
HAL Id: hal-00363041
https://hal.science/hal-00363041

Submitted on 20 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation algorithms for scheduling with a limited
number of communications

Chams Lahlou

To cite this version:
Chams Lahlou. Approximation algorithms for scheduling with a limited number of communications.
Parallel Computing, 2000, 26 (9), pp.1129-1162. �10.1016/S0167-8191(00)00032-6�. �hal-00363041�

https://hal.science/hal-00363041
https://hal.archives-ouvertes.fr

Approximation Algorithms for Scheduling with a

Limited Number of Communications

Chams Lahlou

Laboratoire d’Informatique de Paris 6.

4, place Jussieu. 75252 Paris cedex 05.

email : Chams.Lahlou@lip6.fr

Abstract : We consider the case of a UET tree and an unlimited number
of processors. We give a 2-approximation algorithm for minimizing the total
number of communications, when there are no communication delays. This
algorithm allows us to design a 6-approximation algorithm for the makespan
minimization problem when there are unit length communication delays and
the processors are interconnected by a simgle bus. Finally, we compare
our 6-approximation algorithm with other algorithms by simulations. We
show that its mean performance is regular (around 1.25) and we explain,
for certain cases, the performance of these algorithms by considering some
parameters of the problem.

1 Introduction

In a multiprocessor system there are usually interprocessor communications
during the execution of a parallel program because of data transfers between
tasks. It is therefore important to consider scheduling models with realistic
communication constraints if one wants to apply results from scheduling
theory to practical parallel computation problems. For instance, in order to
take into account the duration of a data transfer between two tasks scheduled
by different processors, Rayward-Smith [10] proposed in 1987 a basic model
with unit execution time and unit communication delays (UET-UCT for
short). Since then, scheduling problems with communication delays have
been studied and important results have been obtained (the reader is referred
to [4] for a survey on the subject). However, in most of these problems
it is supposed that there is no communication contention. Whereas this
assumption seems reasonable for some multiprocessor systems (if processors
are fully connected for instance), it is not realistic if the communication
resources are strongly limited as it is the case for a single bus machine.

1

In this paper we consider two scheduling models where the communica-
tion contention is modelled by a limitation of the number of communica-
tions. The parallel program is represented by a precedence graph which is
a directed acyclic graph whose vertices represent tasks and arcs represent
data dependencies among tasks. If two dependent tasks are not scheduled
by the same processor there is an interprocessor communication between
their execution for the data transfer. The first model (UET-bound) has
been proposed by Afrati, Papadimitriou and Papageorgiou [1] on the one
hand, and Prastein [9] on the other hand: Tasks have unit execution time,
there are no communication delays and the total number of communications
is limited. More recently, Finta and Liu [5] have considered the case of a
single bus machine with the UET-UCT assumption. In their model, called
UET-UCT-bus, they study the special case where the bus capacity is one,
that is there can be at most one communication per unit of time (a similar
model for the particular case with two processors has been also proposed
by Norman, Pelagatti and Thanish [8]). They also define two data seman-
tics, that is the kind of data dependencies among the tasks. For the case of
independent-data semantics, all data sent by a task are different and hence
if a task has to communicate to k tasks there are exactly k communications.
On the contrary, for the case of common-data semantics all data sent by a
task are identical. So if a task has to send data to k tasks scheduled by a set
of k′ processors only k′ communications are needed. In [1] the independent
data semantics is considered and in [9] the common data semantics. In both
cases, it is shown that scheduling a UET tree on an unlimited number of
identical processors in at most T unit of time and with at most C commu-
nications is an NP-complete problem. In [5] the authors are concerned with
the two semantics. They show that finding a minimum length schedule (i.e.,
with a minimum makespan) of a UET-UCT precedence graph on a single
bus machine with capacity one is NP-hard for several cases, particularly if
the task graph is a binary tree and the number of processors is infinite.

The purpose of our work is to show that it is possible to design approx-
imation algorithms for the makespan minimization problem in the UET-
UCT-bus model by using approximation algorithms for the communications
minimization problem in the UET-bound model. Our paper is organized as
follows. In Section 2, we establish the connection between the two models
from the approximation point of view. In Section 3, we present an algorithm
for the problem of minimizing the total number of communications in the
UET-bound model, for the special case of a tree and an unlimited number
of processors. We then prove that its relative performance is bounded by 2.
In Section 4, we first show that under restrictive assumptions it is possible
to find in a polynomial time a schedule of an arbitrary precedence graph
on a single bus machine. Then we give a 6-approximation algorithm for the
makespan minimization problem in the UET-UCT-bus model, again for the
special case of a tree and an unlimited number of processors. In Section

2

5, we compare the previous algorithm with some heuristics by the use of
simulations, and Section 6 concludes the paper.

2 The Connection between UET-bound and UET-

UCT-bus

A schedule for a precedence graph G = (V,E), in the model UET-bound,
assigns a starting time ti and a unique processor πi to each task i of V

such that (1) for every couple of tasks (i, j), if πi = πj then ti 6= tj (a
processor schedules at most one task at at each unit of time), and (2) for
each precedence constraint (i, j) ∈ E, tj ≥ ti + 1.

In the model UET-UCT-bus, a schedule for a precedence graph G =
(V,E), with the independent-data semantics, on a single bus machine with
capacity B assigns a starting time ti and a processor πi to each task i of
V such that (1) for every couple of tasks (i, j), if πi = πj then ti 6= tj, (2)
for each precedence constraint (i, j) ∈ E, if πi = πj then tj ≥ ti + 1 else
there is a communication task mij such that tmij

≥ ti +1 and tj ≥ tmij
+1,

and (3) at each time t, |{mij : tmij
= t}| ≤ B (there can be no more

than B communications per unit of time). If the common-data semantics
is considered, all data sent by a task i are identical, so we have to add the
following constraint : (4) if mij and mij′ are two communication tasks such
that πi 6= πj and πj = πj′ then mij = mij′ else mij 6= mi′j′ .

Let us now consider two optimization problems, MINCOM-BOUND for
the UET-bound model and MINTIME-BUS for the UET-UCT-bus model.
In the MINCOM-BOUND problem we are asked to find a schedule with
makespan at most T units of time (that is maxi∈V {ti + 1} ≤ T) such that
the total number of communications is minimum (the definition of commu-
nication depends on the choice of the data semantics). Notice that we have
l ≤ T < n (where l is the length of a longest path in G, and n = |V | is the
number of tasks) since there exists no schedule with makespan less than l,
and since, if T ≥ n, we can get an optimum solution by scheduling all tasks
on a single processor. Moreover, since l ≤ T , it is always possible to find
a solution. In the MINTIME-BUS problem we are asked to find a schedule
with minimum makespan.

We now show how the two problems are related. Let Algo1 be an approx-
imation algorithm for MINCOM-BOUND, c(t) the total number of commu-
nications in a solution provided by Algo1 when the makespan is limited to
t, and c∗(t) the total number of communications in an optimum solution.
Consider the following algorithm Algo2 for MINTIME-BUS :

1. Let l be the length of a longest path in the precedence graph (in
number of tasks). We set t = l ; While c(t) > (t− 1)B we set t=t+1;

3

2. (creation of communication delays) the schedule provided at the end of
the previous step is scanned from left to right, and each communication
(i, j) at time t is replaced by a communication of one unit length : so
task j and all its successors are shifted to the right by one unit of time.

3. (scheduling of communications) the schedule obtained at the end of
the previous step is again scanned from left to right. If at a time t

there are more than B communications, the extra communications are
delayed by one unit of time.

We then have the following result.

Theorem 1 If Algo1 is an α-approximation algorithm then Algo2 is a 3α-
approximation algorithms.

Proof – Let T ∗ denotes the makespan of an optimum schedule for MINTIME-
BUS. We show that Algo2 provides a schedule with makespan at most 3αT ∗.
Let T1, T2 and T3 be the makespan of the schedules we get by steps 1, 2 and
3 respectively. Since T1 may be increased (during step 2) by one time unit at
each time t where there are communications, and because there are at most
T1−1 such instants: T2 ≤ 2T1−1. Again, T2 may be increased (during step
3) by one time unit each time there are more than B communications. Since
there are at most (T1 − 1)B communications (by step 1), T2 is increased at
most T1 − 2 times. Hence we get T3 ≤ T2 + T1 − 2 = 3(T1 − 1).

Let T ∗
1 be the minimum makespan of an optimum schedule such that

c∗(T ∗
1) ≤ (T ∗

1 − 1)B. Since c∗(T ∗
1) ≤ (T ∗

1 − 1)B, the associated schedule
is a valid solution for a relaxed version of MINTIME-BUS (more precisely,
when only the total number of communications is limited). Thus we have
T ∗
1 ≤ T ∗. So we consider two cases:

1. If T1 = T ∗
1 : T1 ≤ T ∗ and T3 ≤ 3T ∗.

2. If T1 > T ∗
1 : by step 1, (T1 − 2)B < c(T1 − 1) and (by definition of

Algo1) c(T1 − 1) ≤ αc∗(T1 − 1). If t ≥ t′ we have c∗(t) ≤ c∗(t′), so
c∗(T1 − 1) ≤ c∗(T ∗

1). Hence, (T1 − 2)B < αc∗(T ∗
1) and, since c∗(T ∗

1) ≤
(T ∗

1 − 1)B, we have T1 ≤ αT ∗
1 ≤ αT ∗.

Finally, T3 ≤ 3T1 ≤ 3αT ∗ and the theorem is proved.

2

Note that this result does not depend neither on the bus capacity, nor
on the data semantics.

4

3 Approximation in the UET-bound Model

We are concerned in this Section with the problem MINCOM-BOUND when
the precedence graph is a tree (an out-tree, more precisely) and the number
of processors is unlimited. This problem is NP-hard for both data semantics
since the associated decision problems are NP-complete (see [1] and [9]).

Let A be a tree of height h with n unit execution tasks, and T the
makespan limitation (h ≤ T < n). We consider the independent-data se-
mantics, so the cost (the total number of communications) of a schedule is
the number of arcs (i, j) such that i and j are not scheduled by the same
processor. Since T < n, there is at least one communication in every sched-
ule, and it is possible to define the performance ratio c

c∗
where c∗ is the cost

of a an optimum schedule and c the cost of an approximation algorithm.
We now present an algorithm which approximates the optimum within

a ratio of 2 (c
c∗

≤ 2).

3.1 Presentation of the Algorithm

We first introduce some notations. Let i be a task of A. We denote by A(i)
the subtree with root i, by Γ+(i) the set of immediate successors of i, and
ri the rank of i in A, that is the length in number of arcs of the path from
the root of A to i.

The schedule of A provided by the algorithm is denoted by σ and an
optimum schedule is denoted by σ∗. For a task i of A, πi is the processor
that schedules i in σ, ti the starting time of i, and S(i) the set of tasks of
A(i) that are scheduled by πi. We define in the same way π∗

i , t
∗
i and S∗(i)

for an optimum schedule σ∗.
The cost c(i) of a task i in σ is equal to the number of immediate

successors of i that are not scheduled by πi. The cost of a subtree A(i),
denoted by c(A(i)), is equal to

∑

j∈A(i) c(j). The costs c
∗(i) and c∗(A(i)) in

σ∗ are defined in the same way.
It is hard to characterize the structure of an optimum solution, but there

are however two easy cases. If A(i) is a subtree of A we have:

1. If ri + |A(i)| ≤ T , A(i) can be scheduled optimally int T − ri unit of
time by executing all tasks of A(i) by the same processor.

2. If all immediate successors j of i are such that each subtree A(j) can
be scheduled by only one processor, we get an optimum schedule of
A(i) with makespan at most T − ri by scheduling as many subtrees
A(j) as possible by the processor πi.

Our algorithm is based on these two special cases:

5

1. for every i in A :

(a) S(i) = {i}.

(b) if ri + |A(i)| ≤ T then x̃i = 0.

(c) else x̃i = 1 and ti = ri.

2. The schedule σi of A(i) is built recursively (starting from the leaves)
as follows:

(a) if x̃i = 0 then we set S(i) = A(i) and all tasks of S(i) are
scheduled since time ri by a new processor πi.

(b) else

i. if i has no immediate successor j such that x̃j = 0 then let
k be the immediate successor of i such that |S(k)| is minimal
; we set S(i) = S(i)

⋃

S(k) and πi = πk.

ii. else let S0 = {j : j ∈ Γ+(i) and x̃j = 0} and l be the list
of elements j of S0 sorted according to the non-decreasing
values |S(j)|. Let j′ be the first element in l.
while ri + |S(i)| + |S(j′)| ≤ T do

S(i) = S(i)
⋃

S(j′) and l = l\{j′}.
Then let S1 = {j : j ∈ Γ+(i) and x̃j = 1}. If S1 6= ∅, let
k ∈ S1 a task such that |S(k)| is minimum. If ri + |S(i)| +
|S(k)| ≤ T we set S(i) = S(i)

⋃

S(k).
Finally, we choose a new processor for πi.

iii. Tasks of S(i) are then scheduled by πi: if k has to be sched-
uled by πi, the schedule σk start at time ti + 1 = rk (ti = ri
by step 1.(b)) ; schedules σj , for j ∈ S0 and πj = πi, are then
scheduled by πi one after the other.

An example of execution for the tree of Figure 1 is represented on Figure
2.

3.2 The Performance Guarantee

The proof of the guarantee is based on a classification of the tree nodes.
To each i of A is associated a variable xi whose value is defined recursively
(starting from the leaves) by:

xi =

0 if ri + |A(i)| ≤ T

1 if ri + |A(i)| > T and ∀j ∈ Γ+(i) : xj = 0
2 if ri + |A(i)| > T and ∀j ∈ Γ+(i) : xj ∈ {1, 2}
3 if ri + |A(i)| > T and ∃ (j, j′) ∈ Γ+(i)× Γ+(i) : xj = 0 and xj′ 6= 0
4 else.

6

type du sommet

2 3 4 5 6 70

0

00

0

0

0

00

0 0

0

0

0

0000

0

0

1

1

1

2 233

4 3

ir

4

A6

A5

A4

A1

A3

A0

0

0

0 A2

81

T = 9

A7

Figure 1: Decomposition of a tree

0 1 2 3 4 5 6 7 8 9

A7

4 A1

1 0

0 0 0

3

0
A2

2 2 1 0 0

0 0

1 0 0

0

A3

0

4 3

C = 7

A4 A5 A63

Figure 2: An example of execution

7

We say that the type of a node i is 0, 1, 2, 3 or 4, according to the value
of xi. In the same way, we say that the type of a subtree A(i) is the type
of its root i. This classification leads to the following decomposition of the
tree: if we delete, in A, all arcs of type (3, 0), (3, 1) and (3, 2) we get a set of
subtrees A = {A0, . . . , AK}. Since arcs of type (3, 3), (3, 4), (4, 4) and (4, 3)
are not deleted, all nodes of type 3 and 4 belong to the same subtree. An
example of decomposition is shown on Figure 1.

3.2.1 General Properties

Let i be a node of A, we denote:

• by Γ+
0 (i) the set of 0-type immediate successors of i.

• by Γ+
0
(i) the set of all other immediate successors of i.

• by S0(i) the set of tasks in Γ+
0 (i) scheduled by πi.

• by S∗
0(i) the set of tasks in Γ+

0 (i) scheduled by π∗
i .

• by smax(i) the maximum number of subtrees A(j), j ∈ Γ+
0 (i), that

can be entirely scheduled by πi, that is smax(i) = max
S⊆Γ+

0
(i) |{S :

ri + 1 +
∑

j∈S |A(j)| ≤ T}.

• by b(i) = |Γ+
0 (i)| − |S0(i)| the number of 0-type nodes not scheduled

by πi.

A schedule built by the algorithm has the following properties:

Lemma 1 For every i in A :

1. |S0(i)| = smax(i).

2. c(i) ≤ b(i) + |Γ+
0
(i)|.

3. c(i) ≥ b(i) + |Γ+
0
(i)| − 1.

Proof –

1. The algorithm allocates all tasks of a 0-type subtree to the same pro-
cessor. Since at the end of the step where i is considered, a maximum
number of 0-type immediate successors of i are allocated to πi since
time ri, the property is true.

2. At the end of the step where i is considered, at least |S0(i)| immediate
successors of i are allocated to πi, so c(i) ≤ |Γ+(i)|−|S0(i)| = |Γ+

0
(i)|+

|Γ+
0 (i)| − |S0(i)| = |Γ+

0
(i)|+ b(i).

8

3. If i has at least one non 0-type immediate successor, at most one non
0-type immediate successor of i can be allocated to πi (by step 2.(b).ii).
So c(i) is at least equal to |Γ+

0
(i)| + b(i)− 1.

2

We shall use the following bound for the proof of the performance guar-
antee:

Lemma 2 For i ∈ A :

b(i) ≤ c∗(i) +
∑

j∈Γ+

0
(i)

c∗(A(j))

Proof – Let k0 and k′0 be the number of elements in S∗
0(i) such that S∗(j) =

A(j) and S∗(j) 6= A(j), respectively. Let k1 be the number of elements
in Γ+

0
(i) allocated to π∗

i . By definition, c∗(i) = |Γ+(i)| − k0 − k′0 − k1.
Since each of the k′0 0-type subtrees creates at least one communication,
we have

∑

j∈Γ+

0
(i) c

∗(A(j)) ≥ k′0. So we get c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j)) ≥

|Γ+(i)| − k0 − k1. Since k0 ≤ smax(i) = |S0(i)| (case 1 of property 1),
c∗(i)+

∑

j∈Γ+

0
(i) c

∗(A(j)) ≥ |Γ+(i)|−|S0(i)|−k1 = |Γ+
0 (i)|−|S0(i)|+|Γ+

0
(i)|−

k1. But b(i) = |Γ+
0 (i)| − |S0(i)| and k1 ≤ |Γ+

0
(i)|. It is then true that

c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j)) ≥ b(i).

2

To make easier the understanding of the performance guarantee proof,
we first give a proof for a simple case:

Theorem 2 If A is a 2-type tree then c ≤ 2c∗.

Proof – Let N1 and N2 be the 1-type and 2-type nodes of A, respectively.
By definition of the algorithm, the cost of a 0-type subtree is 0 in σ, so
c =

∑

i∈N1∪N2
c(i). Since each 2-type node i has exactly one immediate

successor allocated to πi (see step 2.(b).i),
∑

i∈N2
c(i) =

∑

i∈N2
(|Γ+(i)|−1) =

(|N2|+ |N1|−1)−N2. All immediate successors of a 1-type node i are 0-type
nodes, so c(i) = |Γ+

0 (i)|− |S0(i)| = b(i), again by definition of the algorithm.
Thus we have c =

∑

i∈N1
b(i) + |N1| − 1, and since 1 ≤ c(i) for i ∈ N1 we

get c =
∑

i∈N1
b(i) +

∑

i∈N1
c(i)− 1 ≤ 2

∑

i∈N1
b(i)− 1. Finally, by lemma 2

we have c ≤ 2c∗.

2

We use the same idea for the general proof: the total cost c is decomposed
according to the type of the nodes of A. However, the proof is much more
difficult because some nodes can have a zero cost in σ∗ but not in σ: for

9

instance, if i is a 3-type node with only one 1-type immediate successor, it
is possible that all immediate successors of i are allocated to π∗

i but there
is no proof that they are also allocated to πi. Therefore it is not possible
to bound c(i) by an expression with c∗(i). For i in N4 (the set of 4-type
nodes of A) c(i) = |Γ+(i)| − 1, by definition of the algorithm. The value
|N4| can be suppressed in the expression of c, as it is the case for the value
|N2| in the proof of the previous theorem. On the contrary, for a task i

in N3 (the set of 3-type nodes of A) we can not use this trick, and the
bound of the cost c looks like |N3| + · · · . If we want to get a guarantee
we have to bound the value |N3|. For this purpose, we shall prove that in
fact for some 3-type node with a zero cost in σ∗ but not in σ, there exists
one successor j (not necessarily immediate) such that: either c∗(A(j)) ≥ 1,
or c∗(j) +

∑

k∈Γ+

0
(j)c∗(A(k)) ≥ 1, or c∗(j) ≥ 1. By this way, it is possible to

associate to each 3-type node with a zero cost in σ∗ but not in σ a successor
with a non zero cost.

3.2.2 Properties of 3-type Nodes

We study 3-type nodes according to their cost in σ and σ∗. We also con-
sider 4-type nodes because such a node can be an immediate successor or
predecessor of a 3-type node.

Let N3 and N4 be the sets of 3-type and 4-type nodes of A, respectively.
Consider the following partition of N3 :

• N1
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) = 0, c(i) = |Γ+
0
(i)| and i has at

least one 3-type successor}

• N2
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) = 0, c(i) = |Γ+
0
(i)| and i has no

3-type successor}

• N3
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) = 0 and c(i) = |Γ+
0
(i)| − 1}

• N4
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) = 1 and c(i) = |Γ+
0
(i)|+ 1}

• N5
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) = 1 and c(i) ≤ |Γ+
0
(i)|}

• N6
3 = {i : c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j)) ≥ 2}

and the following partition of N4 :

• N1
4 = {i : c∗(i) = 0}

• N2
4 = {i : c∗(i) ≥ 1}

10

It is indeed a partition: if i ∈ N1
3 ∪ N2

3 ∪ N3
3 then b(i) = 0, and thus

either c(i) = |Γ+
0
(i)| or c(i) = |Γ+

0
(i)| − 1 (by cases 2 and 3 of lemma 1);

if i ∈ N4
3 ∪ N5

3 then b(i) ≤ 1, and we have either c(i) = |Γ+
0
(i)| + 1 or

c(i) ≤ |Γ+
0
(i)| (by the same lemma).

We now express more precisely the value of the bound b(i) of lemma 2
for certain nodes in N3.

For nodes in N1
3 ∪N2

3 ∪N3
3 we have :

Lemma 3 If i is in an element of N1
3 ∪N2

3 ∪N3
3 then :

1. b(i) = c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j))

2.
∑

j∈S∗

0
(i) |S

∗(j)| =
∑

j∈S0(i) |S(j)|

Proof –

1. It is obvious by lemma 2.

2. Since c∗(i) = 0 we have S∗
0(i) = Γ+

0 (i), and since
∑

j∈Γ+

0
(i) c

∗(A(j)) =

0, each of the subtrees A(j) (j ∈ Γ+
0 (i)) is entirely scheduled by π∗

i .
Because b(i) = 0 we have |S0(i)| = |Γ+

0 (i)| (see definition of b(i)),
that is S0(i) = Γ+

0 (i), so S0(i) = S∗
0(i). hence

∑

j∈S∗

0
(i) |S

∗(j)| =
∑

j∈S0(i) |S
∗(j)| =

∑

j∈S0(i) |S(j)|.

2

To give an analogous result for nodes in N4
3 we need the following lemma.

Lemma 4 Let i ∈ A and S′ ⊆ Γ+
0 (i). If |S′| ≥ |S0(i)| then :

∑

j∈S′

|A(j)| ≥
∑

j∈S0(i)

|S(j)|

Proof – Tasks of 0-type subtree A(j) are allocated to the same processor by
the algorithm, so |S(j)| = |A(j)|. Since nodes j in S0(i) are chosen one after
the other according to the non-decreasing values |S(j)|, the lemma is true.

2

Then we have the following.

Lemma 5 If i is an element of N4
3 then :

1. b(i) = c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j))

2.
∑

j∈S∗

0
(i) |S

∗(j)| ≥
∑

j∈S0(i) |S(j)|

11

3. All non 0-type immediate successors of i are scheduled by π∗
i .

unlimited –

1. If b(i) = 0 then c(i) ≤ |Γ+
0
(i)| by case 2 of lemma 1, which is impossible.

So we have b(i) ≥ 1, and since c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j)) = 1 the

property is true.

2. Since b(i) = 1, smax(i) = |Γ+
0 (i)| − 1, that is |S0(i)| = |Γ+

0 (i)| − 1
by lemma 1; so there exists a subtree with root in Γ+

0 (i) that is not
scheduled by πi. We consider two cases:

(a) if
∑

j∈Γ+

0
(i) c

∗(A(j)) = 0, each of the subtreesA(j), j ∈ Γ+
0 (i), is

entirely scheduled by π∗
j .

So we have
∑

j∈S∗

0
(i) |S

∗(j)| =
∑

j∈S∗

0
(i) |A(j)|. If all of these sub-

trees are scheduled by π∗
i we get smax(i) = |Γ+

0 (i)|, which is im-
possible. So there exists at least one of them that is not allocated
to π∗

i , and since c∗(i) = 1, exactly one of them is not scheduled
by π∗

i . Now, because |S∗
0(i)| = |S0(i)| we can use lemma 4 and

get
∑

j∈S∗

0
(i) |A(j)| ≥

∑

j∈S0(i) |S(j)|.

(b) If
∑

j∈Γ+

0
(i) c

∗(A(j)) = 1, each of the subtrees A(j), j ∈ Γ+
0 (i), is

entirely scheduled by π∗
j , except one. Let S

∗′

0 (i) be the set of roots
of these subtrees. Since c∗(i) = 0, all these roots are allocated to
π∗
i .

So we have
∑

j∈S∗

0
(i) |S

∗(j)| ≥
∑

j∈S∗
′

0
(i)

|S∗(j)| =
∑

j∈S∗
′

0
(i)

|A(j)|.

Since |S∗′

0 (i)| = |S0(i)| we just have to use lemma 4 to prove the
result.

3. We have seen that task i has a 0-type immediate successor that is
not allocated to π∗

i . Since either c∗(i) = 0 or c∗(i) = 1 the lemma is
proved.

2

3.2.3 Characterization of some Successors of 3-type Nodes

We now prove that for some 3-type nodes with cost zero in σ∗ but not in σ,
there exists a successor j such that one of the following inequality is true:

1. c∗(A(j)) ≥ 1

2. c∗(j) +
∑

k∈Γ+

0
(j)c∗(A(k)) ≥ 1

3. c∗(j) ≥ 1

12

|S(j)|
1

0 0

|S(j)|
1

r - r i

r - r i

j

i

|S(i)|

j
2

j
1

S(i)

|S(i)|

S(i)
q

Case 2:

S(j)
2

S(j)

S(j)

S(j)1

Case 1:
4-type or 2-type nodes

4-type nodes

4-type or 2-type nodes

j
1

j

j

1

1

j
q

i

1

p+1jp

Figure 3: Case 1 and 2 of lemma 6

We first establish a central property that allows us to bound (in certain
cases) the total number of successors of a task i that are allocated to πi.

Lemma 6 Let l = (j1, . . . , jq) be a path in A without nodes in N2 ∪ N3
3 ∪

N4
3 ∪N4. If i is an immediate successor of jq then:

|S(j1)| ≤ ri − rj1 + |S(i)| +
∑

k∈l

∑

j∈S0(k)

|S(j)|

Proof – Let L be the set of nodes in l ∩ (N3
3 ∪N4

3). We study two cases,
according to the value α = |L| :

1. α = 0 : (case 1 of Figure 3) the type of nodes in l is 2 or 4. More-
over, these nodes cannot have 0-type immediate successor by defi-
nition, so a node i in l has only one immediate successor allocated
to πi. We have then |S(j1)| ≤ |S(j2)| + 1 (if it is not the case,
there exists an immediate successor j of j1 allocated to πj1 such that
|S(j)| > |S(j2)|; so j2 is executed by πj1 and j is not, which is impossi-
ble). By repeating this reasoning we have |S(j1)| ≤ |S(i)|+ri−(ri+1).
Since

∑

k∈l

∑

j∈S0(k) |S(j)| = 0, we get |S(j1)| ≤ ri − rj1 + |S(i)| +
∑

k∈l

∑

j∈S0(k) |S(j)|.

13

2. α ≥ 1 : (case 2 of Figure 3) we prove the inequality pby induction.
Let jp be the first node of the path l that is in L. By definition of
the algorithm, jp has at most one non 0-type imediate successor not
allocated to πjp.

If there is one such immediate successor, either jp+1 is allocated to πjp,
or there exists j′ ∈ Γ+(jp) such that |S(j′)| ≤ |S(jp+1)|. So we get, in
the former case |S(jp)| = 1 + |S(jp+1)| +

∑

j∈S0(jp) |S(j)| and in the
latter case |S(jp)| = 1 + |S(j′)| +

∑

j∈S0(jp) |S(j)| ≤ 1 + |S(jp+1)| +
∑

j∈S0(jp) |S(j)|.

If there is no such immediate successor, |S(jp)| = 1+
∑

j∈S0(jp) |S(j)| ≤
1 + |S(jp+1)| +

∑

j∈S0(jp) |S(j)|. In all cases we have |S(jp)| ≤ 1 +
|S(jp+1)|+

∑

j∈S0(jp) |S(j)|.

(a) α = 1 : the type of a node in the path from jp+1 to jq is 4, so
|S(jp+1)| ≤ ri − rjp+1

+ |S(i)|. Thus we have |S(jp)| ≤ 1 + ri −
rjp+1

+|S(i)|+
∑

j∈S0(jp) |S(j)| = ri−rjp+|S(i)|+
∑

j∈S0(jp) |S(j)|.
If jp = j1 the inequality is proved; else the type of a node in l

from j1 tojp, different from jp, is 4. So |S(j1)| ≤ rjp−rj1+ |S(jp)|
and we get |S(j1)| ≤ ri − rj1 + |S(i)| +

∑

j∈S0(jp) |S(j)|.

(b) α ≥ 2 : suppose the inequality is true for |L| = α and consider the
case |L| = α+1. Let jp′ be the second node of the path l that is in
L, and let L′ = L\{jp}. By the hypothesis of induction, we have
|S(jp′)| ≤ ri− rjp′ + |S(i)|+

∑

k∈L′

∑

j∈S0(k) |S(j)|. The type of a
node in l from jp+1 to jp′ , different from jp′ , is 4, so |S(jp+1)| ≤
rjp′ −rjp+1

+|S(jp′)|. Again, by the hypothesis of induction we get
|S(jp+1)| ≤ rjp′ − rjp+1

+ ri− rjp′ + |S(i)|+
∑

k∈L′

∑

j∈S0(k) |S(j)|,
that is |S(jp+1)| ≤ ri − rjp+1

+ |S(i)| +
∑

k∈L′

∑

j∈S0(k) |S(j)|.
We have proved that |S(jp)| ≤ 1 + |S(jp+1)| +

∑

j∈S0(jp) |S(j)|,
so |S(jp)| ≤ 1 + ri − rjp+1

+ |S(i)| +
∑

k∈L′

∑

j∈S0(k) |S(j)| +
∑

j∈S0(jp) |S(j)| = ri − rjp + |S(i)| +
∑

k∈L

∑

j∈S0(k) |S(j)|.

If jp = j1 the inequality is true. Else, the type of a node in l from
j1 to jp, different from jp, is 4, so |S(j1)| ≤ |S(jp)|+ rjp − rj1 .

Finally, we have |S(j1)| ≤ ri− rj1 + |S(i)|+
∑

k∈L

∑

j∈S0(k) |S(j)|.

The lemma is then true since the inequality is true in all cases.

2

To prove that some successors j are such that c∗(A(j)) ≥ 1 we need an
intermediate result.

Lemma 7 If, for a 0-type or 1-type node i, |S∗(i)| < |S(i)| then c∗(A(i)) ≥
b(i) + 1.

14

Proof – if the type of i is 0 then the lemma is obviously true. If the type of
i is 1, suppose we have |S∗(i)| < |S(i)|. Let k0 be the number of immediate
successor of i scheduled by πi. Let k∗0 and k∗1 be the number of immediate
successors j of i scheduled by π∗

i such that S(j) = A(j) and S(j) 6= A(j),
respectively. By definition we have c∗(i) = |Γ+(i)| − k∗0 − k∗1 , and because
the type of i is 1 we get c∗(i) = |Γ+

0 (i)| − k∗0 − k∗1 . Each of the k∗1 subtrees
create at least one communication, so c∗(A(i)) ≥ c∗(i) + k∗1 = |Γ+

0 (i)| − k∗0.
But k∗0 ≤ smax(i) − 1 = |S0(i)| − 1, by the case 1 of property 1 (we have
|S∗(i)| ≥ |S(i)| if it is not the case, which is impossible). Hence, we conclude
that c∗(A(i)) ≥ |Γ+

0 (i)| − |S0(i)|+ 1 = b(i) + 1.

2

So by this result and lemma 6 we obtain:

Lemma 8 Let i be in N1
3 ∪N2

3 . If i has no successor in N1
3 ∪N2

3 ∪N5
3 ∪N6

3 ,

there exists a 1-type node i′ ∈ A(i) such that c∗(A(i′)) ≥ b(i′) + 1.

Proof – Since i has no successor in N1
3 ∪N

2
3∪N

5
3 ∪N

6
3 , non 0-type and non

1-type successors of i are in N2∪N3
3 ∪N4

3 ∪N4 : each of these successors has
at least one of its non 0-type immediate successor scheduled by its processor,
in σ and in σ∗, by definition of the partition and by lemma 5. So there exists
a 1-type successor i′ of i allocated to π∗

i . Let l = (i, j1, . . . , jq, i
′) the path

from i to i′ in A, and let l′ = (j1, . . . , jq). We have then

|S∗(j1)| ≥ ri′ − rj1 + |S∗(i′)|+
∑

k∈l′

∑

j∈S∗

0
(k)

|S∗(j)|

Since i ∈ N1
3 ∪ N2

3 , i has no immediate successor (with type differ-
ent from 0) allocated to πi, but all of its immediate successors (with type
different from 0) are allocated to π∗

i . So πj1 6= πi and π∗
j1

= π∗
i . In

the same way, since i ∈ N1
3 ∪ N2

3 we can use case 2 of lemma 3 and
we get

∑

j∈S∗

0
(i) |S

∗(j)| =
∑

j∈S0(i) |S(j)|. If |S(j1)| ≤ |S∗(j1)|, we have

tj1 + 1 + |S(j1)| +
∑

j∈S0(i) |S(j)| = rj1 + 1 + |S(j1)| +
∑

j∈S∗

0
(i) |S

∗(j)| ≤

t∗j1 + 1 + |S∗(j1)| +
∑

j∈S∗

0
(i) |S

∗(j)| ≤ T and j1 should have been allocated

to πi (by definition of the algorithm). So we have

|S(j1)| > |S∗(j1)|

Consider now the two following cases:

1. πi′ = πj1 : we have |S(j1)| = ri′ − rj1 + |S(i′)|+
∑

j∈S0(j1) |S(j)|. Since
|S(j1)| > |S∗(j1)|, we get |S(i′)| > |S∗(i′)| +

∑

k∈l′
∑

j∈S∗

0
(k) |S

∗(j)| −
∑

j∈S0(j1) |S(j)|, so |S(i
′)| > |S∗(i′)|+

∑

j∈S∗

0
(j1) |S

∗(j)|−
∑

j∈S0(j1) |S(j)|.

If j1 ∈ N2 ∪ N4, j1 has no 0-type immediate successor, so |S(i′)| >

15

|S∗(i′)|. Else, j ∈ N3
3 ∪N4

3 so we can use lemmas 3 and 5 (case 2) and
get |S(i′)| > |S∗(i′)|.

Then, by lemma 7, the result is proved.

2. πi′ 6= πj1 : if we use lemma 6 with the path l′ = (j1, . . . , jq), we get
|S(j1)| ≤ ri′ − rj1 + |S(i′)| +

∑

k∈l′
∑

j∈S0(k) |S(j)|. Again, by lemmas
3 and 5, we have |S(i′)| > |S∗(i′)|.

So the lemma is true.

2

node in N 1
3

2
3node in N U N 3

1

i

i’

1
4node in N U N 3

3

3
node in N 4

0 0

0 0

0 0

must be on the same processor

must be on the same processor

must be on the same processor

must be on the same processor

Figure 4: a contradictory argument for lemma 9

Now, we prove the existence of the other kind of successors. We say that
j is an immediate descendant of i, if j ∈ N1

3 ∪N2
3 and there exists no other

node that belongs to N1
3 ∪N3

2 in the path from i to j.

Lemma 9 Let i an element of N1
3 . If i′ is an immediate descendant of i

then there exists a node in the path l from i to i′ that belongs to N5
3∪N

6
3 ∪N

2
4 .

Proof – Since i ∈ N1
3 we have c(i) = |Γ+

0
(i)| and b(i) = 0. So S0(i) =

Γ+
0 (i) and there exists no immediate successor of i (with type different from

0) allocated to πi. Hence, |S(i)| = 1+
∑

j∈S0(i) |S(j)|. Because b(i
′) = 0 and

c(i′) = |Γ+
0
(i′)| we can use the same reasoning for node i′. Thus we get:

|S(i)| + |S(i′)| = 2 +
∑

j∈S0(i)

|S(j)| +
∑

j∈S0(i′)

|S(j)| (1)

If i′ is an immediate successor of i then π∗
i′ = π∗

i (since i ∈ N1
3 , we

have c∗(i) +
∑

j∈Γ+

0
(i) c

∗(A(j)) = 0). So |S∗(i)| ≥ 2 +
∑

j∈S∗

0
(i) |S

∗(j)| +
∑

j∈S∗

0
(i′) |S

∗(j)|. Because i′ ∈ N1
3 ∪ N2

3 , we can use case 2 of lemma 3

and get |S∗(i)| ≥ 2 +
∑

j∈S0(i) |S(j)| +
∑

j∈S0(i′) |S(j)|. By (1) we have

16

|S(i)| + |S(i′)| ≤ |S∗(i)| and i′ should have been scheduled by πi: so there
exists a node in the path from i to i′ different from i and from i′.

If l = (i, j1, . . . , jq, i
′), let l′ = (j1, . . . , jq). We prove by contradiction

that not all nodes in l′ belong to N3
3 ∪N4

3 ∪N1
4 . Suppose that all nodes in

l′ belong to à N3
3 ∪N4

3 ∪N1
4 (see figure 4). We have two cases:

1. π∗
i 6= π∗

i′ : Let j be a node in l. If j belongs to N1
3 ∪ N2

3 ∪ N3
3 ∪ N1

4

then c∗(j) = 0 (by definition) and all immediate successors of j are
allocated to π∗

j . Else j belongs to N4
3 , and by lemma 5, all immediate

successors of j (with type different from 0) are scheduled by π∗
j .

So we have π∗
j1

= π∗
j2

= · · · = π∗
jq

= π∗
i′ , and since c∗(i) = 0 we get

π∗
i = π∗

j1
: this case is not possible.

2. π∗
i = π∗

i′ : all nodes in l are scheduled by π∗
i , so |S∗(i)| ≥ 1+ ri′ − ri +

∑

j∈S∗

0
(i) |S

∗(j)|+
∑

j∈S∗

0
(i′) |S

∗(j)|+
∑

k∈l′
∑

j∈S∗

0
(k) |S

∗(j)|. By case 2
of lemmas 3 and 5 we get :

|S∗(i)| ≥ 1+ri′−ri+
∑

j∈S0(i)

|S(j)|+
∑

j∈S0(i′)

|S(j)|+
∑

k∈l′

∑

j∈S0(k)

|S(j)| (2)

Since all nodes in l′ belong to à N3
3 ∪N

4
3 ∪N

1
4 , we can use lemma 6 with

the path l′ and get |S(j1)| ≤ ri′ − rj1 + |S(i′)|+
∑

k∈l′
∑

j∈S0(k) |S(j)|.
Then, |S(i)| + |S(j1)| ≤ 1 +

∑

j∈S0(i) |S(j)| + ri′ − rj1 + |S(i′)| +
∑

k∈l′
∑

j∈S0(k) |S(j)|. Because rj1 = ri + 1 we have |S(i)| + |S(j1)| ≤
ri′−ri+

∑

j∈S0(i) |S(j)|+ |S(i′)|+
∑

k∈l′
∑

j∈S0(k) |S(j)|. Since |S(i
′)| =

1+
∑

j∈S0(i′) |S(j)|, we get |S(i)|+|S(j1)| ≤ 1+ri′−ri+
∑

j∈S0(i) |S(j)|+
∑

j∈S0(i′) |S(j)|+
∑

k∈l′
∑

j∈S0(k) |S(j)|, that is |S(i)|+ |S(j1)| ≤ |S∗(i)|
by inequality 2.

We have then ti+ |S(i)|+ |S(j1)| = ri + |S(i)|+ |S(j1)| ≤ t∗i + |S(i)|+
|S(j1)| ≤ t∗i + |S∗(i)| ≤ T , so j1 should have been scheduled by πi: this
case is not possible.

In the two cases, there is a contradiction with the hypothesis that all
nodes in l′ belong to N3

3 ∪N4
3 ∪N1

4 : the lemma is then true.

2

Since by definition we have c∗(j) ≥ 1 for j ∈ N2
4 and c∗(j)+

∑

k∈Γ+

0
(j) c

∗(A(k)) ≥

1 for j ∈ N5
3 ∪N6

3 , the existence of the successors is proved and we can now
establish the main result.

Theorem 3 The performance guarantee of the algorithm is 2.

17

Proof – Let N be the set of nodes in A. We denote by Ni, i ∈ {0, 1, 2, 3, 4}
the set of i-type nodes, by R1 and R2 (respectively) the sets of roots of 1-type
and 2-type subtrees.

We have:

∑

i∈N3∪N4

c(i) =
∑

i∈N1
3
∪N2

3
∪N5

3

c(i) +
∑

i∈N3
3

c(i) +
∑

i∈N4
3

c(i) +
∑

i∈N6
3
∪N4

c(i)

By definition of the partition of N3:

∑

i∈N3∪N4

c(i) ≤
∑

i∈N1
3
∪N2

3
∪N5

3

|Γ+
0
(i)|+

∑

i∈N3
3

(|Γ+
0
(i)|−1)+

∑

i∈N4
3

(|Γ+
0
(i)|+1)+

∑

i∈N6
3
∪N4

c(i)

Since, fori ∈ N4, c(i) = |Γ+(i)| − 1 = |Γ+
0
| − 1 and since c(i) ≤ b(i) +

|Γ+
0
(i)| (case 2 of lemma 1), we have:

∑

i∈N3∪N4

c(i) ≤
∑

i∈N3∪N4

|Γ+
0
(i)| − |N3

3 |+ |N4
3 | − |N4|+

∑

i∈N6
3

b(i)

Now, let us consider an immediate successor j of a node in N3 ∪N4. By
definition of the classification, either j belongs to N3 ∪N4, or is the root of
a 1-type (or 2-type) subtree (see Figure 1). So we have :

∑

i∈N3∪N4

c(i) ≤ (|N3|+ |N4|+ |R1|+ |R2|)− |N3
3 |+ |N4

3 | − |N4|+
∑

i∈N6
3

b(i)

that is

∑

i∈N3∪N4

c(i) ≤ |N1
3 |+ |N2

3 |+2|N4
3 |+ |N5

3 |+ |N3
6 |+ |R1|+ |R2|+

∑

i∈N6
3

b(i) (3)

Consider now the nodes in N1
3 . Let N1′

3 be the set of nodes in N1
3 that

have, either an immediate descendant, or no immediate descendant but one
successor in N5

3 ∪N6
3 ∪N2

4 . Let N
1′′
3 = N1

3 \N
1′
3 . By lemma 9 (for nodes in

N1′
3) we get

|N1′
3 | ≤ |N5

3 |+ |N6
3 |+ |N2

4 |

and by (3) we have

∑

i∈N3∪N4

c(i) ≤ |N1′′

3 |+|N2
3 |+2|N4

3 |+2|N5
3 |+2|N3

6 |+|N2
4 |+|R1|+|R2|+

∑

i∈N6
3

b(i)

(4)

18

For a node i in N1 ∪N2, if its type is 1 then c(i) = b(i) else its type is 2
and c(i) = |Γ+(i)| − 1. So we have

∑

i∈N1∪N2

c(i) =
∑

i∈N1

b(i) +
∑

i∈N2

|Γ+(i)| − |N2|

By definition, nodes in N1′′
3 have neither immediate descendant, nor

successor in N5
3 ∪N6

3 . In other words, no successor of a node in N1′′
3 belongs

to N1
3 ∪N2

3 ∪N5
3 ∪N6

3 . So we can use lemma 8. It also true for nodes in N2
3

since the have no successor in N3 by definition. So it is possible to associate
to each node in N1′′

3 ∪N2
3 a 1-type subtree A(i) such that b(i) ≤ c∗(A(i))−1.

Now, because N1′′
3 ∪ N2

3 cannot have, by definition, a successor that
belongs to N1′′

3 ∪N2
3 , all these subtrees are different and we get

∑

i∈N1∪N2

c(i) ≤
∑

i∈N1

c∗(A(i)) − |N2
3 | − |N1′′

3 |+
∑

i∈N2

|Γ+(i)| − |N2|

The type of an immediate successor of a 2-type node is 1 or 2, by defi-
nition of the classification. so it cannot belong to R1 or R2 (the immediate
predecessor of a node in R1 ∪ R2 is either a 3-type node or a 4-type node).
Hence we have

∑

i∈N1∪N2

c(i) ≤
∑

i∈N1

c∗(A(i))−|N2
3 |− |N1′′

3 |+(|N1|− |R1|+ |N2|− |R2|)−|N2|

(5)
Since the cost of a 0-type node is 0 in σ, we have c =

∑

i∈N1∪N2
c(i) +

∑

i∈N3∪N4
c(i), that is by adding (4) to (5)

c ≤
∑

i∈N1

c∗(A(i)) + |N1|+ 2|N4
3 |+ 2|N5

3 |+ 2|N6
3 |+ |N2

4 |+
∑

i∈N6
3

b(i)

By definition, we have: c∗(A(i)) ≥ 1 if i ∈ N1; c∗(i) ≥ 1 if i ∈ N2
4 ;

c∗(i)+
∑

j∈Γ+

0
(i) c

∗(A(j)) = 1 if i ∈ N4
3∪N

5
3 ; and c∗(i)+

∑

j∈Γ+

0
(i) c

∗(A(j)) ≥ 2

if i ∈ N6
3 . Thus we have:

1. |N1|+ |N2
4 | ≤

∑

i∈N1
c∗(A(i)) +

∑

i∈N2
4
c∗(i)

2. 2|N4
3 |+ 2|N5

3 | = 2
∑

i∈N4
3
∪N5

3
{c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j))}

3. 2|N6
3 | ≤

∑

i∈N6
3
{c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j))}

and since
∑

i∈N6
3
b(i) ≤

∑

i∈N6
3
{c∗(i) +

∑

j∈Γ+

0
(i) c

∗(A(j))} we get

19

c ≤ 2
∑

i∈N1

c∗(A(i)) +
∑

i∈N2
4

c∗(i) + 2
∑

i∈N4
3
∪N5

3
∪N6

3

{c∗(i) +
∑

j∈Γ+

0
(i)

c∗(A(j))}

that is

c ≤ 2c∗

2

3.2.4 The Tightness of the Bound

T = 1+k(k+1)/2T-2

T-3

k

T-k-1

0 1

2

k

0 1 2 3 k

Figure 5: An instance for which the bound is tight

We show that the bound is asymptotically tight. Suppose we have the
2-type subtree of Figure 5: in a schedule built by the algorithm none of th
subtrees with root 1, 2, ..., k can be scheduled by only one processor. Hence
we have k − 1 communications from the main root and k communications
from the roots of the k subtrees, that is c = 2k−1. In an optimum schedule,
there are only k communications. So we have c

c∗
→ 2 when k tends to the

infinity.

4 Approximation and Polynomial Results in the

UET-UCT-bus Model

In this Section we are concerned with the case of a single machine bus.
Contrary to the previous model, we have now communications delays.

20

4.1 A Polynomial Case

In [1] Afrati, Papadimitriou and Papageorgiou have proposed a polynomial
algorithm that schedules a precedence graph with unit execution time on m

processors in at most T unit of time and at most C communications, if C is
fixed.

We slightly modify their algorithm to solve the following problem.

m-MINTIME-BUS-B-T:

Instance: a UET-UCT precedence graph G with n tasks, single ma-
chine bus R with m processors and a capacity B, and an integer T .

Goal: Schedule G on R such that the makespan is at most T .

Theorem 4 The problem m-MINTIME–BUS-B-T can be solved in time

O(DD+1n2D+1 log n)

where D = B(T − 2).

Proof – When T is fixed there are at most B(T − 2) communications. So
we can use the enumerative method described in [1]. Let V be the set
of n nodes in G, and E the set of arcs of G. The maximum number
of B(T − 2)-tuples is bounded by |E|B(T−2). If we delete each of these
B(T − 2)-tuples we get at most c = B(T − 2) + 1 weakly connected com-
ponents. Since each of theses components has to be assigned to a single
processor, there are min(m, c) possible assignments. Then, each compo-
nent must be scheduled after the communications of its inner arcs and
before its outer arcs, so these arcs define release times and deadlines. It
is then possible to schedule each component by solving a single-processor
scheduling problem in time O(n log n) (see [7]). Since the total number of
these arcs is at most Bc(T − 2)c, we can examine all possible solution in
time O(|E|B(T−2) min(m, c)Bc(T − 2)cn log n). By bounding |E| by n2, and

min(m, c + 1) by n, we get a time O(B(T − 2)B(T−2)+1
n2B(T−2)+1 log n).

2

4.2 An Approximation Algorithm

Now, we consider the problem MINTIME-BUS in which we are asked to find
a minimum makespan schedule of a UET-UCT tree on an infinite number
of processors. We suppose that the capacity B is arbitrary.

First, we show that a list algorithm can have a very bad performance.
We consider the instance shown on Figure 6. Suppose B = 1 and k is even:
an optimum schedule if of length 2k + 1.

21

1,1 1,k

2,1

3,1 3,k

2,3

k,1 k,k

1,k

1,1

k,1

k,k

0

1 k

kk

0 1 2

3

k

Bus

0 1

2

3

k

k+1 k

Bus

com. of 0 com. of 1 com. of 2 com. of k

1,1

1,k

2,1

2,2 2,k k,2 k,k1,2

k/2 k/2 k/2

Figure 6: A bad instance for a list algorithm

If the priority list is (0, 1, . . . , k, (1, 1), . . . , (1, k), . . . , (k, 1), . . . , (k, k)), a

list algorithm provides a schedule of length 2+ k2

2 . So the performance ratio
is not bounded and can be as bad as we want.

Now, if we use the algorithm presented in Section 3 and then algorithm
Algo2 (see page 3) we can get a solution of MINTIME-BUS, and we have
the following approximation theorem.

Theorem 5 MINTIME-BUS can be approximated within a ratio of 6.

Proof – this a consequence of theorems 1 and 3.

2

5 Simulations

We have proposed an approximation algorithm (from now we call it MIN-
COM) for the problem MINTIME-BUS and we have analyzed its worst-case
to get a performance guarantee. In order to analyze the performance in case
of a random instance, we did some simulations on a computer.

22

5.1 The Method

To get an idea of the quality of the performance we compared our algorithm
with four heuristics.

The first one is based on solving a relaxed problem. Indeed, if we do not
consider the limitation constraint we get the model UET-UCT and the prob-
lem is polynomial (see Chrétienne [3]). So, to get a solution for MINTIME-
BUS, we just have to use step 3 of the algorithm Algo2 to schedule the
communications.

The three others are list algorithms. We tested several priority list but
three ones seem to have a better performance than the others: (1) nodes
sorted according to the non increasing height, (2) nodes sorted according to
the non increasing width (the number of leaf of a subtree), and (3) nodes
sorted according to the non increasing ratio width/height.

To compare these five algorithms, we computed the ratio ω(H)
ω−

, where
ω(H) is the makespan of a heuristic H and ω− the makespan of a solution by
the algorithm of Chrétienne. Since this algorithm solves a relaxed problem,
ω− is a lower bound of an optimum makespan ω∗ for MINTIME-BUS. Hence,
we have ω(M)

ω∗ ≤ ω(M)
ω−

and, by this way, we approximate the real performance
ratio.

To generate the trees we used the algorithm described in [2]. The in-
teresting point of this method is that the trees are randomly and uniformly
generated. We considered 20 sizes for the trees (from 10 to 485, with a step
equal to 25), and for each size we generated 100 trees (results are stable
from this value). To each tree we associated 3 values of the capacity (1, 5
and 10), that is we considered 6000 instances of the problem. We used a
200 MHz Pentium and it took about 2 hours and a half for the tests to be
done.

5.2 The Results

The aim of the tests was not only to compare our algorithm MINCOM with
others, but also to study the correlation between the performance ratio and
some parameters of the trees: the number of nodes, the height, the width
and the ratio width/height. In the following we present two kind of plots:
(1) the mean performance ratio and (2) the scatter plot (the individual
performance ratios) as a function of one of the parameters. By analyzing
the scatter plots we can get an idea of a possible correlation and of its
significance. Indeed, if the mean performance varies with a parameter (the
number of nodes for instance) and if the variability does not depend on the
parameter, it is almost sure that there exists a correlation (if the sample has
a sufficient number of items, obviously) (see [11] for instance or an other
introductory book to statistics).

23

5.2.1 The Mean Performance as a Function of the Number of
Nodes

We first observe that the mean performance ratio of our algorithm does
not depend on the bus capacity, and is equal to around 1.25. The mean
performance ratio of the four other algorithms degrades with the increase of
the number of nodes, except for the case of a capacity 10 where it is hard to
conclude. However the performance of these algorithm gets better with the
increase of the bus capacity. Finally, we can note that the method based
on Chrétienne’s algorithm is very efficient for the case of a capacity 10 (the
optimum seems to be reached many times). This is not a surprise since if the
capacity is great the model UET-UCT-bus is close to the model UET-UCT,
in a sense.

1

1.5

2

2.5

3

3.5

4

4.5

5

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
pe

rf
or

m
an

ce

number of nodes

Mincom
Chretienne

width/height list
width list

height list

Figure 7: Capacity 1

24

1

1.25

1.5

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
pe

rf
or

m
an

ce

number of nodes

Mincom
Chretienne

width/height list
width list

height list

Figure 8: Capacity 5

1

1.25

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
pe

rf
or

m
an

ce

number of nodes

Mincom
Chretienne

width/height list
width list

height list

Figure 9: Capacity 10

25

5.2.2 The Mean Performance Ratio as a Function of Width/Height

We only give the results for the width/height parameter because they are
the most significants. We can make the same observation as previously,
except maybe for the case of a capacity 10 where the performance of all
algorithms seems to deteriorate. However, as we shall see in the following,
the last performance values are not significant because they are associated
to few data.

1

2

3

4

5

6

7

8

9

0.2 1.07 1.94 2.81 3.68 4.55 5.42 6.29 7.16 8.03 8.9

m
ea

n
pe

rf
or

m
an

ce

width/height

Mincom
Chretienne

width/height list
width list

height list

Figure 10: Capacity 1

26

1

1.5

2

2.5

3

0.2 1.07 1.94 2.81 3.68 4.55 5.42 6.29 7.16 8.03 8.9

m
ea

n
pe

rf
or

m
an

ce

width/height

Mincom
Chretienne

width/height list
width list

height list

Figure 11: Capacity 5

1

1.25

1.5

1.75

0.2 1.07 1.94 2.81 3.68 4.55 5.42 6.29 7.16 8.03 8.9

m
ea

n
pe

rf
or

m
an

ce

width/height

Mincom
Chretienne

width/height list
width list

height list

Figure 12: Capacity 10

27

5.2.3 Scatter Plot as a Function of the Number of Nodes

Now, we study the correlation between the performance ratio and the num-
ber of nodes of the trees. Only the case of a capacity 1 is presented, since it
is the most significant.

We first observe that the performance of MINCOM does not depend on
the number of nodes. On the contrary, there exists a correlation for the
other algorithms, but we can not assert that this correlation is important or
that the performance depends only on the size of the trees (the variability
is not independent from this parameter).

1

1.5

2

2.5

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

pe
rf

or
m

an
ce

number of nodes

Figure 13: MINCOM (capacity 1)

28

1

2

3

4

5

6

7

8

9

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

pe
rf

or
m

an
ce

number of nodes

Figure 14: Heuristic based on Chrétienne’s algorithm (capacity 1)

1

2

3

4

5

6

7

8

9

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

pe
rf

or
m

an
ce

number of nodes

Figure 15: List algorithm according to the ratio width
height

of the tree (capacity
1)

29

1

2

3

4

5

6

7

8

9

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

pe
rf

or
m

an
ce

number of nodes

Figure 16: List Algorithm according to the width of the tree (capacity 1)

1

2

3

4

5

6

7

8

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

pe
rf

or
m

an
ce

number of nodes

Figure 17: List algorithm according to the height of the tree (capacity 1)

30

5.2.4 Scatter Plot as a Function of the Ratio Width/Height

We are now concerned with the correlation between the performance ratio
and the parameter width/height. We can make the following observations:

1. The performance of MINCOM does not seem to depend on the ratio
width/height.

2. If capacity is 1, the correlation is linear and important for the four
other algorithms.

3. If the capacity is 5, there exists a threshold from which there is a
correlation. This correlation is important, except for the list algorithm
according to the height.

4. If the capacity is 10, it seems that there is no correlation, except may
be for the list algorithm according to the width.

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 18: MINCOM (capacity 1)

31

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 19: MINCOM (capacity 5)

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 20: MINCOM (capacity 10)

32

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 21: Heuristic based on Chrétienne’s algorithm (capacity 1)

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 22: Heuristic based on Chrétienne’s algorithm (capacity 5)

33

1

1.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 23: Heuristic based on Chrétienne’s algorithm (capacity 10)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 24: List algorithm according to the ratio width
height

of the tree (capacity
1)

34

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 25: List algorithm according to the ratio width
height

of the tree (capacity
5)

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 26: List algorithm according to the ratio width
height

of the tree (capacity
10)

35

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 27: List algorithm according to the width of the tree (capacity 1)

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 28: List algorithm according to the width of the tree (capacity 5)

36

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 29: List algorithm according to the width of the tree (capacity 10)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 30: List algorithm according to the height of the tree (capacity 1)

37

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 31: List algorithm according to the height of the tree (capacity 5)

1

1.5

2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

pe
rf

or
m

an
ce

width/height

Figure 32: List algorithm according to the height of the tree (capacity 10)

38

5.2.5 The Mean Number of processors as a Function of the Num-
ber of Nodes

Now, we compare the heuristics according to the number of processors they
use. First, we have to mention that this number does not depend on the
capacity when the method based on Chrétienne’s algorithm is used. Indeed,
the number of processors required in that case is exactly the one found by
Chrétienne’s algorithm since we only schedule the communications of the
relaxed solution to get a feasible solution (remember that the allocation of
tasks to the processors remains the same during that step).

The first observation to make is that this number increase with the num-
ber of nodes, whatever the heuristic we consider. Next, whereas the method
based on Chrétienne’s algorithm requires from 2 or 3 processors (for a tree
with 10 nodes) to around 210 (for a tree with 485 nodes) whatever the ca-
pacity is, our algorithm never uses more than around 25 processors and the
three list algorithm never use more than around 5, 15 and 20 processors in
case of a capacity equal to 1, 5 and 10 respectively.

20

40

60

80

100

120

140

160

180

200

220

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
nu

m
be

r
of

 p
ro

ce
ss

or
s

number of nodes

Mincom
Chretienne

Width/Height list
Width list

Height list

Figure 33: Capacity 1

39

5

10

15

20

25

30

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
nu

m
be

r
of

 p
ro

ce
ss

or
s

number of nodes

Mincom
Chretienne

Width/Height list
Width list

Height list

Figure 34: Capacity 5

5

10

15

20

25

30

10 35 60 85 110 135 160 185 210 235 260 285 310 335 360 385 410 435 460 485

m
ea

n
nu

m
be

r
of

 p
ro

ce
ss

or
s

number of nodes

Mincom
Chretienne

Width/Height list
Width list

Height list

Figure 35: Capacity 10

40

6 Conclusion

We have shown that it is possible to design approximation algorithms with
performance guarantee for two problems where the number of communi-
cations is limited. Moreover, We have proved that the two problem are
related from the approximation point of view. In this way, we have used the
approximation of a the former problem to approximate the latter.

For the first problem (MINCOM-BOUND) we have proposed a 2-approxi-
mation algorithm. This algorithm has been proved for the case of an out-
tree with the independent-data semantics, but is still valid for an in-tree
(the two semantics are in this case the same) and for an in-tree with the
independent-data semantics, since a node has at most only one immediate
successor. However, in case of an out-tree with the common-data semantics,
the algorithm is no longer valid, and the approximation seems harder. For in-
stance, if we consider a 1-type tree with several 0-type subtrees the problem
of minimizing the number of communications reduces to the BINPACKING
problem, which is NP-hard (recall that the same problem is polynomial in
case of the independent-data semantics).

For the second problem (MINTIME-BUS) we have proposed a 6-approxi-
mation algorithm. We do not know, contrary to the previous algorithm, if
the bound is tight. However we have compared its performance with that of
other possible heuristics, by randomly generating an important number of
instances. These tests show that the performance ratio of our algorithm is
stable around the value 1.25 while the worst case ratio is at most equal to 6.
They also show that 1) our algorithm is the most efficient if the capacity is
small, 2) list algorithms are the most interesting if we want to use a number
of processors as small as possible and 3) the method based on Chrétienne’s
algorithm is the most efficient if the capacity is great, but it requires a great
number of processors.

The approximation of more general problems (arbitrary precedence graph,
arbitrary number of processors, ...) seems to be much harder. However, we
could test some heuristics. For example, it would be interesting to compare
list algorithm with a heuristic based on the relaxation of the problem, as we
have done. For the case of scheduling an arbitrary precedence graph on an
unlimited number of processors, it is possible to use the 4

3 -approximation of
König and Munier [6] for the relaxed problem in the model UET-UCT.

To conclude, we think that the model of Afrati, Papadimitriou, Papa-
georgiou and Prastein could be a basic model for scheduling problems with
a limited number of communications. Despite the difficulty of proving per-
formance guarantee for general problems, we think that their model could
be useful for designing good heuristics.

Acknowledgment
I wish to express my sincere thanks to Prof. Claire Hanen for her careful

41

review and for many improvements in the proof of theorem 3.

References

[1] F. Afrati , C. H. Papadimitriou, and G. Papageorgiou (1988) Schedul-

ing dags to minimize time and communication, in Proceedings of 3rd
Conference VLSI Algorithms and Architectures AWOC, Lecture Notes
in Computer Science, Vol. 319, pp. 134–138.

[2] L. Alonso and R. Schott (1995) Random generation of trees, Kluwer
Academic Publishers.

[3] Ph. Chrétienne (1989) A polynomial algorithm to optimally schedule

tasks on a virtual distributed system under tree-like precedence con-

straints, European Journal of Operational Research, Vol. 43, pp. 225–
230.

[4] Ph. Chrétienne, E. G. Coffman Jr, J. K. Lenstra and Z. Liu, editors
(1995) Scheduling theory and its applications, J. Wiley.

[5] L. Finta and Z. Liu (1997) Complexity of Task graph Scheduling with

Fixed Communication Capacity, International journal of Foundations
of Computer science, Vol. 8, No. 1, pp. 43–36.

[6] J-C König and A. Munier (1993) A heuristic for a scheduling problem

with communication delays, Rapport technique LRI no. 871, Université
de Paris-sud, Orsay, France.

[7] E. L. Lawler (1973) Optimal sequencing of a single machine subject to

precedence constraints, Management Science, Vol. 19, pp. 544–546.

[8] M. G. Norman, S. Pelagatti and P. Thanish (1995) On the complexity

of scheduling with communication delay and contention, Parallel Pro-
cessing Letters, Vol. 5, No. 3, pp. 331–341.

[9] M. L. Prastein (1987) Precedence-constrained scheduling with minimum

time and communication, Technical Report UILU-ENG-87-2207, ACT-
75, Coordinated Science Lab., Dept. of Computer Science, Univ. of
Illinois at Urbana-Champaign, ILL. USA.

[10] V. J. Rayward-Smith (1987) UET scheduling with interprocessor com-

munication delays, Discrete Applied Mathematics, Vol. 18, pp. 51-71.

[11] A. Vessereau (1996) La statistique, Presses Universitaires de France,
collection “Que sais-je ?”, Paris, France.

42

