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t. Using several analyse te
hniques for the hierar
hi
al 
lusteringof a SAGE expression dataset of 822 tags from 74 tissue samples (normal and
an
er) we show that 
leaning the dataset (tags and experiments) is 
riti
aland that attribution of a tag to a gene is not easy. Comparison of 
an
ersfrom various tissues is a di�
ult task as tissue samples 
luster a

ording totissue origin and not as 
an
er or normal.1 Introdu
tionThe SAGE method is based on the sequen
ing of 
on
atemers of short (14 basepairs;re
ently 17 bp) sequen
e tags that originate from the 3'-nearest 
utting site of arestri
tion enzyme) to estimate trans
ripts abundan
e [VZVK95℄, to estimate theexpression level of eukaryoti
 trans
ripts without prior knowledge of their sequen
esand is more sensitive than the EST method [SZL+04℄, but requires knowledge ofthe 
omplete genome. The advantage of the SAGE method is to perform a randomsampling of trans
ripts in a parti
ular tissue, with little sequen
ing e�ort.The dataset proposed for analysis 
omprises several di�
ulties:1. PCR and sequen
ing may produ
e a number of errors. A single error may lead tonon re
ognition of a trans
ript or wrong attribution. Some tags may be presentin more than one gene. Finally, sin
e restri
tion enzymes may not 
ut with100% e�
ien
y, some tags may be wrong.2. Tissue samples originate from two di�erent sour
es (i.e. bulk or 
ell line) thatmay in�uen
e gene expression. Can
erous tissue are usually provided aftersurgery, a �
an
er� sample may 
ontain more healthy tissue than 
an
er, leadingto a �wrong� identi�
ation.3. Analyzes using DNA 
hips 
on
luded that 
an
er 
ells are more alike normal
ells of the same tissue than 
an
er 
ells from a di�erent tissue: there are manymore tissue-spe
i�
 genes than genes involved in 
an
ers [RSE+00,SRW+00℄.Thus, trying to 
lassify in two 
lasses, normal versus 
an
er, in order to identifyspe
i�
 tags 
an be di�
ult. Also, 
an
ers may have di�erent origins (deregu-lation of on
ogenes versus breakdowns of 
hromosomes for example) sear
hingfor two 
lasses only may be problemati
.4. Interpretations. Even after removal of tags that do not show any signi�
ant
hange among samples, many tags remain to be 
lassi�ed. One may then usetools su
h as THEA [PGJC04℄ to automati
ally annotate 
lusters or nodes from



a 
lassi�
ation tree with statisti
ally signi�
ant information extra
ted from forexample GeneOntology, if ea
h tag is linked to a gene.The main goal of our analysis was to investigate the in�uen
e of 
leaning the dataset.We propose to validate removal of spurious tags or experiments and therefore in-
rease the signal. In an exploratory analysis we used the small dataset. This paperfo
uses on the following steps: i) Pruning of non-signi�
ant tags; ii) data normaliza-tion; iii) sele
tion of di�erentially expressed genes; iv) deletion of outlier biologi
al
onditions; v) 
lassi�
ation of biologi
al 
onditions.2 Tags sele
tionTags are often annotated based on the SAGE Genie prin
iples [BOG+02℄ and linkedto a series of expression data (often EST sequen
es), a step that is di�
ult toautomate. It is often di�
ult to understand and appre
iate the methods used fortag attribution, we therefore developed spe
i�
 tools. First, every human ENSTsequen
e was downloaded from Ensembl. Tags present in trans
ripts of a singlegene were labelled as good (436) attributed 
orresponding ENSG numbers3. Tagspresent in trans
ripts originating from several genes were labeled as bad (219) andremoved from further analysis.Next, all EMBL human sequen
es (in
luding ESTs) were downloaded to sear
h nonattributed tags (167). Every sequen
e re
ognized was blasted for ENSG attribution.This step led to a further 80 tags attributed to a ENSG number. Reasons for tagnon attribution are likely to be: i) lo
ation in a region not yet identi�ed as a gene;ii) lo
ation in the mito
hondrial genome (very few protein 
oding genes), whi
h wasnot taken into a

ount; iii) tag resulting from the partial digestion of a trans
ript,and therefore not lo
ated in the 3-most domain.At this point we had 
learly less tags linked to genes than if we had used a tool su
has SAGE Genie. But the �rst tag of the list was linked to a mito
hondrial sequen
eby SAGE Genie, while at the Global Gene Expression Group proje
t it mappedto Unigene Hs.476965 (G1/S transition 
ontrol protein-binding protein IEF-8502)4.The SAGE Genie linked this tag to a sequen
e of a

ession number BE874599.Blast of this sequen
e provided a hit on the mito
hondrial human genome, but ata position that was identi�ed as `16S ribosomal sequen
e'. Su
h sequen
e has nopolyA tail of any sort, and does not 
ontain a repeat of A anywhere in the sequen
e.At this step we are rather 
on�dent that every data resulting from large s
aleanalysis using web based tools, should be 
riti
ally assessed either using two di�erentpubli
 tools or ad-ho
 s
ripts and databases5.3 Algorithms and methodsWe used the Signi�
an
e Analysis of Mi
roarrays (SAM)6 method to sele
t di�er-entially expressed genes. SAM 
omputes a statisti
 di for every gene i, measuring3 http://www.ensembl.org/4 http://s
ien
epark.mdanderson.org/ggeg5 http://www.n
bi.nlm.nih.gov/6 http://otl.stanford.edu/industry/resour
es/sam.html



the strength of the relationship between gene expression and the response variable(
an
er bulk, 
an
er 
ell line, normal bulk and normal 
ell line). The 
uto� forsigni�
an
e �Delta� was �xed at 0.21 implying a False Dis
overy Rate of 5%.Taking into a

ount 
ondition variations and in parti
ular outliers that introdu
enoise in the 
lassi�
ation is 
riti
al [LMV04℄. Thus, we developed a methodologyfor �nding outliers using Prin
ipal Component Analysis (PCA) and hierar
hi
al
lustering methods:1. Using PCA as an exploratory tool to determine the optimal number of 
lusters.2. Applying hierar
hi
al 
lustering algorithms to identify outliers and remove them.3. Applying again PCA analysis to verify that variability level is not de
reasedwhen ea
h of these 
onditions is removed.4. Cluster to verify that the 
lustering was improved.We tested 5 algorithms (K Means, Fanny, Partial Least Squares, Unweighted PairGroups Method Average (UPGMA) and DIvisive ANAlysis (DIANA)) and 5 mea-sures of distan
e (Eu
lidean, Pearson, Manhattan, Spearman and Tau) a

ordingto 3 di�erent 
onsisten
y measures (average proportion of non-overlap, average dis-tan
e between 
lusters and average distan
e between 
luster means) [DD03℄. Wesele
ted UPGMA and DIANA algorithms and Pearson, Eu
lidean and Spearmandistan
es that are the most e�
ient with this dataset.4 Experimental results4.1 Biologi
al 
ondition sele
tionThe 7 pan
reas 
onditions are distributed in 3 
lasses: 
an
er 
ell line (C1Ce, C2Ceand C3Ce), normal 
ell line (N1Ce and N2Ce) and normal bulk (N3Bu and N4Bu),as is shown by the �rst 3 PCA 
omponents that explain 98.59% of the total varian
e.The hierar
hi
al trees obtained for the di�erent distan
e measures are shown in�gure 1(a). Trees obtained with the UPGMA and the DIANA algorithms are similar.
(a) All 
onditions (b) Without outliersFig. 1. Hierar
hi
al 
lustering of the pan
reas 
onditions.Using Pearson and Eu
lidean distan
es, 
ondition Pan
reasC3Ce is pla
ed in anisolated 
luster, and when the Spearman measure is used it is asso
iated with normal
onditions. Removing this 
ondition, the �rst 3 
omponents explain 99.03% of thevarian
e and the result of 
lustering is shown in �gure 1(b).Using a similar pro
ess for other tissues, the 16 outlier 
onditions dete
ted arelisted in table 1. These results 
on�rm the natural division of 
onditions in three




lasses 
orresponding to the �rst 3 
omponents of PCA analysis. Furthermore, inall experiments we 
an see that the varian
e explained by the �rst 3 
omponents isalways improved when outlier 
onditions are removed.Organ/Tissue PCA Outliers PCA without Outliers(�rst 3 
omp.) (�rst 3 
omp.)Brain 98.46 % {N4Ce,C1Bu,C14Bu, C5Bu, C9Ce} 99.02 %Breast 95.57 % {C6Bu} 97.38%Colon 98.56 % {} 98.56 %Ovary 93.60 % {N1Ce, N2Ce, C4Ce, C6Bu} 97.91 %Prostate 98.02 % {N1Bu,C7Bu,C9Bu, C8Ce, C1Ce} 98.70 %Pan
reas 98.59 % {C3Ce} 99.03 %Table 1. PCA analysis of 
onditions by tissues.For ea
h tissue, we observe three 
lasses: 
an
er, bulk and 
ell line, with bulk and 
ellline 
learly separated (see �gure 1(b)). This observation therefore 
on�rms previousanalyzes that showed 
ell sour
e to be of 
ru
ial in�uen
e on gene expression.4.2 Hierar
hi
al 
lustering of biologi
al 
onditionsWe applied PCA analysis and found that the �rst 6 
omponents explain 98.22% ofthe varian
e 
orresponding to the 6 tissue 
lusters. Comparing these results withPCA analysis on the initial dataset showed that gene and 
ondition sele
tions haveeliminated data noise.Then, we applied the UPGMA and DIANA algorithms to the 
leaned dataset andthe tree obtained by 
onsensus for both algorithms, and for the Pearson and theSpearman distan
es, is shown in �gure 2. For the Eu
lidean distan
e, the distribu-tion is similar but bran
hes to the leaves are longer.Comparing 
lustering trees obtained with the initial dataset (not shown) and �g-ure 2 
learly showed that the sele
tion pro
ess improved data quality sin
e lengthof terminal bran
hes were 
onsiderably redu
ed. We 
an observe a �rst degree 
las-si�
ation by tissue that is a

urate for Pan
reas, Brain, Breast, Colon and Prostatetissues, but mixes Ovary tissue 
onditions with other tissue 
onditions. We 
an alsosee a 
lear se
ond degree 
lassi�
ation, among 
onditions of the same tissue, by
ell sour
e: bulk and 
ell line. Among Pan
reas, Breast, Brain and Colon 
ondition
lusters, we 
an observe a third degree 
lassi�
ation by state: 
an
er and normal.
Fig. 2. Hierar
hi
al 
lustering of 
onditions.In 
on
lusion, 
lustering 
learly separates 
ell sour
es, 
orroborating previous re-sults on SAGE and DNA 
hips data [NSS01,RSE+00℄. We 
an 
on
lude that there



are important di�eren
es between bulk and 
ell line 
onditions that should not beignored. We believe that when 
ondu
ting studies for �nding �interesting gene 
an-
er knowledge� involving multiple tissues SAGE libraries, the study must be �rstoriented toward a de
omposition of the 
onditions by tissues and then by 
ell sour
esto �nally fo
us the analysis on 
ell states.Eventually, we applied the C5.0 unsupervised 
lassi�
ation method to produ
e 
las-si�
ation rules of biologi
al 
onditions by tissue, 
ell state and 
ell type. Threedi�erent 
lass attributes 
hara
terizing ea
h 
ondition were 
reated: tissue type(Pan
reas, Ovary, Brain, Prostate and Breast), 
ell sour
e (bulk or 
ell line) and
ell state (
an
er and normal). Boosting and 
ross validation options were a
tivated.The numbers of rules with maximal a

ura
y generated for ea
h 
lass de
ompositionof 
onditions are shown in table 2.Class Number of rules Max a

ura
yBulk 5 100%Cell line 5 100%Can
er 1 80%Normal 3 80%All 6 tissues types 1 60%Table 2. Rules by 
lass and their maximal a

ura
y.Using 
ell sour
e 
lassi�
ation, 5 exa
ts rules, i.e. with 100% a

ura
y, were gen-erated. For 
ell state 
lassi�
ation, only 1 and 3 rules respe
tively, all with withonly 80% of a

ura
y, were generated. Considering tissue 
lassi�
ation, only 1 rulewith 60% a

ura
y was generated. This result is logi
al sin
e there are 6 di�er-ent tissues, thus disturbing the 
lassi�
ation, and 
ells from di�erent tissues butoriginating from 
ell lines tend to be
ome more similar from the tag expression lev-els viewpoint. These results 
on�rm that in the small 
leaned dataset, there is anintrinsi
 division of 
onditions by 
ell sour
e that is more natural than by 
ell state.5 Con
lusionMost SAGE studies made use tags of 14 bp. However, a re
ent study showed the
lear advantage of using a tag of 15 bp [DBB+05℄. Even longer tags will be better.Re
ently, the SAGE proto
ol was enhan
ed with a new tagging enzyme (MmeI),whi
h produ
es 21-22 bases tags [SSR+02℄, allowing dire
t mapping to the tran-s
ripts [VC04℄. When numerous tags are available removing tags present only on
e,that may result from errors, is possible. Sequen
e errors have little e�e
t on thequanti�
ation of moderately expressed genes but not for rare trans
ripts. About6.7% of Long SAGE ditags will have a
quired mutations prior to ligation, 
loningand sequen
ing [VC04℄, arguing for a robust tag attribution to a trans
ript.Only reliably annotated tags 
an be in
luded in the �nal analysis [SSL+04℄. An-notation of SAGE tags to genes and their 
orresponding Unigene 
luster numbersrevealed that on average only 30% of all tags (in
luding less abundant tags) 
ouldbe reliably annotated based on the SAGE Genie prin
iples [BOG+02℄. Annotationimproved to about 70% for tags with intermediate to abundant expression levels.Remaining tags either 
ould not reliably be asso
iated with a gene (e.g. annotatedto un
lustered ESTs) or were not present in a single gene.



In 
on
lusion, algorithms used to analyze SAGE data have a strong in�uen
e onresults [DBB+05℄ and using a single 
omputer program and a single sour
e of se-quen
e data (annotations) would result in a weaker analysis. We have also shownin
oheren
e of results between di�erent publi
 web tools, and an obvious error ofgene attribution for the �rst tag at least. Removing outlier experiments also de-
reases noise and in
reases reliability of 
lustering. Finally, we saw that sear
hingfor 
lassi�
ation rules identifying normal and 
an
erous tissues among tissues ofdi�erent origins is di�
ult as rules of maximal a

ura
y dis
riminate tissue origins.Using several datasets 
ontaining ea
h one numerous samples from the same tissue
ould improve the results.Referen
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