Chams Lahlou
email: chams.lahlou@emn.fr

Stéphane Dauzère-Pérès
email: stephane.dauzere-peres@emn.fr

Single machine scheduling with time window dependent processing times

Keywords: scheduling, one-machine, time dependent processing time, time windows, computational complexity

In the one-machine scheduling problems analysed in this paper, the processing time of a job depends on the time at which the job is started. More precisely, the horizon is divided into time windows and with each one a coecient is associated that is used to determine the actual processing time of a job starting in it. Two models are introduced, and one of them has direct connections with models considered in previous papers on scheduling problems with time dependent processing times. Various computational complexity results are presented for the makespan criterion, which show that the problem is NP-hard, even with 2 time windows. Solving procedures are also proposed for some special cases.

Introduction

One of the most classic problems in scheduling theory consists in scheduling a set J = {1, . . . , n} of independent jobs on a single machine. Preemption is not allowed (a job cannot be interrupted while being processed) and no more than one job can be processed at a time.

Processing times of the jobs are usually considered to be given and constant. However, 1 in practical settings, the processing time of a job may depend on the time at which an operation starts on a resource. Looking at the vast body of literature in scheduling, only a few papers have considered time dependent processing times. The rst papers on the subject are cited in Gawiejnowicz 1 . A very extensive survey can be found in Alidaee and Womer 2 , and a more recent survey is provided in Cheng et al. 3 .

From now on, we only consider problems with the makespan criterion, i.e for the minimisation of the schedule length. When processing times are linear, p j = x j + α j t j , where α j is the rate at which the processing time of the job increases (or decreases, if α j < 0). The problem can be solved in O(n log n) time. This result was proved independently by Tanaev et al. 4 , Gupta and Gupta 5 , Browne and Yechali 6 and Gawiejnowicz and Pandowska 7 .

In the case of piecewise linear processing times, three models have been studied. In the model proposed by Sundararaghavan and Kunnathur 8 , p j = x j if t j ≤ d, where d is a given date, and p j = x j + α j else. The problem has been shown to be binary NP-hard by Mosheiov 9 , whereas Alidaee and Womer 2 have shown that it can be solved in time O(n log n) if the x j 's are identical. In a more general model introduced by Mosheiov 9 , the processing times are subject to multi-step deteriorations, i.e each job j has several dates d 1,j < d 2,j < • • • < d w,j and coecients α 1,j < α 2,j < • • • < α w,j such that p j = x j + α i,j if d i-1,j < t j ≤ d i,j . In the third model, there are two given dates, d and D, and p j = x j if t j ≤ d, p j = x j + α j (t j -d) if d < t j < D, and p j = α j (D -d) otherwise. The problem has been shown to be binary NP-hard by Kononov 10 Since the problems studied in this paper have few connections with the nonlinear pro-2 cessing time case, the reader is referred to the paper of Alidae and Womer 2 .

In our problem, a sequence of dates (d 1 , . . . , d w+1) denes w time windows [d i , d i+1 [where d i < d i+1 , d 1 = 0 and d w+1 = +∞. With each job j is associated a normal processing time x j and w coecients α ij , one for each time window. The actual processing time p j of a job j depends on the coecient of the time window in which it starts. For a job j starting at time t j , we dene the two following models:

• Model M + : p j = x j + α ij if d i ≤ t j < d i+1 . • Model M × : p j = α ij x j if d i ≤ t j < d i+1 ,
The objective is to nd a schedule that minimises the makespan C max = max j∈J C j , where C j = t j + p j is the completion time of job j.

In model M + , the coecient α ij models a waste of or a saving on the normal processing time of job j when it starts in time window [d i , d i+1 [: job j can take more time (i.e α ij > 0), less time (i.e α ij < 0) or the same time (i.e α ij = 0) than the normal processing time. This model has some connections with the two rst piecewise linear processing time models we have presented. First, it is a generalisation of the one proposed by Sundaraghavan and Kunnathur 8 , where p j = x j if t j ≤ d and p j = x j + α j otherwise. Indeed, to get their model we just have to consider two time windows such that α 1j = 0, α 2j = α j and d 2 = d + (with being strictly positive and smaller than the smallest processing time in a window). First, the case of M + where α i < α i+1 is equivalent to a special case of the model proposed by Mosheiov 9 where d i,j = d i , for all j. There are actually two dierences between Mosheiov's model and M + : (i) contrary to Mosheiov's model where only deteriorating processing times are considered, any kind of step function can be used in M + to model the processing times; (ii) in Mosheiov's model, each job has its own sequence of time windows whereas in our model the jobs share the same sequence of time windows.

The model M + can be useful to solve practical scheduling problems when the processing times depend on time periods. For instance, consider a workshop where the processing time of job j is x j when all the workers are present (e.g. there are k workers), and suppose there is a delay p - j (a saving p + j) to process job j if the number of workers is smaller (larger) than k. The problem of scheduling the jobs in minimum time is modelled by associating with each day a time window, and with each pair (day i, job j) a coecient α ij according to the number of workers present in day i : we set α ij = p - j if the number of workers is smaller than k, α ij = -p + j if the number of workers is larger than k, and α ij = 0 otherwise.

Contrary to M + , the model M × has no direct link to previous models. However, it deserves to be studied since in some practical cases the processing time of a job is proportional to the availability of a resource. For instance, if in a network of processors the speed of a task depends linearly on the number of available processors, we set

p j = x j /n i , that is α ij = 1 n i
, where n i is the number of available processors in time period i. Moreover, as we shall see, there exist interesting dierences between M + and M * from a complexity point of view.

Finally, another application of M + and M × could be the approximation of non linear processing times (see the survey of Alidaee and Womer 2 for examples of this type of processing time), by using time windows as intervals for the discretisation of the non linear function.

In the next section, we present an optimal algorithm for both models when the sequence of jobs is given. Then, the M × model with two time windows is studied: It is shown that the problem is NP-hard in the general case and can be solved using a pseudo-polynomial time algorithm when the coecient of a time window is the same for each job, i.e α ij = α i ∀j.

Next, the M + model is analysed: The problem is shown to be polynomial when α ij = α i ∀j and the coecients are increasing or decreasing in the order of the time windows; complexity results for the remaining cases are also discussed. Finally, some conclusions and perspectives for future research are given.

Scheduling in M + and M × according to a given sequence

We introduce an algorithm which solves the problem in both models. The following dominance property is used.

Theorem 1 In models M + and M × , there exists an optimum schedule such that each job starts either at the beginning of a time window or at the completion time of the previously scheduled job.

Proof Suppose there is a job j scheduled just after a job k. If t j = C k the property is true, otherwise let i be the window in which j starts. If t j = d i , the property is true, else by setting t j = max{C k , d i }, the actual processing time of j does not change, neither in

M + nor in M × , since j still starts in the same time window [d i , d i+1 [. 2
Without loss of generality we suppose now that the sequence is (1, . . . , n). Let C(j, t) be the completion time of job j if it starts at time t (note that C j = C(j, t j)). The algorithm is the following:

Algorithm 1:

1. t 1 = d k with C(1, d k) = min d i C(1, d i) 2. for j = 2 to n t j = C j-1 if C(j, C j-1) ≤ min {d i :C j-1 ≤d i } C(j, d i) d k if C(j, C j-1) > C(j, d k) = min {d i :C j-1 ≤d i } C(j, d i)
Let t * j and C * j be the starting time and completion time of job j in an optimum schedule.

Theorem 2 In models M + and M × , when the sequence of jobs is given, there exists an optimum schedule such that C * j = C j for every job j.

Proof Consider the rst job. By Theorem 1, t * 1 = d i for some i. So it cannot be completed before time min The algorithm also solves the following special case, in both models.

d i C(1, d i) = C 1 . Therefore if C * 1 > C
Corollary 1 When the sequence is not given, but the normal processing times are identical and the time window coecients do not depend on the jobs, the minimum makespan problem can be solved in models M + and M × in time O(nw)

Proof Since x j = x, for some x, and α ij = α i , we have p j = α i x in M × and p j = x + α i in M + : The actual processing time of a job does not depend on the job. Consequently, Algorithm 1 can be used with any sequence to get an optimum schedule. 2

Scheduling in M × with two time windows

NP-hardness

We rst prove that minimising the makespan is NP-hard if either α ij = α i or x j = 1, by reductions to the following problems: Proof With an instance of PARTITION is associated an instance of Π 1 as follows :

-J = {1, . . . , n} A pseudo-polynomial time algorithm for the α ij = α i case Lemma 1 If α 1 < α 2 , there exists an optimum schedule such that the last job to start in the rst time window has the largest normal processing time.

-d 1 = 0, d 2 = 2B and d 3 = +∞ -x j = b j for 1 ≤ j ≤ n -α 1j = 2 and α 2j = 1, for 1 ≤ j ≤ n -T = 3B
Proof Let m be a job with the largest normal processing time. Suppose we have an optimum schedule (without idle times since α 1 < α 2) such that the last job to start in the rst time window is not m but a job j. We have two cases to consider according to the time window in which m starts:

1. If m starts in the rst time window, the job can be interchanged with j since jobs starting in the same time window can be sequenced according to any order.

2. Otherwise, m starts in the second time window. As jobs starting in the same time window can be sequenced according to any order, m can be interchanged with the j is completed (remember that the schedule has no idle time). The completion time C m is equal to t j + α 1 x j + α 2 x m . If we interchange m and j, C j (the new completion time of j) is equal to t m + α 1 x m + α 2 x j = t j + α 1 x m + α 2 x j . Let us now compare C m and C j . We have C j -C m = (α 1 -α 2)(x m -x j). Since α 1 < α 2 and x m ≥ x j , we get C j ≤ C m and, as a result, the schedule remains optimum if the two jobs are interchanged. 2

Theorem 6 If there are two time windows and α ij = α i , the makespan minimisation problem, for model M × , can be solved in pseudo-polynomial time.

Proof We shall prove that the problem can be modeled as a knapsack problem (see Garey and Johnson 13 for example), which is a well-known problem that can be solved in pseudo- polynomial time with very ecient algorithms (for up to several thousands of items, see

Martello and Toth 14

). The knapsack problem with n items can be written as follows:

   max j a j y j j b j y j ≤ d y j ∈ {0, 1}, ∀j ∈ {1, . . . , n} where a j and b j are respectively the cost and the weight of item j, and d is the capacity of the knapsack. The binary variable y j is equal to 1 if item j is placed in the knapsack, and is equal to 0 otherwise. In our case, with each job j is associated a weight b j equal to α 1 x j , and a boolean variable y j such that y j = 1 if and only if job j starts in the rst time window. The values of a j and d are dened as follows.

1. If α 1 < α 2 , there is an optimum schedule without idle times and such that (by Lemma 1) a job with the largest normal processing time is the last one to start in the rst time window. Let m be that job. The makespan of the schedule veries C max = j =m α 1 x j y j + α 1 x m + j =m α 2 x j (1 -y j). Moreover, jobs starting in the rst time window must complete before d 2 -1 since since m is the last job to start in the rst time window (recall that d 2 is the start time of the second time window).

Hence we must have j =m α 1 x j y j ≤ d 2 -1 . Therefore, the makespan minimisation problem can be modeled as:

   min C max = j =m α 1 x j y j + α 1 x m + j =m α 2 x j (1 -y j) j =m α 1 x j y j ≤ d 2 -1 y j ∈ {0, 1}, ∀j ∈ J Minimising C max is equivalent to maximising j =m (α 2 -α 1)
x j y j since α 1 x m + j =m α 2 x j is a constant. Hence, we have to solve a knapsack problem where a j = (α 2 -α 1)x j and d = d 2 -1:

   max j =m (α 2 -α 1)x j y j j =m α 1 x j y j ≤ a 2 -1 y j ∈ {0, 1}, ∀j ∈ J 2. If α 1 > α 2 ,
there may be an overlapping job in the optimum schedule. Hence, there are two cases:

• If no job overlaps the two windows, the makespan depend on the jobs that start in the second time window, that is C max = d 2 + j α 2 x j (1 -y j). Moreover j α 1 x j y j ≤ d 2 since jobs starting in the rst time window cannot be completed after time d 2 (otherwise there would be an overlapping job). Since d 2 + j α 2 x j is a constant, the minimisation of the makespan is equivalent to the following knapsack problem where a j = α 2 x j and d = d 2 :

   max j α 2 x j y j j α 1 x j y j ≤ d 2 y j ∈ {0, 1}, ∀j ∈ J • If one job (say m) overlaps the two windows, the makespan depends on the starting time t m of the overlapping job m. It veries C max = t m + α 1 x m + j =m α 2 x j (1 -y j) since job m is only followed by jobs that start in the second time window. Since job m starts in the rst time window, it is completed before time d 2 + α 2 x m : Otherwise, we would get a schedule with no overlapping job by starting m in the second time window, at time d 2 exactly. Hence, t m + α 1 x m ≤

d 2 + α 2 x m , that is t m ≤ d 2 + (α 2 -α 1)
x m . Since the jobs that start in the rst time window are completed before time t m , j =m α 1 x j y j ≤ d 2 + (α 2 -α 1)x m .

Finally, minimising the makespan is equivalent to maximising j =m α 2 x j y j because t m +α 1 x m + j =m α 2 x j is a constant, and we get the following knapsack problem where a j = α 2 x j and

d = d 2 + (α 2 -α 1)x m :    max j =m α 2 x j y j j =m α 1 x j y j ≤ d 2 + (α 2 -α 1)x m y j ∈ {0, 1}, ∀j ∈ J
Therefore, we get a solution to the problem by solving n + 1 knapsack problems.

Indeed, we just have to solve the case with no overlapping job, and n cases with an overlapping one (one problem for each possible overlapping job). Then, the optimum schedule is the best schedule among these n + 1 schedules. 2

Scheduling in M +

The α ij = α i and increasing (or decreasing) α i case Lemma 2 If α i < α i+1 , there exists an optimum schedule such that the jobs are scheduled according to the non-decreasing normal processing time order.

Proof Consider a schedule with two jobs j and j such that t j < t j and x j ≤ x j . Let α and α be the coecients associated with the time windows in which j and j start respectively. Let us denote by S the sequence of jobs scheduled during the time interval [C j , t j [, i.e after j completes and before j starts.

If j and j are interchanged, the new schedule is such that j starts at time t j = t j , followed by the jobs in S and then by job j, without idle times. To show that this interchange is always possible, we are going to prove that C j ≤ C j , where C j is the completion time of j in the new schedule.

First, C j = t j + p j + k∈S p k + p j = t j + x j + α + k∈S p k + x j + α , where α is the coecient of the time window in which j starts. Then, because there may be idle times in the former schedule, C j ≥ t j + x j + α + k∈S p k + x j + α . Hence, the following inequality holds:

C j -C j ≤ k∈S (p k -p k) + α -α
Note that C j ≤ C j because x j ≤ x j . It follows that jobs in S start earlier in the new schedule and thus k∈S p k ≤ k∈S p k . Therefore, α ≤ α since job j also starts earlier in the new schedule which implies that C j ≤ C j . 2 Lemma 3 If α i > α i+1 , there exists an optimum schedule such that the jobs are scheduled according to the non-increasing normal processing time order.

Proof By using a similar interchange argument. 2

Theorem 7 If the model is M + and α ij = α i , the makespan minimisation problem can be solved in time:

• O(n log n), if α i < α i+1 , • O(n log n + nw), if α i > α i+1 .
Proof -If α i < α i+1 , there exists an optimum schedule without idle times (it is always possible to shift a job to the left). Thus, to get an optimum schedule, it is enough to know how to sequence the jobs, that is, by Lemma 2, to sort the jobs according to the time to sort n jobs, that is O(n log n).

If α i > α i+1 , there may be idle times in an optimum schedule. By Lemma 3 we know how to sequence the jobs. To get an optimum schedule, Algorithm 1 can be applied, which is dened for the case of a given sequence in Section . Sorting the jobs and applying the algorithm takes time O(n log n) and O(nw) respectively, that is time O(log n + nw). 2

Complexity of the case with a xed number of time windows

Let us rst consider the case with two time windows. Alidaee and Womer 2 have shown that the makespan minimisation problem, for the piecewise linear model where p j = x j if t j ≤ d and p j = x j + α j otherwise, can be solved in time O(n log n) if the x j 's are identical.

Mosheiov 9 proved that it is a binary NP-hard problem if we have arbitrary x j 's. We deduce from these two results that our problem (in which d 2 corresponds to d + , where can be chosen as small as we want) can be solved in polynomial time if α 1j = 0 and the x j 's are identical, but is NP-hard if α 1j = 0 and the x j 's are arbitrary. Moreover, a consequence of Theorem 7 is that nding an optimum schedule if α ij = α i is a polynomial time problem (with two time windows, either α

1 < α 2 or α 1 > α 2).
Therefore two open questions are (i) the complexity of the case where the α ij 's are arbitrary but the x j 's are identical, and (ii) the complexity of the case where α ij = α i and there are three time windows. In order to prove the NP-hardness of these two cases, the two following problems are considered: Theorem 8 Π 3 is NP-complete.

Proof The transformation is the following (see Figure 2 for an illustration):

-J = {1, . . . , n + 1}

-x j = b j , for 1 ≤ j ≤ n -x n+1 = n 2 B + 1 -d 1 = 0, d 2 = B + n 2 B + 1, d 3 = 2B + nB + 1, and d 4 = +∞ -T = 3B + 3 2 nB + 1 -α 1j = α 3j = B, and α 2j = T , for 1 ≤ j ≤ n + 1
The construction can be done in polynomial time. Now, suppose there is a yes answer for PARTITION. Jobs associated with S are rst scheduled, followed by job n + 1, The second model handles the case of jobs with processing times that are proportional to the availability of a ressource. Both models can also be used to approximate nonlinear

 , Cai et al. 11 and Kubiak and van de Velde 12 , even if D = ∞. For the case where D = ∞, a pseudopolynomial time algorithm that runs in O(nd x j) and a branch-and-bound algorithm have been proposed by Kubiak and van de Velde 12 . In the same paper, two pseudopolynomial time algorithms are proposed for the case where D < ∞.

 polynomial transformations from the PARTITION problem (Garey and Johnson 13): INSTANCE: Integers b 1 , . . . , b n such that n i=1 b i = 2B. QUESTION: Is there a subset S ⊂ {1, . . . , n} such that i∈S b i = B? Theorem 4 Problem Π 1 is NP-complete.

Figure 1 1 and J 2 2 Theorem 5 2 j∈J 1 α

 1122521 Figure 1 illustrates the transformation. The construction can be done in polynomial

• Problem Π 3 :

 3 INSTANCE: A set of jobs J , a sequence of three time windows W = (d 1 , d 2 , d 3 , d 4), normal processing times x j , coecients α ij such that α ij = α i and an integer T . QUESTION: is there a schedule with makespan less than or equal to T ? • Problem Π 4 : INSTANCE: A set of jobs J , a sequence of two time windows W = (d 1 , d 2 , d 3), normal processing times x j = 1, coecients α ij and an integer T . QUESTION: is there a schedule with makespan less than or equal to T ? It can be checked in polynomial time if a schedule has a makespan less than or equal to T , so the two problems are in NP. The NP-completeness of Π 3 and Π 4 is proved by polynomial transformations from a subcase of the PARTITION problem (Garey and Johnson 13): INSTANCE: Integers b 1 , . . . , b n such that n i=1 b i = 2B. QUESTION: Is there a subset S ⊂ {1, . . . , n} such that i∈S b i = B and |S| = n 2 ?

2 KB + Kx + n 2 B

 22 then by the remaining jobs. Jobs associated with S are processed from time 0 to time j∈S (b j + B) = B + n 2 B, since there are exactly n 2 jobs in S. Hence, job n + 1 starts at time B + n 2 B = d 2 -1 and is completed at time d 2 -1 + x n+1 + α 1n+1 = d 3 . Finally, Suppose there is a yes answer for PARTITION. Jobs in S are rst scheduled from time 0 to time j∈S p j = j∈S (1 + K(b j + B) -1) = K(n 2 + 1)B = d 2 . The remaining jobs are then processed in the second time window and are completed by time d 2 + j∈{1,...,n}-S (1+ b j + B -1) = d 2 + (n 2 + 1)B = T : The schedule denes a yes answer for PARTITION. Now, suppose we have a yes answer for Π 4 . First, note that no more than n 2 jobs can start in the second time window. Otherwise, as p j = b j + B and b j ≥ 1, these jobs would be processed during at least (n 2 + 1)(1 + B) time units, which is not possible since the time window is of length (n 2 + 1)B time units. Similarly, no more than n 2 jobs can start in the rst time window. Otherwise, as p j = b j + B and b j ≥ 1, these jobs would be processed during at least (n 2 + 1)(K + KB) = K(n 2 + 1)B + (n 2 + 1)K > T , since K > B. Hence n 2 jobs start in the rst time window and n 2 in the second. Now, let J 1 be the set of jobs starting before time d 2 , J 2 the set of jobs starting at or after time d 2 , x = j∈J 1 b j and y = j∈J 2 b j . First, note that x + y = 2B. Since j∈J 2 p j ≤ T -d 2 , we also have y ≤ B, and consequently x ≥ B. Finally, because j∈J 1 p j + j∈J 2 p j ≤ T , we have n + y ≤ T , i.e Kx + y ≤ KB + B, which implies x ≤ B. Therefore, x = y = B and the sets J 1 and J 2 dene a yes answer for PARTITION. 2 Conclusion This paper has introduced a new type of scheduling problems with time dependent processing times, where the time horizon is divided into time windows and the processing time of a job is associated with the time window in which the job starts. Two models are investigated. The rst one is related to two other models proposed in the literature.

Figure 2 :

 2 Figure 2: polynomial transformation for Theorem 8.

 1 , Job 1 is shifted to the left in the optimum schedule, i.e t * 1 = t 1 and thus C * 1 = C 1 . Now, suppose C * j = C j for 1 ≤ j ≤ k and k < n. By Theorem 1, which applies to both models, t * k+1 = C * k or t * k+1 = d i for some i such that d i ≥ C * k . Therefore job k + 1 cannot be completed before time min{C(k + 1, C * k), min {d i :C * k ≤d i } C(k + 1, d i)} = C k+1 . Again, if C * k+1 > C k+1 , the job is shifted to the left in the optimum schedule by setting t * k+1 = t k+1 . So C * k+1 = C k+1 and, by induction, the proof is completed. 2 Theorem 3 When the sequence of jobs is given, the minimum makespan problem can be solved in models M + and M × in time O(nw) by Algorithm 1.

Proof -From Theorem 2, which applies to both models, it follows that C max = C * max .

Finally, because Step 2 of the algorithm is run n -1 times and there are O(w) comparisons each time, the total computation time is O(nw). 2

•

 Problem Π 1 : INSTANCE: A set of jobs J , a sequence of two time windows W = (d 1 , d 2 , d 3), normal processing times x j , coecients α ij such that α ij = α i , and an integer T . QUESTION: is there a schedule with makespan less than or equal to T ? • Problem Π 2 : INSTANCE: A set of jobs J , a sequence of two time windows W = (d 1 , d 2 , d 3), normal processing times x j = 1, coecients α ij , and an integer T .

QUESTION: is there a schedule with makespan less than or equal to T ? These problems are in NP since one can check in polynomial time if a schedule has a makespan less than or equal to T . We prove the NP-completeness of Π 1 and Π 2 by

Suppose now that at least n 2 + 1 jobs start before job n + 1. Since their normal processing times are greater than or equal to 1 (recall the transformation), the last scheduled one is completed at least at time

Similarly, there cannot be more than n 2 jobs starting after job n + 1. Therefore, there are exactly n 2 jobs processed before job n + 1 and n 2 jobs processed after. Let J 1 and J 2 be the set of jobs starting before and after job n + 1, respectively.

We know that

As a result, we get j∈J 1 x j = j∈J 2 x j = B, and the schedule denes a yes answer for PARTITION. 2

Theorem 9 Π 4 is NP-complete.

Proof The following polynomial time transformation is used:

-J = {1, . . . , n}

time dependent processing times by discretising the time horizon. The results presented in this paper are summarised in Table 1. Our current research aims at developing heuristic and exact procedures. In particular, two original integer programming models have been proposed, whose tight linear relaxations allow rather large instances to be solved using standard solvers.