1 M is an isometry, we deduce that H 1 M is complete. For any ϕ ∈ H 1 M (Ω) we denote |ϕ| 1 the semi-norm on H 1 M defined by |ϕ| 2 1 := Ω M ∇ ϕ M 2 dx.
Moreover, (H 1 M (Ω))

′ denotes the corresponding dual space and one has the canonical embedding

L 2 M ⊂ H 1 M (Ω) ′ .
We now endeavor to search for solutions to equations (11a)-(11d) that are elements of H 1 M , as the trace on ∂Ω of any u ∈ H 1 M (Ω) is zero (see also Proposition 3.3).

To achieve this goal, equation (11a) is first multiplied by ϕ/M, with ϕ ∈ D(Ω) and next integrated over Ω. It gives:

Ω M∇ ψ M • ∇ ϕ M dx - Ω kψ • ∇ ϕ M dx = 0 (14) Definition 2.1. ψ ∈ H 1 M (Ω)
is a weak solution of the system (11a)-(11d), provided that:

Ω M∇ ψ M • ∇ ϕ M dx - Ω kψ • ∇ ϕ M dx = 0, ∀ϕ ∈ H 1 M (Ω) ( 15 
)
and moreover, (11c) and (11d) are satisfied.

Next, let the operator L :

H 1 M (Ω) → (H 1 M (Ω))
′ be defined as:

L(u), ϕ := Ω M∇ u M • ∇ ϕ M dx - Ω ku • ∇ ϕ M dx, ∀ϕ ∈ H 1 M (Ω) (16) 
Now, L is well-defined, due to:

Ω M∇ u M • ∇ ϕ M dx - Ω ku • ∇ ϕ M dx ≤ ≤ Ω M 1/2 ∇ u M • M 1/2 ∇ ϕ M dx + Ω |k| u M 1/2 M 1/2 ∇ ϕ M dx ≤ u H 1 M ϕ H 1 M + k L ∞ u L 2 M ϕ H 1 M It is now clear that our problem is tantamount to finding an element ψ ∈ H 1 M such that Lψ = 0 (17a) ψ ≥ 0 (17b) Ω ψ(x)dx = b, (17c) 
that is, ψ must by a non-negative and integrable eigenvector of L corresponding to the eigenvalue 0.

For any β ≥ 0, let:

X β := ϕ ∈ C Ω , ∃c ≥ 0 s.t. |ϕ(x)| ≤ cM β (x), ∀x ∈ Ω . ( 18 
)
X β is a Banach space endowed with the norm

ϕ X β := sup x∈Ω |ϕ(x)| M β (x) = inf c ≥ 0 s.t. |ϕ(x)| ≤ cM β (x), ∀x ∈ Ω . ( 19 
) Remark 2.1. X 0 = C 0 Ω , endowed with the usual norm ϕ X 0 = sup x∈Ω |ϕ|. Remark 2.2. For β 1 < β 2 , the continuous inclusion X β 2 ⊂ cont X β 1 holds true.
Let the cone P β ⊂ X β be defined as:

P β := {ϕ ∈ X β , ϕ(x) ≥ 0, ∀x ∈ Ω} . ( 20 
)
It is clear that P β is a reproducible cone for the space X β , that is

X β = P β -P β .
It can be easily seen the interior

• P β of P β is given by:

• P β = ϕ ∈ X β s.t. inf x∈Ω ϕ(x) M β (x) > 0 = ϕ ∈ X β , ∃c 1 > 0 s.t. ϕ(x) ≥ c 1 M β (x), ∀x ∈ Ω = ϕ ∈ C (Ω), ∃c 1 , c 2 ; 0 < c 1 < c 2 , s.t. c 1 M β (x) ≤ ϕ(x) ≤ c 2 M β (x), ∀x ∈ Ω . ( 21 
)
We now state the cornerstone result of this paper:

Theorem 2.1. [Existence and uniqueness theorem] Let b > 0, δ ≥ 8 and k ∈ (W 1,∞ (Ω)) n .
Then there exists an unique solution ψ to the system ( (17a)-( 17c)). Moreover, this solution belongs to

• P 1 which amounts to say that ψ is continuous in Ω, and there exist c 1 , c 2 with

0 < c 1 < c 2 such that c 1 M(x) ≤ ψ(x) ≤ c 2 M(x), ∀ x ∈ Ω.
Remark 2.3. We assume throughout this paper that δ and k comply with the hypotheses of Theorem 2.1. Given the physical model under consideration (for which we gave a suitable description in the Introduction section), such an assumption does not lower down the level of generality.

3 Several preliminary results

Basic facts

In the following we denote for any real α the operator L α :

H 1 M (Ω) → (H 1 M (Ω))
′ given by

L α = L + αI d , I d being the identity operator.
It is assumed, throughout this paper, that α is large enough so that:

α ≥ max 1 2 k L ∞ (Ω) + 1, 4λ 2 0 + λ 0 n + 2λ 0 k L ∞ (Ω) + ∇ • k L ∞ (Ω) (22) 
where

λ 0 = 2( k L ∞ (Ω) + 1) (23) Proposition 3.1. The operator L α is invertible. Proof. Let f ∈ (H 1 M (Ω))
′ , arbitrary. We have to prove the existence of a unique solution

u ∈ H 1 M to a α (u, ϕ) = f, ϕ , ∀ϕ ∈ H 1 M (24)
where, in the above,

a α (u, ϕ) = Ω M∇ u M • ∇ ϕ M dx - Ω ku • ∇ ϕ M dx + α Ω uϕ M dx (25) 
Next, to use the Lax-Milgram theorem, one only needs to prove a α is coercive as all other theorem constitutive assumptions are obviously fulfilled.

The fact that a α is coercive is an immediat consequence of the inequality

Ω kϕ • ∇ ϕ M dx ≤ Ω |k| ϕ M 1/2 M 1/2 ∇ ϕ M dx ≤ 1 2 |ϕ| 2 1 + k 2 L ∞ ϕ 2 L 2 M ( 26 
)
and of the choice of α.

Let then

B α : (H 1 M ) ′ → H 1 M denote the inverse operator of L α .
Clearly

B α ∈ L (H 1 M ) ′ , H 1 M .
and, also,

B α ∈ L L 2 M , L 2 M . Lemma 3.1. [Weak Maximum Principle] Let f ∈ (H 1 M ) ′ , f ≥ 0, and u = B α f . Then u ≥ 0.
Proof. The proof is classical and consists to choose ϕ = u -in the corresponding variational formulation. (see for exemple [START_REF] Evans | Partial Differential Equations[END_REF] for the non-degenerate case M ≡ 1). Assume that L α u ≥ L α v on Ω ′ . Then:

• Case 1. If Ω ′ ⊂ Ω and if u ≥ v on ∂Ω ′ , then u ≥ v on Ω ′ . • Case 2. If Ω -Ω ′ ⊂ Ω and if u ≥ v on ∂(Ω -Ω ′ ), then u ≥ v on Ω ′ . Proof. Let w = u -v ∈ H 1 M (Ω) and f = L α (u -v). Then, for ∀ϕ ∈ H 1 M (Ω), such that
ϕ| Ω-Ω ′ = 0, one has:

Ω ′ M∇ w M • ∇ ϕ M dx ′ - Ω ′ kw • ∇ ϕ M dx ′ + α Ω ′ wϕ M dx ′ = Ω ′ f ϕ M dx ′ (27) 
We now take in 27 ϕ : Ω → R defined by

ϕ =        w - on Ω ′ 0 on Ω -Ω ′ (28) 
and we easily obtain the result.

We now introduce for any β > 0

L 2,β := ϕ ∈ L 1 loc (Ω) s.t. ϕ M β ∈ L 2 (Ω) . (29) 
Actually, L 2,β (Ω) is a Hilbert space endowed with the norm

ϕ L 2,β (Ω) = ϕ M β L 2 (Ω) , ∀ϕ ∈ L 2,β (Ω). ( 30 
)
We have, as a straightforward consequence of Theorem 6.2.5 of [START_REF] Nečas | Les méthodes diréctes en théorie des équations elliptiques[END_REF], the following continuous inclusion:

H 1 M (Ω) ⊂ cont L 2,1/2+1/δ (Ω) (31) 
Next:

Proposition 3.2. (a) If β > 1/2 -1/(2δ), then X β ⊂ cont L 2 M . (b) If β > 1/2 -3/(2δ), then X β ⊂ cont H 1 M ′ .
Proof. (a) Let ϕ ∈ X β , arbitrarily. Then, |ϕ(x)| ≤ M β (x) ϕ X β , from which we get that:

Ω ϕ 2 M dx ≤ ϕ 2 X β Ω M 2β M dx = ϕ 2 X β Ω 1 -x 2 (2β-1)δ dx (32) However, Ω (1 -x 2 ) (2β-1)δ dx < +∞ iff β > 1/2 -1/(2δ). (b) Let ϕ ∈ X β and ψ ∈ H 1 M arbitrarily. We have Ω ϕψ M dx ≤ ϕ X β Ω M β-1 |ψ|dx (33) 
However:

Ω M β-1 |ψ|dx ≤ M -1/2-1/δ ψ L 2 (Ω) = ψ L 2,1/2+1/δ M β-1/2+1/δ L 2 (Ω) (34) 
Moreover, the

L 2 -norm of M β-1/2+1/δ is finite iff β > 1/2 -3/(2δ).
Using also the continuous inclusion [START_REF] Sizaire | On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow[END_REF] we have the result stated.

Proposition 3.3. Let β be such that 0 ≤ β ≤ 1/2-1/δ. Then, for any u ∈ H 1 M , u M β ∈ H 1 0 (Ω); moreover, u M β H 1 ≤ c u H 1 M . Proof. Let v = u M β = u M 1/2 M 1/2-β .
We actually need to prove that

u M 1/2 ∈ H 1 (Ω). From this, since M 1/2-β ∈ C 1 (Ω) and M 1/2-β | ∂Ω = 0, it will follow that v ∈ H 1 0 (Ω).
To begin with, notice first that

u M 1/2 ∈ L 2 (Ω), as u ∈ L 2 M (Ω). Next, ∇ u M 1/2 = ∇ M 1/2 u M = M 1/2 ∇ u M + ∇ M 1/2 u M . ( 35 
) Now, M 1/2 ∇ u M ∈ L 2 (Ω) as u ∈ H 1 M . Let us next show that ∇ M 1/2 u M ∈ L 2 (Ω). One has: ∇ M 1/2 u M = ∇M 2M 3/2 u = u M 1/2+1/δ ∇M 2M 1-1/δ ∈L ∞ (Ω)
.

(36)

Next, by (31) u M 1/2+1/δ ∈ L 2 (Ω), from which we infer that u M 1/2 ∈ H 1 (Ω), and further on that u M β ∈ H 1 0 (Ω). It is easily deduced that:

u M β H 1 0 ≤ c u H 1 M . ( 37 
) Remark 3.1. Taking β = 0 in Proposition 3.3 we deduce that u ∈ H 1 0 (Ω) whenever u ∈ H 1 M (Ω),
which triggers that the trace of u on the boundary ∂Ω is equal to zero.

Proposition 3.4. Let ϕ ∈ X β , β > 1/2 + 1/(2δ), be such that ∇ϕ ∈ (X γ ) n with γ > 1/2 -1/(2δ). Then ϕ ∈ H 1 M . Proof. From Proposition 3.2 a) we have ϕ ∈ L 2 M . Next, Ω M ∇ ϕ M 2 dx = Ω M 1 M ∇ϕ - ∇M M 2 ϕ 2 dx ≤ 2 Ω 1 M |∇ϕ| 2 dx + 2 Ω 1 M 3 |∇M| 2 ϕ 2 dx (38) However, Ω 1 M |∇ϕ| 2 dx ≤ c Ω 1 M M 2γ dx < +∞ ( 39 
)
provided that δ(2γ -1) > -1, which amounts to γ > 1/2 -1/(2δ).

Next,

Ω |∇M| 2 ϕ 2 M 3 dx ≤ c 1 Ω |∇M| 2 M 2β M 3 dx ≤ c 2 Ω 1 -x 2 2(δ-1) 1 -x 2 3δ 1 -x 2 2δβ dx ≤ c 2 Ω 1 -x 2 2δβ+2δ-2-3δ dx (40)
For the above equation ( 40) to hold true it is necessary that 2δβδ -2 > -1, i.e. β > 1/2 + 1/(2δ).

Since M β ∈ X β for any β ≥ 0 we have the following direct consequence of the above result:

Proposition 3.5. For any β > 1/2 + 1/(2δ), we have

M β ∈ H 1 M .

Continuity and compactness properties of B α

The goal now is to appropriately introduce several (Y ′ , Y ′′ ) paires of Banach spaces such that B α is well defined and continuous from Y ′ to Y ′′ . Some compactness properties of B α , needed further on, are also proved.

Lemma 3.3. (i) Let β 2 ∈ R such that 1/2 -3/(2δ) < β 2 ≤ 1/2 -1/δ. Then B α ∈ L(L 2 M , X β 2 ). Moreover, B α is a compact application from L 2 M onto X β 2 . (ii) Let β 1 , β 2 ∈ R such that 1/2 -3/(2δ) < β 2 ≤ 1/2 -1/δ, and 
β 1 ≥ β 2 . Then B α ∈ L(X β 1 , X β 2 ). Moreover, B α is a compact application from X β 1 onto X β 2 .
Proof. The proofs for the above two statements are pretty much similar in nature; henceforth, we offer below a global proof, and pause wherever necessary to particularize it so to get the results in either (i) or (ii). Keeping that in mind, let f ∈ L 2 M (for the (i) part) and f ∈ X β 1

(for the (ii) part) and let u = B α f . Observe that:

L 2 M ⊂ cont. (H 1 M ) ′ (41)
and that

X β 1 ⊂ cont. (H 1 M ) ′ (42) 
as consequences of Proposition 3.2. In both cases f ∈ (H 1 M ) ′ and u ∈ H 1 M solves the equation

-∇ • M∇ u M + ∇ • (ku) + αu = f, u ∈ H 1 M (43)
We also have

u H 1 M ≤ c f L 2 M
for the part (i)

and

u H 1 M ≤ c f X β 1 for the part (ii). Denote v(x) = u(x)/M β 2 (x)
; we first take on to prove that v is bounded on Ω, which prompts that u belongs to X β 2 .

Making use of the fact that u = vM β 2 into (43) leads to:

-∇ • M β 2 (∇v) + (β 2 -1)M β 2 -1 (∇M)v + (∇ • k)M β 2 v +β 2 M β 2 -1 (∇M) • kv + kM β 2 • (∇v) + αM β 2 v = f, ∀x ∈ Ω (44)
which, after a few re-arrangements, can be re-written as:

-△v = g (45) 
where

g = f M β 2 + (2β 2 -1) ∇M M -k • ∇v + (β 2 -1) △M M + (β 2 -1) 2 |∇M| 2 M 2 -∇ • k -β 2 ∇M M • k -α v (46) 
We also deduce from Proposition 3.3 that

v ∈ H 1 0 (Ω) (47) 
In the following we shall obtain some convenient estimates for the function g. We have

∇v = ∇ u M M 1-β 2 = M 1-β 2 ∇ u M + ∇(M 1-β 2 ) u M = M 1/2-β 2 M 1/2 ∇ u M ∈L 2 (Ω) as u∈H 1 M +(1 -β 2 )M -β 2 -1 (∇M)u. ( 48 
)
Using equation ( 46) we get:

g = f M β 2 + M 1/2 g 1 (x) • ∇ u M + g 2 (x)u (49)
where, in the above,

g 1 (x) = (2β 2 -1) ∇M M -k M 1/2-β 2 g 2 (x) = (1 -β 2 ) (2β 2 -1) ∇M M -k • ∇M M β 2 +1 + 1 M β 2 (β 2 -1) △M M + (β 2 -1) |∇M| 2 M 2 -∇ • k -β 2 ∇M M • k -α
For the (i) part of Lemma 3.3 one has:

f M β 2 L 2 ≤ M 1/2-β 2 L ∞ f L 2 M ( 50 
)
while for the (ii) part of Lemma 3.3 one gets:

f M β 2 L 2 ≤ M β 1 -β 2 L ∞ f X β 1 (51) 
Moreover,

∇M M ∼ x →1 1 1 -x 2 = 1 M 1/δ .
Therefore, the above leads to g 1 ∈ L ∞ (Ω). We then deduce g 1 M 1/2 ∇(u/M) ∈ L 2 (Ω) and

g 1 M 1/2 ∇(u/M) L 2 (Ω) ≤ c 1 u H 1 M . (52) 
Now, observe that:

g 2 (x) ∼ x →1 1 M β 2 +2/δ which implies g 2 (x)u ∼ x →1 u M 1/2+1/δ M 1/2-β 2 -1/δ ∈L ∞ , as β 2 ≤1/2-1δ .
We deduce with the help of inclusion (31) that

g 2 u L 2 (Ω) ≤ c 1 u H 1 M (53)
and further on, from (49), ( 50), (51), ( 52) and (53), that

g L 2 (Ω) ≤ c f L 2 M (54)
for part (i), and

g L 2 (Ω) ≤ c f X β 1 (55)
for (ii) part. Thus u ∈ X β 2 and

u X β 2 ≤ c 1 g L 2 (Ω) (56) 
Next, making use of ( 54) and (55), we deduce, for part (i) that B α ∈ L (L 2 M , X β 2 ), and for part

(ii) that B α ∈ L (X β 1 , X β 2 ).
In order to show the compactness of B α , let (f q ) q∈N be a bounded sequence in L 2 M for part (i), and in X β 1 for part (ii), respectively. Denote u q = B α (f q ) ∈ X β 2 , and v q = u q /M β 2 .

Next it is proved that v q is bounded in H 2 (Ω). As the domain Ω is bounded, the inclusion H 2 (Ω) ⊂ C(Ω) is compact; hence there exists a subsequence q ′ of q and a v ∈ C(Ω) such that

v q ′ → C(Ω)
v. Denoting u = vM β 2 , we have that u ∈ X β 2 and sup

x∈Ω |v q ′ (x) -v(x)| M β 2 (x) → 0 q ′ →+∞ . Therefore u q ′ → u q ′ →+∞
with respect to the X β 2 space topology.

For any r > 0, let us denote Ω r := {x : x < r} ≡ B(0, r).

Lemma 3.4. Let β be such that

1/2 + 1/(2δ) < β < 1. Then B α ∈ L (X β-2/δ , X β ).
Proof. Proposition 3.2 b)gives that X β-2/δ ∈ (H 1 M ) ′ (as 1/2 -3/(2δ) < β -2/δ), which entails that the operator B α is well defined over X β-2/δ . Let f ∈ X β-2/δ and u = B α (f ). We have to prove the validity of the following assertion:

There exists A ′ > 0 independent on f such that

AM β (x) -u(x) ≥ 0, ∀x ∈ Ω ( 57 
)
and

AM β (x) + u(x) ≥ 0, ∀x ∈ Ω ( 58 
)
where we denoted A = A ′ f β-2/δ . We shall provide a proof for the first one only, i.e.

for (57), as the other may be proved similarly. The proof for (57) relies on the Comparison Principle stated in Lemma 3.2.

One has:

L α (M β ) = M β (α + ∇ • k) + M β-1 [βk • ∇M + (1 -β)∆M] -M β-2 (1 -β) 2 |∇M| 2 (59) 
As:

∇M = -2δx(1 -x 2 ) δ-1 ∆M = -2nδ(1 -x 2 ) δ-1 + 4δ(δ -1) x 2 (1 -x 2 ) δ-2 then, L α (M β ) = a 0 (x)(1 -x 2 ) δβ-2 + a 1 (x)(1 -x 2 ) δβ-1 + a 2 (x)(1 -x 2 ) δβ , where a 0 (x) = 4δ(1 -β)(δβ -1) x 2 a 1 (x) = -[2δβx • k + 2(1 -β)nδ] a 2 (x) = α + ∇ • k(x) It is clear that a 0 (x) ≥ 0, ∀ x ∈ Ω. Next, since f ∈ X β-2/δ , we deduce -f (x) ≥ -f X β-2/δ M β-2/δ (x) = -f X β-2/δ (1 -x 2 ) δβ-2
Then:

AL α (M β ) -f ≥ [Aa 0 (x) -f X β-2/δ ](1 -x 2 ) δβ-2 + Aa 1 (x)(1 -x 2 ) δβ-1 + Aa 2 (x)(1 -x 2 ) δβ
In the following, we restrict ourselves to Ω -Ω 1/2 , henceforth x ≥ 1/2. Then

a 0 (x) ≥ a 0 0 := δ(1 -β)(δβ -1) > 0, ∀x ∈ Ω -Ω 1/2 and AL α (M β ) -f ≥Aa 0 0 (1 -x 2 ) δβ-2 [1 - f X β-2/δ Aa 0 0 + a 1 (x) a 0 0 (1 -x 2 ) + a 2 (x) a 0 0 (1 -x 2 ) 2 ], ∀x ∈ Ω -Ω 1/2 (60) 
Assume f = 0 (this is not too restrictive as, whenever f = 0, the inequality (57) is satisfied with A = 0).

Let us choose r 0 ∈ 1 2 , 1 close enough to 1 such that

           1 -r 2 0 a 0 0 sup x∈Ω |a 1 (x)| ≤ 1 4 (1 -r 2 0 ) 2 a 0 0 sup x∈Ω |a 2 (x)| ≤ 1 4 (61)
On the other hand, from Lemma 3.3 (ii) with

β 1 = β -2/δ and β 2 = min{β -2/δ, 1/2 -1/δ} we deduce u ∈ X β 2 (since f ∈ X β 1 ) and u C(Ω) ≤ c 1 u X β 2 ≤ c 2 f X β-2/δ (62) Take now A = max 4 a 0 0 , c 2 (1 -r 2 0 ) δβ f X β-2/δ .
Clearly, from (60), ( 61) and (62),

L α (AM β -u) = AL α (M β ) -f ≥ 0 on Ω -Ω r 0 and AM β ≥ u on Ω r 0 .
respectively. Invoking the Comparison Principle (Lemma 3.2) and the fact that u, M β ∈ H 1 M , leads to

AM β ≥ u on Ω -Ω r 0 , which implies AM β ≥ u on Ω.
This ends the proof.

Lemma 3.5. B α ∈ L (X 1-1/δ , X 1 ) Proof. Let f ∈ X 1-1/δ and u = B α (f ). Let W : Ω → R, W (x) = e λ x 2 .
The job is now to prove that there exists λ > 0 and A ′ > 0 independent on f , such that

|u(x)| ≤ AW (x)M(x), ∀x ∈ Ω
where we denoted A = A ′ f X 1-1/δ . Actually we take on to prove AW M ≥ u only, as AW M ≥ -u can be proved similarly. To achieve this, we again make use of the Comparison Principle.

One has:

L α (MW ) = M[-∆W + k • ∇W + (α + ∇ • k)W ] + ∇M • (kW -∇W )
However, ∇W = 2λxW , ∆W = (2λn + λ 2 x 2 )W , hence:

L α (MW ) = MW (-4λ 2 x 2 -λn + 2k • λx + α + ∇ • k) + 2δM 1-1/δ W (2λ x 2 -k • x) (63) 
Let us take λ = λ 0 with λ 0 given in [START_REF] Kato | Perturbation theory for linear operators[END_REF]. We obtain

2λ x 2 -k • x ≥ 1.
From hypothesis ( 22) on α we obtain

-4λ 2 x 2 -λn + 2λk • x + α + ∇ • k ≥ 0 on Ω -Ω 1/2
which gives

L α (MW ) ≥ 2δW M 1-1/δ , ∀x ∈ Ω -Ω 1/2 . (64) 
Next, as f ∈ X 1-1/δ , one gets

-f (x) ≥ -f X 1-1/δ M 1-1/δ (x), ∀x ∈ Ω
and invoking further on (64) leads to:

AL α (MW ) -f ≥ [2δW A -f X 1-1/δ ]M 1-1/δ , ∀x ∈ Ω -Ω 1/2 , ∀A > 0. ( 65 
) Choose A > 0 such that 2δAW (x) ≥ f X 1-1/δ , ∀x ∈ Ω -Ω 1/2 . For instance, any A such that: A ≥ 1 2δ f X 1-1/δ (66) 
will fit in. Then:

L α (AMW -u) ≥ 0 on Ω -Ω 1/2 (67) 
On the other hand, one needs to choose A so that AMW ≥ u holds true over Ω 1/2 . We proceed as in the proof of Lemma 3.4. A sound choice for A is one such that

A min x∈Ω 1/2 W (x) min x∈Ω 1/2 M(x) ≥ max x∈Ω u(x) (68) 
Next, min

x∈Ω 1/2 W (x) = 1, min x∈Ω 1/2 M(x) = (3/4
) δ , and we are left over to inquire about max x∈Ω u(x).

To get an answer to, we shall call in Lemma 3.3 with

β 1 = 1 -1/δ and β 2 = 1/2 -1/δ. One has u C(Ω) ≤ c 1 u X 1/2-1/δ ≤ c 2 f X 1-1/δ .
Then, one may choose A ≥ (4/3) δ c 2 f X 1-1/δ to ensure (68) holds true. Finally, taking into account (66), we are left to choose

A = max{1/(2δ), (4/3) δ c 2 } f X 1-1/δ
and we end the proof exactly as in Lemma 3.4, taking into account the fact that MW ∈ H 1 M , so that the Comparison Principle can be made use of.

Strong Maximum Principle for the B α operator

This section aim is to prove the following "Strong Maximum Principle " property for B α : for

any f ∈ P 1 -{0}, B α f ∈ • P 1 .
The following weaker result is first proved.

Lemma 3.6. Let f ∈ P 1 , f = 0 and u = B α f . Then u(x) > 0, ∀x ∈ Ω.

Proof. We adapt here the classical proof for the case where M is equal to 1 (the non-degenerate case; see for example Gilbarg and Trudinger [12] or Evans [START_REF] Evans | Partial Differential Equations[END_REF]).

We remark first that u is continuous on Ω. Assume ∃x ∈ Ω such that u(x) = 0.

Denote

V e := {x ∈ Ω, u(x) = 0}, V s := {x ∈ Ω, u(x) > 0}, V e ∪ V s = Ω.
By hypothesis V e = ∅, as well as

V s = ∅. It is clear that V s is open and that ∂V e ∂Ω. Let z 0 ∈ ∂V e ∩Ω = ∅; then u(z 0 ) = 0. Denote d = inf z∈∂Ω |z 0 -z| > 0, thus |z 0 | = 1-d. Let r 1 ∈]0, d/4[
be small enough, and fix x 0 ∈ V s such that |x 0z 0 | < r 1 . As V s is an open subset, there exists r 2 > 0 such that B(x 0 , r 2 ) ⊂ V s . Therefore choose r 0 = sup{r s.t. B(x 0 , r) ⊂ V s }. Then there exists y 0 ∈ B(x 0 , r 0 ) ∩ V e = ∅, u(y 0 ) = 0, and |y 0x 0 | = r 0 . This prompts r 0 ≤ r 1 , hence one may choose a small enough r 0 . Thus, u(y 0 ) = 0, u(x) > 0, ∀x ∈ B(x 0 , r 0 ). Let the function w be such that w : B(x 0 , r 0 ) → R, w(x) = e -λ x-x 0 2e -λr 2 0 , where λ > 0 will be later chosen conveniently. Denote also by w the continuous extention of w at 0 on Ω and note that w ∈ H 1 M (Ω), w(x)| x∈∂B(x 0 ,r 0 ) = 0, and w(x)| x∈B(x 0 ,r 0 ) > 0.

Next, we take on to prove that ∃A > 0 such that u(x) ≥ Aw(x), ∀x ∈ B(x 0 , r 0 ) -B(x 0 , r 0 /2). To achieve this we shall make use of the Comparison Principle. We actually evaluate L α (u -Aw) = f -AL α (w), f ≥ 0, and prove that L α (w) ≤ 0 for any ∀x ∈ B(x 0 , r 0 ) -B(x 0 , r 0 /2).

Basic calculations lead to:

L α (w) = E 1 + E 2 (69)
where, in the above

E 1 = -∆w + ∇M M + k • ∇w E 2 = ∇ • ∇M M + ∇ • k + α w = ∆M M - |∇M| 2 M 2 + ∇ • k + α w
Using the expression of w we find

E 1 = -4λ 2 |x -x 0 | 2 + 2λn + 4δλx • (x -x 0 ) 1 -x 2 -2λk • (x -x 0 ) e -λ|x-x 0 | 2 (70) 
and

E 2 = - 2nδ 1 -x 2 + 4δ(δ -1) x 2 (1 -x 2 ) 2 - 4δ 2 x 2 (1 -x 2 ) 2 (71) 
+ ∇ • k + α (e -λ|x-x 0 | 2 -e -λr 2 0 ) (72)
Next, observe that x 0 ≤ ≤ 1d + r 1 , so for any x ∈ B(x 0 , r 0 ), one has x ≤

1 -d + r 1 + r 0 ≤ 1 -d/2. Therefore 1 -x 2 ≥ d(1 -d/4) > 0. Denote d 0 = 1/(d -d 2 /4) > 0; hence 1 1 -x 2 ≤ d 0 , ∀x ∈ B(x 0 , r 0 ) (73) 
Then

E 1 ≤ -λ 2 r 2 0 + 2λn + 4δλr 0 d 0 + 2λ k L ∞ r 0 e -λ|x-x 0 | 2 , ∀x such that r 0 2 ≤ x ≤ r 0 .
We also have

E 2 ≤ |E 2 | ≤ 2nδd 0 + 4δ(δ -1)d 2 0 + 4δ 2 d 2 0 + ∇ • k L ∞ + α e -λ|x-x 0 | 2 .
which implies

L α (w) ≤ -λ 2 r 2 0 + λ(2n + 4δr 0 d 0 + 2 k L ∞ r 0 ) + 2nδd 0 + (8δ 2 -4δ)d 2 0 + ∇ • k L ∞ + α e -λ|x-x 0 | 2 , ∀x such that r 0 2 ≤ x ≤ r 0 . (74) 
Then one may choose a λ > 0 large enough (with λ depending on z 0 and r 0 ) so that the rhs be negative, i.e. L α (w) ≤ 0. Therefore

L α (u -Aw) ≥ 0, ∀x ∈ B(x 0 , r 0 ) -B(x 0 , r 0 /2), ∀A > 0. (75) 
Next, as u(x) > 0 in B(x 0 , r 0 ) and u is continuous in Ω , one has inf u(x) / e -λr 2 0 /4e -λr 2 0 , to get u ≥ Aw on ∂B(x 0 , r 0 /2).

We also have u ≥ Aw on ∂B(x 0 , r 0 )

Then the inequality (75) and the Comparison Principle give u ≥ Aw, ∀x ∈ B(x 0 , r 0 ) -B(x 0 , r 0 /2).

Next, the interior regularity property gives u ∈ C 1 (Ω). Let ν = y 0x 0 r 0 denote the outward normal vector at y 0 ∈ B(x 0 , r 0 ). Then ∂u ∂ν

(y 0 ) = - 1 r 0 lim s→0 s>0 1 s u [y 0 -s(y 0 -x 0 )] .
With the help of inequality ((76)) it easily follows that:

∂u ∂ν (y 0 ) ≤ -2λAr 2 0 e -λr 2 0 < 0. ( 77 
)
On the other hand now, y 0 is an interior point at which u reaches a minimum (u(x) ≥ 0 on Ω, u(y 0 ) = 0); this entails ∇u(y 0 ) = 0, hence ∂u ∂ν (y 0 ) = 0, which contradicts inequality (77). This last argument ends the proof.

The main result of this section is Lemma 3.7.

B α (P 1 -{0}) ⊂ • P 1 .
Proof. Since Lemma 3.5 gives B α (X 1 ) ⊂ X 1 , it suffices to prove that for any f ∈ P 1 , f ≡ 0, there exists c > 0, such that

u(x) ≥ cM(x), ∀x ∈ Ω (78)
where in the above u = B α (f ).

The difficulty here is to lower bound u in a neighborhood of the boundary of Ω.

Let W 0 : Ω → R, W 0 (x) = e -λ x 2e -λ , with λ > 0, and

W 1 : Ω → R, W 1 (x) = [W 0 (x)] δ .
Observe that W 0 (x) = e -λ e λ(1-x 2 ) -1 ; using now the inequalities e z -1 ≥ z and e z -1 ≤ ze λ with z = λ(1x 2 )

we deduce

λe -λ (1 -x 2 ) ≤ |W 0 (x)| ≤ λ(1 -x 2 ), ∀x ∈ Ω ( 79 
)
which implies

λ δ e -δλ M(x) ≤ |W 1 (x)| ≤ λ δ M(x), ∀x ∈ Ω. Then W 1 ∈ X 1 which triggers W 1 ∈ L 2 M .
The followings hold true as well:

∇W 0 = -2λxe -λ x 2 and ∇W 1 = -2λδxe -λ x 2 W δ-1 0 . In- equality (79) leads to |∇W 1 | ≤ cM 1-1/δ . Finally, Proposition 3.4 gives W 1 ∈ H 1 M .
We take on to proving L α (u -AW 1 ) ≡ f -AL α (W 1 ) ≥ 0 on Ω -Ω η , where A > 0 and η ∈]0, 1[ will be chosen later. As f ≥ 0, we need to prove that L α (W ) ≤ 0. One has:

L α (W 1 ) = -∆W + ∇M M + k • ∇W + ∆M M - |∇M| 2 M 2 + ∇ • k + α W.
Carrying out the calculations by making explicit ∇M, ∆M, etc, leads to

L α (W 1 ) = 2λδne -λ x 2 W δ-1 0 -4λ 2 δ x 2 e -λ x 2 W δ-1 0 -4λ 2 δ(δ -1) x 2 e -2λ x 2 W δ-2 0 + 4λδ 2 x 2 1 -x 2 e -λ x 2 W δ-1 0 -2λδk • xe -λ x 2 W δ-1 0 - 2nδ 1 -x 2 W δ 0 + 4δ(δ -1) x 2 (1 -x 2 ) 2 W δ 0 -4δ 2 x 2 1 -x 2 W δ 0 + (∇ • k + α)W δ 0 ( 80 
)
Denote now y = 1x 2 . Expanding about "y close to 0" leads to

W 0 = λe -λ y 1 + λy 2 + (λy) 2 6 e z 1 with z 1 ∈ [0, λ].
We then have, for any γ > 0,

W γ 0 = λ γ e -λγ y γ 1 + λγy 2 + y 2 h(y, λ, γ) (81) 
where, due to the fact that y ∈

[0, 1], h is such that |h(y, λ, γ)| ≤ h
where h is a positive constant depending on λ and γ. Next, for any γ > 0, e -γλ x 2 = e -γλ e γλy = e -γλ 1 + γλy + (γλy) 2 2 e z 2 (82)

with z 2 ∈ [0, λγ].
Expand the right-hand side of (80) in power series w.r.t. y. Using (81) and ( 82) and taking into account the equality x 2 = 1y, one remarks that the coefficients of the leading term y δ-2 vanish, so after some lengthy (and awkward) algebra one gets:

L α (W 1 ) = a 1 (x, λ)y δ-1 + a 2 (x, y, λ)y δ (83) 
with (84)

a 1 (x, λ) = 2λ δ e -δλ -δ 2 λ + 4δ 2 -δx • k (85)
and a 2 a function satisfying

|a 2 (x, y, λ)| ≤ ā2
where ā2 is a positive constant depending in λ. Next,

-δ 2 λ + 4δ 2 -δx • k ≤ -δ 2 λ + 4δ 2 + δ k L ∞
and with a suitable choice for λ, such as:

λ = 1 δ 2 4δ 2 + δ k L ∞ + 1 (86) one gets 4δ 2 -δ 2 λ -δx • k ≤ -1, which gives a 1 (x, λ) ≤ -2λ δ e -δλ . (87) 
Therefore

L α (W 1 ) ≤ -2λ δ e -δλ y δ-1 + ā2 y δ = -2λ δ e -δλ y δ-1 1 - ā2 2 λ -δ e δλ y .
Then one may take y small enough (i.e. x close to 1) such that L α (W 1 ) ≤ 0.

It has thus been proved that ∃η ∈]0, 1[, close to 1, such that

L α (u -AW 1 ) ≥ 0, ∀x ∈ Ω -Ω η , ∀A > 0. (88) 
Next, from Lemma 3.6 we have u > 0 over Ω. Since u is also continuous, A may be chosen such that min 

x∈Ωη u(x) ≥ A max x∈Ωη W (x) ≤ 2 δ . Take A = 1 2 δ min x∈Ωη u(x). Such a choice leads to u(x) ≥ AW 1 (x), ∀x ∈ Ω η (89) Since u, W 1 ∈ H 1 M ,
Let us now denote λ0 = 1/μ 0α; λ0 is clearly an eigenvalue of L related to the same eigenfunction ũ0 . It then follows:

Ω M∇ ũ0 M • ∇ ϕ M dx - Ω kũ 0 • ∇ ϕ M dx = λ0 Ω ũ0 ϕ M dx, ∀ ϕ ∈ H 1 M .
Set ϕ = M in the above equation, and since

Ω ũ0 > 0 ( remark that ũ0 ∈ L 1 (Ω) by the obvious embedding L 2 M (Ω) ⊂ cont L 1 (Ω))
, we deduce that λ0 = 0. Then the following expression:

ψ = b Ω ũ0 dx ũ0
gives a solution of eq(17a).

Step 3 (Uniqueness).

Assume ψ 1 and ψ 2 are two solutions to the problem (17a)-(17c). Then ψ 1 and ψ 2 are nonnegative eigenvectors of operator L corresponding to the eigenvalue 0. This implies

B α ψ m = 1 α ψ m , m = 1, 2
which gives

S α ψ m = 1 α j 0 +3 ψ m , m = 1, 2.
We then obtain ψ m ∈ X 

Final comments

We have offered a proof to the fact that the FENE dumbbell configurational distribution function diffusion equation -see the corresponding boundary value problem described in eqs (10a)-(10d)-has unique steady state solutions. In doing so, we relied on the Krein -Rutman theory of elliptic operators.

There are several motivations for this work. In [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF] asymptotic solutions for the probability density diffusion equation -valid for slow flows -are presented, but no proof for the existence of such solutions is offered. While in this work we have proved the existence of solutions to the diffusion equation for slow and fast flows (that is irrespective of whether the velocity gradient is "small" or "large"), the questions related to the convergence of explicit expansion solutions given in [START_REF] Bird | Dynamics of Polymeric Liquids[END_REF] (and in what functional space it occurs) are still to be addressed to the fullest.

Moreover, we expect our results to further the work in finding asymptotic solutions valid for "large" velocity gradients, i.e. for fast flows, for the FENE dumbbell model; a solution in such a case is known only for rigid dumbbells (see [START_REF] Öttinger | A note on rigid dumbbell solutions at high shear rates[END_REF]). Now, the elastic (or rigid) dumbbell polymer chain models are certainly crude representations of the real chains. That set aside, they do capture several -but not all -important features of viscoelastic flows (e.g. shear rate dependent viscosity, first normal stress difference).

Moreover, they owe a certain popularity among polymer scientists (from experimentalists to applied mathematicians) to their relative simplicity. More realistic models use different chain representations. For instance, Doi and Edwards [START_REF] Doi | The theory of polymer dynamics[END_REF] developed the so-called tube model for melt systems, that makes use of the de Genne's reptation ideas of anisotropic chain diffusion.

Schweitzer and co-workers [START_REF] Schwartz | Polymer-mode-coupling theory of the slow dynamics of entangled macromolecular fluids[END_REF] developed a mode-coupling model in which the intermolecular structural constraints upon the motion of single macromolecules are modeled as a many body caging effect. Ngai and Plazek developed their own coupling model [START_REF] Ngai | Identification of different modes of molecular motion in polymers that cause thermorheological complexity[END_REF][START_REF] Ngai | Dynamic and thermodynamic properties of glass-forming substances[END_REF], very successful in predicting the thermo-rheological complexity. This being said, bead-spring or bead-rod chain models still attract significant attention: see for example [START_REF] Schneggenburger | An extended FENE dumbbell theory for concentration dependent shear-induced anisotropy in dilute polymer solutions[END_REF][START_REF] Sizaire | On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow[END_REF][START_REF] Ghosh | Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions[END_REF][START_REF] Hernandez Cifre | Brownian dynamics simulation of reversible polymer networks under shear using a non-interacting dumbbell model[END_REF][START_REF] Underhill | On the coarse-graining of polymers into bead-spring chains[END_REF][START_REF] Kröger | An extended FENE dumbbell model theory for concentration dependent shear-induced anisotropy in dilute polymer solutions: addenda[END_REF]. For sure their full capabilities are still to be uncovered.

  Now since v satisfies (46) and (47) we obtain v ∈ H 2 (Ω), and v H 2 (Ω) ≤ c g L 2 (Ω) . By the Sobolev's inclusion H 2 (Ω) ⊂ cont C(Ω), n = 2, 3 it follows that v ∈ C(Ω), and that v C(Ω) ≤ c 1 g L 2 (Ω) .

x∈∂B(x 0

 0 ,r 0 /2) u(x) > 0. Choose A > 0 such that inf x∈∂B(x 0 ,r 0 /2) u(x) ≥ A sup x∈∂B(x 0 ,r 0 /2) w(x) = A e -λr 2 0 /4e -λr 2 0 . Then choose A = inf x∈∂B(x 0 ,r 0 /2)

1 P 1 , m = 1 , 2 .Remark 4 . 1 .

 111241 and by ((90)) we also have ψ m ∈• Now by the uniqueness property of the strong version of the Krein-Rutman theorem, there exists r > 0 such thatψ 1 (x) = rψ 2 (x), ∀ x ∈ Ω. Now since Ω ψ 1 = Ω ψ 2 =b we obtain r = 1 which proves the uniqueness. From inequality ( (93)) one can deduce, proceeding in a classical manner, that Re(λ) ≥ 0 for any other complex eigenvalue of operator L. The eigenvalue 0 is then the principal eigenvalue of the operator L. Moreover, what is quite remarkable is the fact that 0 is the principal eigenvalue of L for any function k ∈ (W 1,∞ (Ω)) n .

  Lemma 3.2. [Comparison Principle] Let Ω ′ be an open set such that Ω ′ ⊂ Ω, and let Ω ′ denote its closure. Let u, v ∈ H 1M (Ω) so that L α u and L α v be functions well defined on Ω ′ .

  use of equations (88), (89) and of Comparison Principle allows one to infer that u(x) ≥ AW 1 (x), ∀x ∈ Ω -Ω η . One more use of (89) implies that, in fact, this inequality holds true on the entire Ω domain. Now the inequality (79) gives the result.Clearly ũ0 also belongs to H 1 M . Moreover, any other eigenvalue µ ∈ C of B α is such that |µ| ≤ μ0 .
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Proof of the main result

We are now in position to give the proof of Theorem 2.1.

Step 1.

From part (ii) in Lemma 3.3 one infers B α ∈ L (X 1 , X 1/2-1/δ ).

From Lemma 3.4 we obtain

(in other words, j 0 is the unique natural number belonging to the interval

Due to the inequality 1 2 + 2j 0 +1 δ ≥ 1 -2 δ we have the inclusion X 1/2+(2j 0 +1)/δ ⊂ X 1-3/δ . Using again Lemma 3.4 we obtain

Finally, from Lemma 3.5 we deduce

where the following notation has been used:

follows that S α is compact as well.

On the other hand, Lemma 3.7 gives

We are now in a position that allows to make use of the strong version of the Krein-Rutman theorem (see for example [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]) to the operator S α , the Banach space X 1 and the cone P 1 . One deduces the existence of an eigenvalue µ 0 > 0 of S α , to which corresponds the eigenvector

Moreover, if u 1 ∈

• P 1 is any other eigenvector of S α , related to a positive eigenvalue, then u 1 is equal to u 0 up to a multiplicative positive constant.

Step 2 (Existence).

Denote by Spr(B α ) the spectral radius of B α , where B α is considered an element of L (L 2 M ). It is well known (see for example Section III.6.2 in [START_REF] Kato | Perturbation theory for linear operators[END_REF]) that

Since u 0 ∈ L 2 M and u 0 = 0, using ((91)) one has:

On the other hand, let us denote by P 2 M the (reproducible) cone of positive functions in L 2 M .

Due to the Weak Maximum Principle (Lemma 3.1),

We also have that B α is a compact operator from L 2 M onto itself (due to the compact embedding of H 1 M in L 2 M , see [START_REF] Nečas | Les méthodes diréctes en théorie des équations elliptiques[END_REF]).

Use now the weak version of the Krein-Rutman theorem (see [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]) for the operator B α , the Banach space L 2 M and the cone P 2 M . It turns out there exists an eigenvalue μ0 > 0 of B α and a corresponding eigenvector ũ0 ∈ P 2 M -{0}, i.e.

B α ũ0 = μ0 ũ0 .